
All rights reserved. This thesis may not be reproduced
in whole or in part by photocopying or other means,

without the permission of the author.

UNIVERSITY OF VICTORIA

We accept this thesis as conforming
to the required standard

A Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

by

Probabilistic Timing Verification and Timing Analysis
for Synthesis of Digital Interface Controllers

DOCTOR OF PHILOSOPHY

in the Department of
Electrical and Computer Engineering

Marco Antonio Escalante
B.Sc., Universidad Iberoamericana, 1987

M.A.Sc., University of Victoria, 1991

Dr. Nikitas J. Dimopoulos, Supervisor
(Department of Electrical and Computer Engineering)

Dr. Kin F. Li, Departmental Member
(Department of Electrical and Computer Engineering)

Dr. Fayez El-Guibaly, Departmental Member
(Department of Electrical and Computer Engineering)

Dr. D. Michael Miller, Outside Member
(Department of Computer Science)

Dr. Robert D. McLeod, External Examiner
(Department of Electrical and Computer Engineering,

University of Manitoba)

© MARCO ANTONIO ESCALANTE, 1998

ii
Supervisor: Dr. N. J. Dimopoulos

ABSTRACT

In this dissertation we present two techniques on the topic of digital interface design: a
probabilistic timing verification and a timing analysis for synthesis, both rooted in a formal
specification. Interface design arises when two digital components (e.g., a processor and a
memory device) are to be interconnected to build up a system. We have extended a Petri
net specification to describe the temporal behavior of the interface protocols of digital com-
ponents. The specification describes circuit delays as random variables thus making it suit-
able to model process variations and timing correlation. Interface probabilistic timing ver-
ification checks that a subsystem, composed of components to be interconnected and the
associated interface logic, satisfies the timing constraints specified by the components’
specifications. Our verification technique not only yields tighter results than previous tech-
niques that do not take timing correlation into consideration but also, if the timing con-
straint is not satisfied, determines the probability that a constraint will be violated. The sec-
ond technique, timing analysis for synthesis, finds tight bounds on the delays of the inter-
face logic, which are unknown prior to synthesis, such that all the timing constraints given
in the component specifications are satisfied.

Examiners:

Dr. Nikitas J. Dimopoulos, Supervisor
(Department of Electrical and Computer Engineering)

Dr. Kin F. Li, Departmental Member
(Department of Electrical and Computer Engineering)

Dr. Fayez El-Guibaly, Departmental Member
(Department of Electrical and Computer Engineering)

Dr. D. Michael Miller, Outside Member
(Department of Computer Science)

Dr. Robert D. McLeod, External Examiner
(Department of Electrical and Computer Engineering,

University of Manitoba)

iii

Table of Contents

Table of Contents iii

List of Figures vi

List of Tables x

Acknowledgements xi

Dedication xii

Notation xiii

1. Introduction 1

1.1 Outline. 1

1.2 Hardware interface synthesis . 2

1.3 Main contributions of this dissertation . 4

1.4 Dissertation outline . 6

2. Representation of Interface Specifications 7

2.1 Introduction . 7

2.2 Petri net model . 8

2.2.1 Petri nets. 8

2.2.2 Time extensions of Petri nets . 11

2.2.3 Probabilistic timed Petri net model . 14

2.2.4 Examples of probabilistic timed Petri nets . 17

2.3 Signal transition graphs. 19

2.3.1 Previous work on timed signal transition graphs 19

2.3.2 Components, ports, signals and signal states 21

2.3.3 Timed signal transition graphs. 25

2.3.4 Signal transition graphs and signal transition sequences 26

2.4 Subclass of STG’s . 28

iv
2.4.1 AND and OR causality. 28

2.4.2 The AOC class of timed signal transition graphs 31

2.5 Interface specifications . 33

2.5.1 Constraint rules . 34

2.5.2 OR causality revisited. 36

2.5.3 Interface specifications . 37

2.5.4 Projections . 38

2.5.5 Examples of interface specifications . 50

2.5.5.1 SRAM read cycle . 51

2.5.5.2 DSP read cycle . 57

2.6 Summary . 61

3. Timing and the Interface Design 62

3.1 Introduction . 62

3.2 Interface design problem. 63

3.2.1 System integration and interface design . 63

3.2.2 Complete graphs . 71

3.3 Time-consistency of complete graphs. 75

3.3.1 STG unfolding. 77

3.3.2 Time-consistency . 82

3.3.3 Fork transitions . 85

3.3.4 Computing constraint equations. 88

3.3.5 Procedure to find fork transitions. 92

3.4 Summary . 102

4. Probabilistic interface timing verification 103

4.1 Introduction . 103

4.2 Verification problem formulation . 104

4.3 Probability distribution of functions of random variables 109

4.3.1 One function of two random variables. 110

4.3.2 Statistics of linear/max/min functions . 111

4.3.3 Point conditional probability . 115

v
4.4 Reliability analysis . 118

4.5 Examples . 120

4.5.1 Example with independent random variables 120

4.5.2 Example with correlated random variables 124

4.5.3 Memory read interface example . 128

4.5.4 Special cases . 135

4.6 Summary . 140

5. Timing Analysis for Synthesis 142

5.1 Introduction . 142

5.2 Timing analysis for synthesis problem formulation 143

5.3 Solving TAFS . 148

5.3.1 TAFS procedure. 148

5.3.2 Linearization of the constraint equations . 154

5.3.3 An illustrative example . 161

5.3.4 Reduction of the feasible region . 164

5.4 Bus arbitration interface example . 172

5.5 Summary . 176

6. Conclusions 177

6.1 Overview of the main contributions . 177

6.2 Future work . 179

Bibliography 181

Appendix A. Performance analysis of an arbiter 193

A.1 Introduction . 193

A.2 Model of the Seitz’ arbiter . 196

A.3 Analysis. 198

A.4 Summary . 201

vi

List of Figures

Figure 1.2.1 Data transfer read interface example. 2

Figure 1.2.2 Interface synthesis task. . 3

Figure 2.2.1 (a) Petri net, and (b) its reachability graph. . 10

Figure 2.2.2 Probability density function of the firing time of a transition. 15

Figure 2.2.3 Petri net with a free choice place labeled with random variable x. 17

Figure 2.2.4 A probabilistic timed petri net that does not present deadlock. 18

Figure 2.3.1 Signal states. 22

Figure 2.3.2 Signal transition graph. 26

Figure 2.3.3 Simple STG. 27

Figure 2.4.1 Causality classes. . 29

Figure 2.4.2 (a) An AOC di-graph; (b) equivalent timed STG. 32

Figure 2.5.1 Constraint rule for transitions a and b. 35

Figure 2.5.2 OR causality constraints.. 36

Figure 2.5.3 A simple timing diagram. 39

Figure 2.5.4 Interface specification corresponding to the timing diagram. 40

Figure 2.5.5 Probability density function of an independent delay. 42

Figure 2.5.6 Timing relationship between add and as. 42

Figure 2.5.7 Signal transition graph. 43

Figure 2.5.8 Generation of the address lines and address strobe signals. 44

Figure 2.5.9 Joint probability density function. . 45

Figure 2.5.10 Projection and linear projection of a probability density function. 46

Figure 2.5.11 Timing diagram of an SRAM read cycle from address. 52

Figure 2.5.12 Timing diagram of an SRAM read cycle from enable.. 53

Figure 2.5.13 Partial interface specification of the SRAM read protocol. 54

Figure 2.5.14 Interface specification of the SRAM read cycle. 55

Figure 2.5.15 Projection of the probability density function ft1t2(τ1, τ2). 57

Figure 2.5.16 Timing diagram of the SHARC read cycle. 58

vii

Figure 2.5.17 Interface specification of the SHARC read cycle. 59

Figure 2.5.18 Construction of a linear projection of a joint pdf.. 60

Figure 3.2.1 Multi-master system. . 64

Figure 3.2.2 Master bus arbitration protocol. 65

Figure 3.2.3 Interface specification of a bus arbitration protocol. 66

Figure 3.2.4 A bus arbitration protocol variant. 67

Figure 3.2.5 Bus arbitration interface: (a) structural view; (b) behavioral view. 68

Figure 3.2.6 Bus busy status signal: (a) strobe relation; (b) actual relation. 69

Figure 3.2.7 Bus arbitration semantic specification. 72

Figure 3.2.8 Examples of nets that do not satisfy condition 3 of Definition 3.2.4. . . 74

Figure 3.2.9 Bus arbitration interface design. 76

Figure 3.3.1 A poset (a) and its relations (b) li ; and (c) co. . 79

Figure 3.3.2 Signal transition graph and a partial view of its acyclic unfolding. 81

Figure 3.3.3 Constraint rule for transitions a and b. 82

Figure 3.3.4 Time separation between transitions a and b. 84

Figure 3.3.5 Fork transition x of transitions a and b. . 85

Figure 3.3.6 Unfolding for transitions a and b from their fork transition. 88

Figure 3.3.7 (a) AND causality; (b) OR causality. . 89

Figure 3.3.8 Fork transition for k ≥ M. . 91

Figure 3.3.9 STG whose transitions do not have a cycle-invariant fork transition. . . . 92

Figure 3.3.10 AOC signal transition graph. 94

Figure 3.3.11 2-unfolding of the STG of Figure 3.3.10.. 95

Figure 3.3.12 Construction for Theorem 3.3.7.. 99

Figure 4.2.1 Checking if z = τb − τa satisfies the constraint ∆. 106

Figure 4.3.1 Probability regions for z = x + y.. 112

Figure 4.3.2 Probability regions for z = x − y.. 112

Figure 4.3.3 Probability regions for z = max(x, y). 113

Figure 4.3.4 Probability regions for z = min(x, y). . 114

Figure 4.3.5 Partial unfoldings (a) a and b independent; (b) a and b correlated. . . . 116

Figure 4.4.1 Reliability factor. . 119

viii

Figure 4.5.1 Constraint satisfaction by a net unfolding. 121

Figure 4.5.2 Probability density function ft1(τ1) of τ1. 122

Figure 4.5.3 Probability density function of fx|t2(x, τ2), x = max(τ1, τ2 + τ3). 122

Figure 4.5.4 Probability density distribution of z: uniform pdf’s.. 123

Figure 4.5.5 Probability density distribution of z: Gaussian pdf’s.. 123

Figure 4.5.6 Reliability figure r. 124

Figure 4.5.7 Partial unfolded graph with correlation between transitions b and c.. . 125

Figure 4.5.8 Joint probability density function of delays τ1 and τ2. 125

Figure 4.5.9 Probability density distribution of z: with and without correlation. . . . 126

Figure 4.5.10 Two linear projections of pdf’s of two random variables. 127

Figure 4.5.11 Interface read design. . 128

Figure 4.5.12 Complete graph representing the interface read design.. 129

Figure 4.5.13 Back-to-back cycle constraint ∆. . 130

Figure 4.5.14 Projection of fd2d7(δ2, δ7). . 131

Figure 4.5.15 Projection of ft1t2t4(τ1, τ2, τ4). . 132

Figure 4.5.16 Joint pdf ftdat+ tdat-(τdat+, τdat-) without correlation. 133

Figure 4.5.17 Joint pdf ftdat+ tdat-(τdat+, τdat-) with correlation. 133

Figure 4.5.18 Probability density function of the time separation. 134

Figure 4.5.19 Sequencing.. 135

Figure 4.5.20 Convolution. 136

Figure 4.5.21 Sequencing pdf. . 136

Figure 4.5.22 Time separation. 136

Figure 4.5.23 Time separation construction.. 137

Figure 4.5.24 Time separation pdf. 137

Figure 4.5.25 AND causality.. 138

Figure 4.5.26 AND causality construction. . 138

Figure 4.5.27 AND causality pdf. . 139

Figure 4.5.28 OR causality. 139

Figure 4.5.29 OR causality construction. . 139

Figure 4.5.30 OR causality pdf.. 140

ix

Figure 5.2.1 Structural view of a bus arbitration interface.. 144

Figure 5.2.2 Interface specifications of bus arbitration protocols. 144

Figure 5.2.3 Bus arbitration interface design. 145

Figure 5.3.1 Set of (τ, δ) values that satisfy a constraint ∆. 150

Figure 5.3.2 Set of δ values that satisfy a constraint ∆ for all values of τ. 151

Figure 5.3.3 Region of the linearization of a constraint equation. 159

Figure 5.3.4 Computing the projection of fd1d2(δ1, δ2). 162

Figure 5.3.5 The feasible region RT. 163

Figure 5.3.6 Projection Rd of fd1d2(δ1, δ2). 164

Figure 5.3.7 Projection Rd of fd1d2(δ1, δ2). 167

Figure 5.3.8 A feasible region. . 171

Figure 5.3.9 The δ-reduction of the feasible region shown in Figure 5.3.8. 171

Figure 5.4.1 TAFS solution for ∆3 = [30, ∞) and ∆4 = [90, ∞). 175

Figure 5.4.2 TAFS solution for ∆3 = [30, 100] and ∆4 = [90, 200]. 176

Figure A.1.1 Seitz’ arbiter.. 194

Figure A.1.2 Arbiter. . 195

Figure A.2.1 Modeling metastability. . 197

Figure A.2.2 Probability distributions of the r.v. of a Petri net.. 197

Figure A.3.1 Probability distributions of the random variables of a Petri net. 198

Figure A.3.2 Probability of the time occurrence of requests r1 and r2. 199

Figure A.3.3 Probability density function of the occurrence time of g1. 202

x

List of Tables

Table 2.3.1. Notable transitions on port p. 25

Table 2.5.1. Timing specifications (Motorola MC68030) . 43

Table 2.5.2. Timing parameters for the 25 ns version of the SRAM device. 54

Table 2.5.3. Timing parameters for the 40 MHz version of the SHARC DSP. 58

Table 3.3.1. Topological sort of the 2-unfolding of Figure 3.3.11. 96

xixixi

Acknowledgments

The author of this dissertation would like to thank to all the people that contributed,

either academically or otherwise, to the successful completion of this thesis, with spe-

cial consideration to the following people: My thesis advisor, Dr. Nikitas Dimopoulos,

for his guidance in asking interesting questions, for the freedom he gave me to pursue

my own directions, and for his thoughtful suggestions that always improved my ideas.

The examiners for their versed comments on this dissertation: Dr. Kin Li, who is one

of the founder members of DAME, the UVic’s project that motivated the techniques

developed in this dissertation; Dr. Fayez El-Guibaly, who shared his enthusiasm about

affine sets and linear algebra with me in a memorable trip to Banff; Dr. Michael Miller,

who gave crucial encouragement to this research since the early phases and brought

about my first publication in the Canadian Conference on VLSI, the begininning of a

fruitful participation in other conferences; and Dr. Robert McLeod, who kindly

accepted to be the external examiner and whose suggestions have improved signifi-

cantly the accuracy of the contents of this dissertation. A very special mention goes to

Dr. Luciano Lavagno, who patiently read my manuscripts and always provided me

with his friendly feedback and with invaluable pointers that opened up new avenues.

Mr. Allan Silburt, who gave me the opportunity to work with his group at the Bell-

Northern Labs (currently Nortel), a wonderful experience that was enriched by an

exchange of ideas with Prof. Eduard Cerny and Dr. Karim Khordoc. Dr. Komei

Fukuda, who graciously made his work and code on polytopes available to me. Dr.

Mantis Cheng, who introduced me to the fascinating world of process algebras. The

ECE team of secretaries, Maureen Denning, Lynne Barrett, and Vicky Smith, for mak-

ing my days at UVic so enjoyable. And finally my parents whose immense love initi-

ated this wonderful experience, and my wife Dongni Li whose indefatigable support

brought it to a successful end.

xiixiixii

Dedication

Amo al tzentzontle, pájaro de cuatrocientas voces,

amo al color de jade, y al enervante perfume de las flores,

pero amo más a mi hermano el hombre.

Nezahualcóyotl

xiiixiiixiii

Notation

Ψ = 〈Σ, CN〉 interface specification

Ω = 〈TΩ, PΩ, MΩ0, ΓΩ, ctΩ, Y, λΩ〉 AOC di-graph

ΩU = 〈TUΩ, PUΩ, ΓUΩ, ctUΩ, Y, λUΩ〉 unfolding of AOC di-graph Ω

Σ = 〈N, Y, λ〉 timed STG

CN = { cij} set of constraint rules

cij = 〈ti, tj, ∆ij , ε〉 constraint rule associated with net N

N = 〈P, T, F, M0, Γ〉 probabilistic timed Petri net

P set of places

T set of transitions

F ⊆ (P×T) ∪ (T×P) flow relation

M : P → ℵ marking function

M0 initial marking

Γ: P → τ time labeling function

ℵ set of non-negative integers

λ: T → A(Y) ∪ { ε} signal transition labeling function

Y set of ports

•t = { p ∈ P: (p, t) ∈ F} preset of transition t

t• = { p ∈ P: (t, p) ∈ F} postset of transition t

pdf probability density function

fτ1 … τM(τ1, …, τM) = joint pdf of random variables τ1 … τM

τ time (random) variable

firing time of transition ti τt i

xivxivxiv

ti(k) k-th occurrence of transition ti

πij = 〈ti, tj, pij , τij〉 timing parameter

φij = 〈ti, tj,ρij〉 correlation rule

S= { sij} semantic specification

sij = 〈ti, tj, ∆ij, ε〉 set of semantic rules

Ψc = 〈Σc, CNc〉 complete graph

Chapter 1

Introduction 1

1.1 Outline

This dissertation presents results on the topics of timing verification and timing analysis

for the synthesis of digital interface circuits. This introductory chapter aims to show the

driving ideas that motivated our work and the main contributions in a rather informal fash-

ion. Other chapters will deal with the task of explaining in more detail the framework and

techniques that support the results outlined in this chapter.

We have developed a formal framework that can be the basis for the a better mod-

eling of the timing aspects that play an important role during the synthesis of high-perfor-

mance hardware systems. This will lead, we believe, to the creation of computer-aided

design (CAD) tools that will relieve hardware designers from time-consuming, error-prone

tasks, thus allowing them to focus on more creative steps of the design process. This is

important in view of the fact that there is a clear trend towards very large and complex

hardware designs, either general-purpose or application-specific chips, while there is con-

stant pressure to reduce the time to market. A viable solution is to increase the design

abstraction, and our effort is in that direction.

In the following section we present some basic ideas behind the design and synthe-

sis of hardware interface logic.

2

1.2 Hardware interface synthesis

Increasingly more complex hardware systems are designed every day that must outper-

form (in speed, power consumption, etc.) the previous generation of hardware devices.

This force creates new challenges to the hardware design flow. An attractive design option

is to construct systems using already developed and tested modules. Such modules can be

as simple as macrocells, or as complex as microprocessors. An important problem of this

approach is system integration, that is interconnecting the off-the-shelf components to

achieve the desired functionality. Integration of the modules may require designing inter-

facing logic which allows the modules to transfer information.

Let us present a simple example to give a glimpse of the interface design problem.

We present some terms rather informally but later in Chapters 2 and 3 we shall discuss

them more thoroughly. Figure 1.2.1 shows a system composed of two components: a pro-

cessor and a memory device. A typical operation between the two components is called

data transfer, according to which the processor can read, or write, data from, or to, the

memory device. To accomplish this, each component has external lines called ports which

carry signals, which without loss of generality we assume to be electrical in nature. Ports

can accept signals (called input ports), or emit signals (called output ports), or both (called

bidirectional port). A binary signal can have two values, usually called high and low

Figure 1.2.1 Data transfer read interface example.

Processor Memory
device

In
te

rf
a

cerd
ack

dat

cs

dat

lo
g

ic

3

respectively. (Of course an electrical signal actually has a continuous value, either voltage

or current, but a binary signal is a convenient abstraction in a digital system).

Figure 1.2.1 shows the ports involved in the read operation. On the processor side,

the rd and ack ports are used to produce a sequence of events, or signal transitions, to tell

the memory device when the processor expects to have the data ready (we use overlining/

underlining of the names of ports to identify them as output/input ports). For example by

setting rd to high, the processor indicates that it wants to request a piece of data from the

memory, and it will keep rd high until it detects a high in ack; when the memory detects a

high in cs, it places a piece of data in dat. A sequence of signal transitions that a compo-

nent uses to exercise an interface operation is called a protocol.

Both components are available in different flavors from different manufacturers.

Thus it is likely that the components use different protocols to exchange information. In

our simple example the memory device does not have a port to tell the processor that a

piece of data is available for reading. For example the interface circuit shown in

Figure 1.2.1 must generate a signal to be fed in into ack; this is called protocol conversion.

Figure 1.2.2 shows the typical steps in the interface synthesis task. This design task

occurs during the integration phase of system design once the modules that comprise the

system have been chosen, interface circuits must be designed to achieve inter-module

Figure 1.2.2 Interface synthesis task.

Interface design

Verification

Synthesis or
Implementation

4

communication. The result of the interface synthesis task is a complete implementation of

the system. The system implementation is then checked to meet design constraints, either

by the use of extensive simulation or by the application of formal verification techniques.

If no violations are found, the process successfully terminates, otherwise some steps are

repeated.

An important contribution of this dissertation is to offer an alternative strategy to

the above iterative process. We suggest that before interface synthesis, a timing analysis

for synthesis (TAFS) be performed on the interface design which determines tight bounds

on the interface delays. After such analysis it is possible to decide on the feasibility of the

design (if the design is implementable) and if that is the case, time-driven synthesis tech-

niques can be used to complete the implementation. The main problem is that the delays of

the interface circuitry are not known.

In the following section we shall discuss where the techniques developed in this

dissertation fit in this picture.

1.3 Main contributions of this dissertation

The general direction of our work is to address the timing aspects particular to the inter-

face synthesis task. In particular, we propose a formal framework suitable for the specifi-

cation of systems composed of components and interface circuits, and two techniques to

analyze and verify timing properties of such systems.

As mentioned at the beginning of the chapter, timing plays an important role dur-

ing interface synthesis, and thus timing verification techniques, which can prove that the

system timing behavior is correct, promise to be effective tools to facilitate the design pro-

cess. As a matter of fact, interface timing verification research has attracted considerable

attention recently [16, 17, 20, 48, 49, 67, 72, 114].

5

It is our tenet that in order to verify a hardware interface between two modules, one

does not need to know all the details of the implementation of the modules. What is

needed is the specification of each module’s interface behavior. This specification is usu-

ally given in textual form describing the sequence of events that define the protocol,

accompanied with timing diagrams that show explicitly the temporal relationships

between the protocol events. One of our goals is to establish a formal specification ade-

quate for describing interface behaviors of hardware modules. In the literature, various

approaches have been proposed for describing hardware: modal logics [15, 35, 88, 94],

process algebras [92, 63, 86, 72], and nets [115, 29, 79, 124, 114, 93, 66]. Our proposed

representation is an extension and generalization of signal transition graphs [115, 29],

which belongs to the net approach.

Once the formal specification framework was set, we developed two techniques

aimed at supporting the interface synthesis task. Both techniques are rooted in formal ver-

ification which, in contrast to simulation, tries to determine that a system satisfies certain

timing properties (i.e., timing constraints) under all circumstances.

The first technique, interface timing verification, is able to verify that a subsystem,

comprising two components to be interconnected and the associated interface logic, satis-

fies the timing constraints specified by the components’ interfaces. In this dissertation we

present a novel probabilistic model which not only yields tighter results than previous

models that do not take timing correlation into consideration but also provides more infor-

mation to the designer by returning qualitative and quantitative information about the

probability that a constraint will be violated rather than just a fail/pass result as is the case

with traditional interval-based timing verification techniques.

The second technique, timing analysis for synthesis, is a powerful tool during syn-

thesis because it treats the interface as a module to be designed, whose timing parameters

are unknown, and finds the delay boundaries that the interface timing parameters must sat-

isfy to comply with the timing constraints given in the components’ specifications. If the

6

solution space is empty, the interface design is infeasible. Otherwise, bounds can be

known about the interface delays that can be used advantageously during synthesis. The

difference of this preliminary analysis from formal verification is that actual temporal

information about the interface is not completely known in advance of synthesis.

1.4 Dissertation outline

In this chapter we have introduced informally the motivation and goals of this dissertation.

We address the timing aspects of the interface synthesis task that must be carried out dur-

ing the construction of modular systems. A fundamental problem in interface synthesis is

to verify that an interface implementation satisfies the timing constraints imposed by the

components that the interface interconnects. High-performance systems and sub-micron

technologies are pushing the timing of system modules and silicon to the limit. It is of par-

amount importance for CAD tools to support verification techniques that help hardware

designers in coping with shorter times to market new products.

In Chapters 2 and 3, we develop a suitable formal representation framework that

makes explicit the various timing relationships that are present in the module protocols. In

Chapter 4, we formulate the timing verification problem as a constraint satisfaction prob-

lem that determines if a set of timing constraints are satisfied and, if that is not the case, it

produces a probability distribution that a constraint will be violated, which can be used to

assess the reliability of the system. Finally in Chapter 5, we present a technique called tim-

ing analysis for synthesis which allows designers to assess the feasibility of an interface

design prior to synthesis.

Chapter 2

Representation of Interface Specifications 2

2.1 Introduction

In this dissertation we aim to study temporal properties of interface logic. As we men-

tioned earlier, hardware systems can be constructed using readily available building

blocks, which we call system components, such as processors, memories and I/O devices.

Interface logic has the important function of providing the necessary paths to facilitate the

transfer of information between components. As we shall discuss in Chapter 3, a compo-

nent expects certain events, whose partial ordering is defined by a protocol, for proper

operation.

In this chapter, we present a formal model that we use to represent component pro-

tocols and component interconnection. Two of the main features of our formalism are: that

it represents distinctly the two different timing information present in timing diagrams,

propagation delays, and timing constraints; and that it can handle correlation information

that is present in timing diagrams.

8

2.2 Petri net model

2.2.1 Petri nets

Petri nets are widely used to model concurrent systems because they have simple and intu-

itive semantics.

A Petri net [107] is a tuple N = 〈P, T, F〉, where P is a non-empty set of places, T is

a non-empty set of transitions, and F ⊆ (P×T) ∪ (T×P) is the flow relation. The marking

of a Petri net is a function M : P → ℵ that assigns to each place of the net a (non-negative)

number of tokens (ℵ is the set of non-negative integers). A marked Petri net is a tuple

N = 〈P, T, F,Mo〉, where Mo is the initial marking. The state of a Petri net can be described

by its marking.

A Petri net is usually represented as a directed bi-partite graph with transition

nodes (bars) and place nodes (circles) and links from transitions to places and from places

to transitions as defined by the flow relation (refer to Figure 2.2.1a).

For any transition t ∈ T, the set of all its incoming places is denoted as

•t = { p ∈ P: (p, t) ∈ F}. Likewise, the set of all its outgoing places is written as

t• = { p ∈ P: (t, p) ∈ F}. Analogous definitions exist for the set of incoming transitions

and outgoing transitions of a place p ∈ P, denoted •p and p• respectively. The number of

tokens assigned to a place p by a marking M is written as M(p).

The firing rule determines the dynamics of a Petri net, i.e., how the tokens are

propagated through the net. A transition t ∈ T is enabled at a marking M iff M(•t) ≥ 1.

Every enabled transition may fire. The effect of the firing of a transition is as follows:

After a transition fires, a new marking M′ is obtained from M as follows: M′ = M − •t + t•.

9

The firing of an enabled transition t in marking M is written M M′ where M′ is

the new marking after firing t. The pair (t, M′) is called an immediate t-derivative of M. In

general M′ is an (t … v)-derivative (or just derivative) of M if M … M′. The double

sequence ES= {(M(0), …,M(j)), (t(1), …, t(j))} is called an execution sequence if for all

i = 1, … , j, M(i-1) M(i). The set of all execution sequences starting from M0 is denoted

by S′(M0). Note that the sequence of transitions and the first marking uniquely determine

the sequence of markings. A marking M′ is said to be reachable from M if and only if there

exists an execution sequence ES in which, for some i<j, M = M(i) and M′ = M(j).

A labelled transition system is the triple 〈S, T,{ , t ∈ T} 〉, where S is a set of

states, T is a set of transition labels, and ⊆ S× S is a transition relation for each t ∈ T.

We define the meaning of a Petri net in terms of the labelled transition system

〈SMo, T, { , t ∈ T} 〉 where SMo is the set of reachable markings from Mo.

A derivation tree of the initial marking Mo is a tree which collects all the deriva-

tives of Mo. The nodes of the tree are reachable markings from Mo. An edge of the tree

joining M and M′ is labelled with the firing action t if M M′. Derivation trees are usu-

ally infinite. A reachability graph is drawn from a derivation tree by collapsing identical

markings, which have the same immediate derivatives, into a single node. Figure 2.2.1b

shows the reachability graph of the Petri net of Figure 2.2.1a.

A Petri net marking is live if for each M ∈ SMo and for each transition t there exists

a marking M′ ∈ SM that enables t. A marked Petri net is live if its initial marking is live. A

marked Petri net is k-bounded (or simply bounded) if there exists an integer k such that for

each place p, for each reachable marking M, M(p) ≤ k. A marked Petri net is safe if it is 1-

bounded.

→t

→t →v

→t(i)

→t

→t

→t

→t

10

A transition t1 disables another transition t2 at a marking M ∈ SMo if both t1 and t2

are enabled at M and t2 is not enabled in any M′ ∈ SM. A marked Petri net is persistent if

no transition can ever be disabled at any reachable marking.

Two transitions t1 and t2 in a marked Petri net are concurrent if there exists a reach-

able marking M ∈ SMo where both t1 and t2 are enabled and neither t1 disables t2 nor vice-

versa. Two transitions t1 and t2 of a marked Petri net are in direct conflict if there exists a

reachable marking M ∈ SMo where both t1 and t2 are enabled and either t1 disables t2 or

viceversa (or both).

A Petri net is a marked graph if for every place p ∈ P, |•p| = 1and |p•| = 1. A

marked graph is persistent for every initial marking Mo. Furthermore every strongly con-

nected marked graph has at least one live and safe initial marking [96].

A Petri net is a state machine if for every transition t ∈ T, |•t| = 1and |t•| = 1. Every

strongly connected state machine has at least one live and safe initial marking. The Petri

net subclass of state machines is isomorphic to classical Finite State Machines if we label

Figure 2.2.1 (a) Petri net, and (b) its reachability graph.

p0

p1 p2 p3 p4

p5 p6

t1 t2

t3 t4 t5 t6

t0

{p1,p6} {p5,p6} {p4,p5}

{p2,p5} {p3,p6}

{p1,p2} {p0} {p3,p4}

t3 t6

t4

t4 t5

t5

t3

t0

t6

t1 t2

(a) (b)

11

each transition of the state machine with an input/output state pair and we interpret each

place as an internal state.

A choice place is a place for which |p•| > 1. A choice place is said to be unique

choice if at most one of the successor transitions |p•| ever becomes enabled. A Petri net is

free-choice if for any two transitions t1 and t2 that share a predecessor place, both t1 and t2

have only one predecessor. A Petri net is extended free-choice if any two transitions that

share one or more predecessor places have exactly the same set of predecessor places.

Classic Petri nets as discussed in this section do not have an explicit mechanism to

account for time. Time is of paramount importance in our application. In the following

section we survey some extensions of Petri nets that model time explicitly.

2.2.2 Time extensions of Petri nets

From Section 2.2.1 it is clear that classic Petri nets cannot model particular time values,

which is of paramount importance for performance evaluation and timing verification.

There exist in the literature different flavors of time extensions to Petri nets that overcome

that problem. In the following, we survey time extensions of Petri nets that have been pro-

posed in the literature that we consider relevant to our work.

Ramchandani [111] associates an execution time r whose domain is the real num-

bers, with each transition of the Petri net. Ramchandani’s time-extended Petri nets are

called Timed Petri nets. A transition is enabled according to the classic Petri net’s firing

rule. When a transition initiates its execution, it immediately consumes tokens in the set •t

of its input places. The transition takes r units of time to complete its execution before

sending tokens to its output places t•. Thus Ramchandani Timed Petri nets are determinis-

tic.

12

Merlin [90, 91] increased the expressiveness of Ramchandani’s Timed Petri nets in

two ways. Firstly he assigned a compact non-negative non-empty interval [d, D] to each

transition of the Petri net. A transition can fire only if it has been enabled for d time units,

and it must fire if it has been enabled for D time units. Secondly Merlin modified the firing

rule as follows: the tokens in the input places of an enabled transition t that fires are

removed from •t when t fires. Merlin’s time-extended Petri nets are called Time Petri nets.

In Merlin’s Time Petri nets, two or more transitions can be enabled by a common set of

tokens such that when one transition fires, it disables the firing of the others. Recall that in

Ramchandani’s Timed Petri nets, the tokens in the input places of an enabled transition are

committed when the transition starts execution.

A timed execution of a time-extended Petri net from the initial marking M0 is an

execution sequence ES of S′(M0) augmented with a non-decreasing sequence of real non-

negative values representing the instants of firing of each transition such that consecutive

transitions {ti, ti+1} correspond to ordered firing times (or epochs) τi ≤ τi+1. The interval

[τi, τi+1) between consecutive epochs represents the period in which the net remains in

marking Mi, where τ0 = 0.

Berthomieu and Diaz [11] used an enumerative analysis technique related to the

reachability analysis method for classic Petri nets to analyze the timed behavior of Timed

Petri nets in which the infinite number of firing times possible from a certain marking M

are finitely represented by state classes. A state class is a pair (M,D) where M is a marking

and D is a domain which is described as a system of inequalities. We have also developed

a timing analysis for synthesis technique that uses the concept of system of inequalities

although for a different class of time-extended Petri nets as will be discussed in Chapter 5.

In Generalized Stochastic Petri nets (GSPN) [1] a random variable with a known

probability density function is associated to each transition of the net. Because of the

memoryless property of the negative exponential density function f(x) = α e-αx, most of the

research on GSPN has assumed exponential random variables. It has been shown that a

13

GSPN with exponential random variables can be transformed to a discrete Markov

chain [1]. However because potentially a transition can take arbitrarily long time to fire, it

is difficult to place upper bounds on a timed execution, and thus the performance analysis

using GSPN has focused on producing probabilistic averages.

To overcome that limitation, Juanole and Atamna [71] have proposed the stochas-

tic timed Petri net (STPN) model in which the probability density functions of the random

variables associated with the transitions of the net are of the form fi(xi) = fci(xi) + fdi(xi),

where fci(xi) is the continuous component, and fdi(xi) is the discrete component of fi(xi).

In [71] the authors only considered uniform probability density functions for the continu-

ous component.

In the aforementioned time-extended Petri net models, time was associated with

the transitions. Alternatively time can be associated with the places. We have chosen this

alternative due to the intuitive interpretation in the realm of digital hardware that a mark-

ing of the net has a direct correspondence to the state of the system, and the firing of a

transition indicates a change of state which is idealized to be instantaneous. Thus to us it

seems more natural to associate time with places. Sifakis [117] first defined Timed Petri

nets in which fixed time values were associated with the places.

Van der Aalst [126] introduced an extension to Sifakis Timed Petri nets in which

intervals are associated with the places of the net. The firing rule is analogous to the one

presented in Section 2.2.3. Our model is a natural extension of van der Aalst’s in the sense

that in it random variables are associated with the places of the net rather than just inter-

vals.

Although Ramchandani also used the term Timed Petri nets to refer to his time

extensions, in the sequel we shall differentiate between the Petri net models that assign

time to transitions from the Petri net models that assign time to places by using the term

Time for the former and Timed for the latter; and time-extended Petri nets shall refer in

14

general to Petri nets with timing extensions. In the following section we present the time-

extended Petri net model that we have developed in this dissertation.

2.2.3 Probabilistic timed Petri net model

The classic Petri net does not include an explicit representation of time. As discussed in

the previous section, Petri nets have been extended to model time, by assigning arbitrary

time values, time intervals, or random variables to transitions, or places, of the net. Other

time extensions of Petri nets were discussed in Section 2.2.2. In this work we have devel-

oped a more general Petri net model in order to be able to handle correlation information

which shall be further discussed in Sections 2.2.3 and 2.5.4, that we have called probabi-

listic timed Petri nets.

Definition 2.2.1.- A probabilistic timed Petri net is a quintuple N = 〈P, T, F, M0, Γ〉

where P is a non-empty set of places, T is a non-empty set of transitions,

F ⊆ (P × T) ∪ (T × P) is the flow relation, M: P → ℵ is the marking function and M0 is

the initial marking (ℵ is the set of the non-negative integers), and Γ: P → τ is the time

labeling function that assigns to each place pi ∈ P a random variable (r.v.) τ(pi) [105].

The preset (postset) of a transition t is the set of incoming places to (outgoing

places from) t and is denoted •t (t•). Similarly the preset (postset) of a place p is the set of

incoming transitions to (outgoing transitions from) p and is denoted •p (p•).

The random variables τi’s are used to represent circuit delays as defined by the fol-

lowing firing rule:

Firing rule

1. A transition t ∈ T is enabled when every place p ∈ •t contains a visible token.

15

2. An enabled transition must fire immediately (unless the firing of another

enabled transition disables the transition instantaneously). When it fires, an

enabled transition consumes a visible token in each place p ∈ •t and sends a

token to each place p ∈ t•.

3. A place pi upon receiving a token at time τ makes it visible to transitions t ∈ p•

at time τ + τi, where τi is the random variable associated with place pi. A place

holds a visible token until it is consumed by the firing of an enable transition.

To illustrate the firing rule, consider the partial Petri net shown in Figure 2.2.2.

Three transitions a, b, and c are connected to transition d through places labeled τ1, τ2 and

τ3 respectively. Let us assume that the transitions a, b, and c fire at times τa, τb and τc

respectively. Then a token is placed in the firing transition’s output place at the firing time.

To represent a circuit delay, the place holds the token invisible to its output transition for

certain time controlled by a random variable associated with the place. Let us assume that

the three random variables τa, τb and τc are independent and that their probability density

functions are as shown in Figure 2.2.2. According to the firing rule transition d will fire as

soon as there is a visible token in each of its input places.

The firing of transition d, denoted by τd, is a probabilistic event. Our approach to

the analysis of probabilistic timed Petri nets is to find the probability density function of

Figure 2.2.2 Probability density function of the firing time of a transition.

a b c

d

τ1 τ3τ2

fτ1
τa

fτ2
τb

fτ3
τc

τd

time

time

time

time
fτd

16

the firing (or occurrence) times of the transitions of a net. Chapter 3 describes how this is

accomplished.

The probabilistic timed Petri net that we have introduced is a generalization of pre-

vious Timed Petri net models. In our model arbitrary probability density functions are

associated with the places of the net. Furthermore, our model admits random variables that

are not independent, a fact that plays an important role in the modeling of time correlation

that appears in interface specifications of off-the-shelf hardware components.

Due to causality, it is required that the probability that any random variables τi take

a negative value be zero. (For strict causality, the probability that the random variables

τi = 0 should be zero too.) The set of random variables τi, i = 1..M, associated with the

places of the net are fully described by the joint probability density function (in short pdf)

fτ1 …τM(τ1, … τM).

In some cases some of the random variables are independent, so that f may have a

compact form. For example, if all τi are independent then

fτ1 … τM(τ1, …, τM) = fτ1(τ1) … fτM(τM) (Eq. 2.2.1)

Of course in order to be able to model time correlation, one has to use the most

general form in which not all random variables are independent.

The probabilistic aspect of our model has practical applications in describing inter-

face specifications of components. An interface specification describes the behavior of not

one but an ensemble of components. Thus a probabilistic approach to modeling seems

very adequate to take into account variations in component behavior. Those variations are

due to different instances of the same class of components affected by factors such as fab-

rication process, and different operational conditions such as temperature variations. We

will exploit that in the reliability analysis of systems, that is we will be able to quantify not

only if a system meets the (timing) constraints but also if it fails to meet some constraints,

17

by how much. How to compute the probability that a constraint can be violated can be

described by a probabilistic measure. This is the topic of Chapter 4.

2.2.4 Examples of probabilistic timed Petri nets

In this subsection we introduce two simple examples to give a flavor of probabilistic timed

Petri nets. In particular in the second example we show the fact that time-extended Petri

nets have a different behavior from classic Petri nets. More examples will be shown in this

and following chapters. The firing rule will be discussed in more depth in Section 2.4.1.

The first example shown in Figure 2.2.3 consists of one place and two transitions.

The only random variable associated with the net is described by the probability density

function fx(x) (also shown in the figure). The initial marking is shown in the figure, thus at

time τ0 = 0 there is a token in the place of the net. The token in the place is not visible to

transitions t1 or t2 until a time τ1 = x, where the value of random variable x follows the

known pdf fx(x). Because the place is a free-choice place (refer to Section 2.2.1), either

transition t1 or t2 will fire (but not both). Once a transition fires, it places a token in the

place which will be made visible at τ2 = τ1 + x.

Figure 2.2.3 Petri net with a free choice place labeled with random
variable x.

fx(x)

t1 t2

x

x

18

Note that there is a non-deterministic choice in the model for the firing of t1 or t2.

We can use non-deterministic choice to abstract out some phenomena that are not relevant

to our verification procedure. For instance if a hardware component is capable of perform-

ing either a read or a write cycle, this can be modeled using a free choice place because

when attempting to verifying that both cycles meet the timing constraints (as will be dis-

cussed later) it is not important to know the ratio of read vs. write cycles, but just that both

cycles can occur. From a performance point of view, assuming that a write cycle takes, say,

longer than a read cycle, it might be important to determine the profile of read and write

cycles to be able to quantify the performance of a system. In that case, one could also

assign a scheduling variable to a free-choice place that computes (e.g. deterministically or

probabilistically) which transition (of the several enabled in the current marking) should

fire in an execution of the net. In the sequel we consider that the choice of firing transition

is made non-deterministically.

The second example shown in Figure 2.2.4 consists of three places and three tran-

sitions. If transition t3 fires, the system deadlocks. Random variables associated with

places p1 and p2 are independent and their corresponding pdf’s are Dirac’s delta functions

(if the pdf is the Dirac’s delta function fτ(τ) = δ(τ-τo), the token is made visible with prob-

ability 1 at time τo). At time τ = 0 both tokens are put in places p1 and p2 respectively. The

token in p1 will be made visible at τ = 1, and t1 will fire immediately. Similarly the token

Figure 2.2.4 A probabilistic timed petri net that does not present deadlock.

1 π

t1

t3

t2

p1 p2

19

in p2 will be made visible at τ = π, and t2 will fire immediately. It is clear that unlike the

untimed (classic) version of the Petri net, the probabilistic timed Petri net in Figure 2.2.4

will never deadlock.

Of course, if more realistic pdf’s are used to model the delays of places p1 and p2,

such that the pdf’s are non-zero for a (possibly infinite) interval, then deadlock will arise

in the Petri net of Figure 2.2.4. However in our probabilistic timed Petri net, unlike classic

Petri nets, one can quantify the probability of deadlock.

2.3 Signal transition graphs

Signal transition graphs, or STG’s, are a widely used representation of asynchronous digital

circuits [29, 115, 79, 124]. STG’s are Petri nets whose transitions are interpreted as signal

transitions of a circuit. In this section we extend STG’s in the obvious way to use the prob-

abilistic timed Petri net proposed in Section 2.2.3. Before doing so, we briefly overview

previous related work on timed STG’s.

2.3.1 Previous work on timed signal transition graphs

The work by Brzozowski et al.[17] aimed at providing a mathematical foundation to the

interface timing verification problem. Their result holds for a restricted case of timing

behavior, namely if every signal transition is caused by another single transition.

McMillan et al.[82] presented a more general formulation of the timing verification prob-

lem and proved that it is NP-complete and developed algorithms for sub-cases of the prob-

lem. Independently Burks et al.[20] followed a mathematical programming approach to

solve a class of problems which includes the interface timing verification problem and

suggested a branch-and-bound algorithm to solve the problem which is worst-case expo-

20

nential in time. The above research did not use an underlying Petri net model, however it

uses mathematical programming techniques that are the foundation of the techniques we

shall present in this dissertation.

STG’s were first used for the specification and synthesis of asynchronous digital

circuits in [29, 115]. No time annotation was used in the underlying Petri net model.

Vanbekbergen [124], Rockicki [114], and Escalante and Dimopoulos [46] proposed simi-

lar timing extensions to STG’s to represent timing in asynchronous digital circuits.

Vanbekbergen [124] proposed a Petri-net based model, called timed STG’s, that he used to

represent asynchronous circuits with time bounds. Independently Rokicki [114] proposed

another Petri-net based model, called orbital nets, to model a class of digital logic. Inde-

pendently Escalante and Dimopoulos [46] used a Petri-net based model similar to Vanbek-

bergen’s timed STG’s, to specify component interface protocols and associated interface

logic. An important feature of all three models is that they make a clear distinction

between circuit delays and timing constraints in the specification of component behavior.

Myers and Meng [97, 98] used a conservative estimate of gate delays to remove

redundant edges in an STG; with their technique they could synthesize much simpler cir-

cuits thus showing the advantage of taking timing into account. Hulgaard and Burns [67]

have developed algebraic techniques to find bounds on the maximum time separation

between two given signal transitions of a timed STG. Their results are exact for Petri nets

without choice, but they also explored approximations for free choice Petri nets.

In the research mentioned so far in this section, timing is represented using inter-

vals. In [48, 49] we proposed a more general STG model with an underlying probabilistic

timed Petri net. Thus we needed to develop novel time verification techniques that shall be

presented in Chapter 4. Moreover, as explained in the Introduction, the other main goal of

this dissertation is to determine tight bounds on interface logic prior to synthesis, a tech-

21

nique called timing analysis for synthesis that shall be discussed in Chapter 5. Before

tackling those tasks we need to complete the presentation of our timed STG model.

2.3.2 Components, ports, signals and signal states

A component communicates with its environment through ports. A port has a direction

associated with it. The direction of a port can be input or output. An input port accepts

information from the environment, while an output port sends information to the environ-

ment. Several ports can be grouped together into a combined port. Bi-directional ports can

be modeled as two ports, one of type input and one of type output. A combined port is an

n-bit port, where n is the number of single ports that comprise the combined port. A single

port is also called a 1-bit port. Another common term used to describe a port is line. For

example the 32 data lines of a memory component constitute a 32-bit port.

Signals are the means to convey information. The relationship between a port and a

signal is that a port is an entity that can be physically located usually on the boundary of a

circuit, and a signal associated with such a port describes the value of the port as a func-

tion of time. Most current implementations of electronic digital circuits use electrical sig-

nals, although optical and other physical media can be used as well. We use a continuous

model of the time domain (also called dense time) although discrete models have also

been studied in the literature. In general discrete time models are computationally simpler

but suffer the problem of resolution accuracy (i.e., what is the right granularity to properly

describe the nuances of time, cf. [114]). In this dissertation we consider digital signals.

The range of values that a digital signal can take is discrete and is called the set of states of

the signal. The states of a digital signal in a single port, in the simplest case (called binary

case), are logic ‘0’ and logic ‘1’. Tri-stated signals can be floating, or in a high-impedance

state ‘Z’, too. We supplement these basic states with the following states:

Valid : This state is particularly useful to describe the state of a combined port

whose individuals signals are binary. A valid state of a combined port occurs when such a

22

port has a value within a range of allowed values. The particular value of the signal at the

combined port is not important nor is the fact that the port carries a value that can be used

by another part of the system. For example, when the value of a group of data lines of a

certain component is valid, it can be read by another component. A valid state for a group

of signals is an effective way of describing a large number of states compactly. For exam-

ple, a valid state for a 32-bit binary data port (i.e., whose individual ports can take only the

values ‘0’ and ‘1’) of a memory component may represent 232 states. This can be advanta-

geously exploited to reduce the number of cases to consider for representation, analysis or

verification purposes whenever the actual value on the port is not relevant.

Invalid : This state is complementary to the valid state of a combined port. The rel-

evant piece of information is not the particular value at the combined port but the fact that

the value should not be used by another component. For example, when the address lines

of a component are changing, their state is invalid and should not be used for decoding

purposes.

Driven: A tri-stated signal is driven if it is not in a high-impedance state. Thus a

driven binary signal is either ‘0’ or ‘1’. A driven signal can be valid or invalid. For exam-

ple a don’t care state ‘X’ of a binary signal can be modeled using a driven state.

Figure 2.3.1 Signal states.

driven floating

valid invalid

‘0’ ‘1’

state

23

Floating: A tri-stated signal is floating if it is in a high-impedance state.

We define the includes binary relation I on the set of signal states as shown by the

directed graph in Figure 2.3.1 such that there is a directed edge from state s1 to state s2 if

s1 I s2. The include relation is important when trying to determine if two ports can be con-

nected (refer to Definition 2.3.4). Before we discuss this, we need to give some basic defi-

nitions on the description of signals which are adapted from a similar treatment described

in [17].

Definition 2.3.1.- A (possibly infinite) timed state sequence of port p is the

sequence lsp = { s0, τ0, s1, …, τn−1, sn}, where si are signal states and τi are times, such that

si ≠ si+1 and τj ≤ τj+1 for i = 0, …, n−1 and j = 0, …, n−2. The sub-sequence {τ0, …, τn−1}

is called the time sub-sequence of lsp.

Definition 2.3.2.- A signal transition is a pair 〈s1, s2〉 of states where s1 ≠ s2.

Definition 2.3.3.- If lsp = { s0, τ0, s1, …, τn−1, sn} is the state sequence of port p,

the corresponding timed signal transition sequence of port p is given by sequence

ltp = { 〈τ0, s0, s1〉, 〈τ1, s1, s2〉, …, 〈τn−1, sn−1, sn〉}.

A timed state sequence is an enumerative description of the signal associated with

a port p (i.e., the values that port p takes as a function of time). The time subsequence

{ τ0, …, τn−1} indicates the instants when the port change state. The port is in state s0 dur-

ing −∞ < τ < τ0, in state sn during τn−1 ≤ τ < ∞, and in general in state si during τi−1 ≤ τ < τi

for i = 1, …, n−1.

A signal transition describes a change in port p from state s1 to state s2. Although

the values of the time sub-sequence are not strictly increasing, i.e., any number of signal

transitions are allowed to occur at any instant τ, we only consider in this work state

sequences (or timed signal transition sequences) for which there is a finite number of sig-

nal transitions that occur at any given time τ.

24

Definition 2.3.4.- Let us assume that two ports p1 and p2, having input and output

direction respectively. If for any given time τ the values of the ports p1 and p2 are s1 and s2

respectively, and s1 I* s2, where I* is the reflexive and transitive closure of I, then ports p1

and p2 are said to be compatible.

The definition of compatibility of two connected ports, one of them being an input

port and the other being an output port, restricts the state of the output port to those

included by the state of the input port, i.e. those states at or below the input state node in

the state graph of Figure 2.3.1. Two compatible ports can be connected via a wire. In that

case the value of the input port follows the value of the output port.

The alphabet A(p) of a port p is the set of signal transitions {〈si, sj〉} of the timed

signal transition sequence ltp. Notice that A(p) is finite. The alphabet of a set of ports P is

given by .

We use the following notational conventions: a port whose direction is always an

input is denoted with its name underlined. A port whose direction is always an output is

denoted with its name overlined.

We deal now with some implementation issues. The logic levels of a signal are

implemented as physical values of a circuit. Without loss of generality let us consider the

implementation of logic levels using voltage levels. For a port that uses positive logic, a

low voltage corresponds to logic ‘0’ and a high voltage corresponds to a logic ‘1’. For a

port that uses negative logic, a low voltage corresponds to logic ‘1’ and a high voltage cor-

responds to a logic ‘0’. To distinguish the logic implementation of a port, we append a ‘∗’

as a suffix to the name of a port p that uses negative logic (e.g., p∗). Because logic values

rather than voltage values are more meaningful in the description of signal transitions, we

use the terms asserted (negated) to denote a signal transition from ‘0’ to ‘1’ (from ‘1’ to

‘0’), independently of the logic implementation.

A P() A p()
p P∈
∪=

25

For some notable transitions we use the special symbols given in Table 2.3.1.

Please the reader be aware of our usage of negated with the opposite meaning of

asserted (cf. [119]), although in other areas negated has the connotation of logic inversion.

2.3.3 Timed signal transition graphs

In the previous section we proposed a signal state lattice to describe the value of a port.

The lattice allows us to define compatibility of port connection in a straightforward way.

In this section we introduce signal transition graphs (STG’s) which are Petri nets whose

transitions are associated with signal transitions.

Definition 2.3.5.- An (extended) timed STG is a tuple Σ = 〈N, Y, λ〉 where N is a

probabilistic timed Petri net, Y is as set of ports, and λ: T → A(Y) ∪ { ε} is a signal transi-

tion labeling function which assigns transitions t ∈ T of the Petri net to signal transitions

a ∈ A(Y) or the silent signal transition ε, where A(Y) is the alphabet of Y.

In the sequel we use the terms transition and signal transition interchangeably

whenever there is no possibility of confusion.

Figure 2.3.2 shows a probabilistic timed Petri net (left) and a corresponding timed

signal transition graph (right). The Petri net consists of the set of places

P = { p0, p1, p2, p3}, the set of transitions T = { t0, t1, t2, t3}, the flow relation

transition symbol

〈negated, asserted〉 p+

〈asserted, negated〉 p−

〈invalid, valid〉 p+v

〈valid, invalid〉 p−v

〈‘Z’, driven〉 p↑

〈driven, ‘Z’ 〉 p↓

Table 2.3.1. Notable transitions on port p.

26

F = {(p0,t0), (t0,p1), (t0,p2), (t0,p3), (p1,t1), (p2,t2), (p3,t3)}, the initial marking

M0 = {(p0,1), (p1,0), (p2,0), (p3,0)}, and the time labeling function

Γ = {(p0,τ0), (p1,τ1), (p2,τ2), (p3,τ3)}. The joint probability function fτ1τ2τ3(τ0, τ1, τ2, τ3)

fully characterizes the set of random variables X = {τ0, τ1, τ2, τ3}. To draw the STG we use

the usual convention according to which a place with a single input transition and a single

output transition is shown as an edge labeled with the random variable associated with the

place. The set of ports is Y = { clk0, add, as, ds}, and the signal transition labeling function

is λ = {(t0,clk0+), (t1,ds+), (t2,add+v), (t3,as+)}.

2.3.4 Signal transition graphs and signal transition sequences

In Section 2.3.2, we introduced timed signal transition sequences of tuples 〈τi−1, si−1, si〉,

which describe a change in the value of a port at time τi−1 from state si−1 to state si to

describe the signal activity at a port. In that subsection our main goal was to formally

define a signal transition and we were not concerned about how to represent the behavior

of ports using such a sequence. A (potentially infinite) signal transition sequence describes

Figure 2.3.2 Signal transition graph.

add+v

ds+ as+

τ3τ1 τ2
p2

fτ1τ2τ3(τ1, τ2, τ3)

p1 p3
τ3τ1 τ2

t1

t0

t2 t3

p0

clk0+

τ0τ0

27

one possible observation of the activity at a port. An also potentially infinite set of signal

transition sequences is necessary to describe all the possible behaviors even of simple

ports. For example, if the places of the timed STG shown in Figure 2.3.3 are associated

with independent random variables whose probability density function is the uniform

probability density function defined in the interval [1, 1.01], one possible signal transition

sequence is the infinite sequence {〈0, a+〉, 〈1, b+〉, 〈2, a−〉, 〈3, b−〉, …} as it is the also infi-

nite sequence {〈0, a+〉, 〈1.001,b+〉, 〈2.001,a−〉, 〈3.001,b−〉, …}, and so on.

Thus signal transition sequences are limited in their expressiveness in the sense

that they describe only one observation. Typical component interface specifications com-

prise the behavior of an ensemble of components and thus they must allow for variations.

Rather than listing a possibly infinite set of observations, signal transition graphs can com-

pactly describe the behavior of an ensemble of variations. Signal transition sequences are

useful as the formal underlying semantics of a single observation. For instance they are

used in [11] to analyze the behavior of time Petri nets. Of course in [11], sequences are

grouped into classes. A class potentially represents an infinite number of observations. On

the other hand, signal transition sequences are more general than timed STG’s, that is, there

are sets of signal transition sequences which cannot be expressed by a timed STG. For

example an infinite sequence in which events a, b, c, and d appear randomly such that a

given event cannot be followed by itself.

Figure 2.3.3 Simple STG.

a+b−

b+a−

28

From the previous discussion it is clear that a timed STG is a compact representa-

tion of multiple possible behaviors. In the sequel we shall use STG’s to describe timed

behaviors. However notice that a brute force approach to the analysis of timed STG’s is not

feasible, due to the infinite number of sequences that one has to consider. In the following

section we discuss a subset of timed STG’s for which we have developed techniques that

analyze “classes” of behaviors rather than individual sequences.

2.4 Subclass of STG’s

Analyzing the timing behavior of an arbitrary net topology is a difficult problem. In this

dissertation we have developed timing analysis techniques for the sub-class of Petri nets

which describe only AND and OR causality.

2.4.1 AND and OR causality

The interface timing verification has been formulated as the solution of a set of linear/min/

max inequalities [6]. In this section we link this result to two types of causality discussed

in the concurrent systems community: AND and OR causality.

We first present the classical definitions of AND and OR causality, without explicit

time. A transition t is said to be AND-caused by a set S of transitions if t occurs after all the

transitions in S in all signal transition sequences (refer to Definition 2.3.3). Similarly, a

transition t is said to be OR-caused by a set S of transitions if t occurs after the first transi-

tion in S occurs.

When delays are taken into consideration, the definitions of AND and OR causality

are modified as follows: the effect of a transition takes place at time τt +τd, where τt is the

time when the transition occurred and τd is the delay of the transition. (Notice that in our

case, the delay is given by a random variable.) A transition t is said to be AND-caused by a

29

set S of transitions if t occurs after all the effects of transitions in S have taken place in all

possible signal transition sequences. Similarly, a transition t is said to be OR-caused by a

set S of transitions if t occurs after the earliest effect of a transition in S has taken place in

all possible signal transition sequences. For example in Figure 2.4.1a, transition c occurs

only after the effects of a and b have taken place. In Figure 2.4.1b, transition c occurs as

soon as the earliest effect of a or b takes place.

Figures 2.4.1c and d depict the corresponding Petri net constructs [131]. Clearly,

AND causality is a direct mapping of the firing behavior of our probabilistic timed Petri

nets: transition c will fire only when there are visible tokens in all its input places; the

tokens in places labeled with random variables τ1 and τ2 make the token visible to transi-

tion c sometime after transitions a and b respectively have occurred (the delay is con-

trolled by the respective random variable).

The Petri net fragment that implements OR causality is more involved (refer to

Figure 2.4.1). For the sake of the following presentation, we distinguish between the three

silent transitions ε by assigning a subscript to each of them. We also use the convention of

Figure 2.4.1 Causality classes: (a) AND causality; (b) OR causality;
(c) and (d) Petri net constructs.

a b

c

τ1 τ2

a b

c

τ1 τ2

a b

c

ε3

τε2

τε3

a b

c

+τ1 τ2

(a) (b)

(d)(c)

τ1 τ2

ε1 ε2
τε1

30

calling a place labeled with random variable τ, a τ place. The random variable τ1 (or τ2)

represents a delay after transition a (or b). Places labeled with random variables τεi are

bound to make tokens visible immediately (i.e., the probability density function of the ran-

dom variable is the Dirac’s delta function at the origin). Let us assume that transition a

occurs first and that the value of τ1 is less than the value of τ2. Thus the silent transition ε1

will fire sometime after τ1 and when it fires, it will send a token to place τε1. The place τε1

will make the token visible immediately and transition c will fire after delay τ1. When c

fires, the token in places τε1 and τε2 are consumed and a token is sent to place τε3. After

transition b fires, another token is sent to place τε2 after τ2, and then the silent transition ε3

fires, putting a token back in place τε2. Notice that for proper operation of the OR causality,

there must be a token in place τε2 at the beginning of an OR cycle. In Section 2.5.2 we shall

use the concept of a constraint rule to guarantee that the OR sub-net is properly initialized.

For the sake of clarity from now on we adopt the more compact representation

shown in Figures 2.4.1a and b. We call these two compact representations AND and OR arcs

respectively. In the sequel we shall develop a timing verification procedure for the sub-

class of Petri nets which have only AND and OR causality arcs.

Let us consider the multiple AND join, that is a transition with multiple incoming

places, shown in Figures 2.4.1a and c. Places are associated with random variables τi

which, without loss of generality, are assumed to have independent probability density

functions fτi(τi). After the firing of a transition, say a at time τa, a token is made visible to

transition d at time τa + τ1, with pdf fτi(τ1). According to the firing rule, c fires when all

tokens in a, and b are visible, which happens at:

τc = max(τa + τ1, τb + τ2) (Eq. 2.4.1)

Similarly for a multiple OR join (refer to Figures 2.4.1b and d), transition c will fire

as soon as the first of a or b occurs, which happens at:

31

τc = min (τa + τ1, τb + τ2) (Eq. 2.4.2)

Note that both AND and OR causality collapse to linear causality (i.e., one transition

is uniquely caused by another transition) if there is only one predecessor to the generated

transition d.

2.4.2 The AOC class of timed signal transition graphs

We have developed timing verification and analysis techniques for a subclass of signal

transition graphs. Although limited to this subclass of STG’s, we have been able to describe

interface specifications for a great variety of off-the-shelf components using this subclass

that we have called the AOC class. AOC stands for AND and OR causality STG’s.

The AOC class of nets comprises STG’s with the following properties:

1. Only AND and/or OR causality are allowed (refer to Section 2.4.1).

2. All the places of the STG are safe (refer to Section 2.2.1), except the unique

choice places of OR causality edges which are k-bounded, where k is the num-

ber of edges.

The AOC class is more general than the class of marked graphs which is properly

included in AOC. Recall that OR causality introduces unique choice places, which are not

allowed in marked graphs, and AOC STG’s are not necessarily strongly connected. However

neither free choice, nor arbitration choice, are allowed in AOC (refer to Section 2.2.1).

It is possible to represent AOC STG’s using AND and OR arcs (Figures 2.4.1a and b),

that we have called AOC directed graphs or di-graphs, although it is straightforward to

obtain their Petri net representation of an AOC di-graph.

Definition 2.4.1.- An AOC di-graph is the labeled di-graph

Ω = 〈TΩ, PΩ, MΩ0, ΓΩ, ctΩ, Y, λΩ〉, where TΩ is a non-empty set of nodes, PΩ ⊆ TΩ × TΩ is

32

a set of edges, MΩ0: PΩ → ℵ is the initial marking function that assigns to each edge a

non-negative number of tokens (ℵ is the set of the non-negative integers), ΓΩ : PΩ → τ is

the time labeling function that assigns to each edge pi ∈ PΩ a random variable (r.v.) τ(pi),

ctΩ : TΩ → { AND, OR} is the causality type function that assigns to each node the type

AND or OR, Y is a set of ports, and λΩ: TΩ → A(Y) ∪ { ε} is a signal transition labeling

function which assigns to each node a signal transition a ∈ A(Y) or the silent signal transi-

tion ε, where A(Y) is the alphabet of Y.

Notice the analogies between an AOC di-graph Ω = 〈TΩ, PΩ, MΩ0, ΓΩ, ctΩ, Y, λΩ〉

and an STG Σ = 〈N, Y, λ〉 and its associated probabilistic timed Petri net

N = 〈P, T, F, M0, Γ〉. The sets of nodes and edges, TΩ and PΩ, of the AOC di-graph describe

the connectivity of the graph; P, T and F in the STG achieve the same purpose. The mark-

ing, time labeling, and signal transition labeling functions have similar form. The only

function characteristic of AOC di-graphs is the causality type function ctΩ, which is used to

specify the firing semantics as discussed in Section 2.4.1.

Figure 2.4.2 (a) An AOC di-graph; (b) equivalent timed STG.

a

b

c

τ1 τ2

+

(a)

d

τ3 τ4

τ5

τ6

a

b

c

τ1

τ2

d

ε

τε2

τε3

(b)

τ3

τ4

ε

ε

τε1

τ6

τ5

33

An example of AOC di-graph is shown in Figure 2.4.2a. Signal transition c is AND-

caused by transitions a and d, while transition d is OR-caused by b and c. The equivalent

timed STG is shown in Figure 2.4.2b. Although we shall use the graphic representation of

AOC di-graphs, which is more compact, in our figures, we shall refer to the AOC digraph

Ω = 〈TΩ, PΩ, MΩ0, ΓΩ, ctΩ, Y, λΩ〉 or its equivalent STG Σ = 〈N, Y, λ〉 with the associated net

N = 〈P, T, F, M0, Γ〉 indistinctly.

2.5 Interface specifications

In the previous sections we have presented timed STG’s which are suitable to describe the

(internal) behavior of components. However, specifications of components include infor-

mation about the environment. For instance, a component may specify that an input signal

should not be changed in certain interval during which the input is being sampled. If those

environment specifications are not followed, the component may not behave as expected.

In this section we introduce a new type of timing relationship, different from the

places of the probabilistic timed Petri net that are suitable to model (circuit) delays. We

called them constraint rules. In the literature, the term “constraint” has been used to desig-

nate both circuit delays and timing constraints. To avoid confusion, we differentiate them

explicitly and when we want to refer to both we called them timing relationships. It shall

be clear from our formal description of constraint rules, that circuit delays and timing con-

straints have different semantics. Vanbekbergen [124] and Rokicki [114] used two types of

places with different firing semantics to describe delays and timing constraints. We argue

in the following section that places are not the best model for timing constraints.

34

2.5.1 Constraint rules

Event-rule (ER) schemata were introduced in [22] to analyze the performance of asyn-

chronous circuits. It was modified in [98] to represent timing constraints in a circuit speci-

fication. An ER schema consists of a set of atomic actions, called events, a set of causal

dependencies between them, called rules, and an initial marking, which is a subset of the

set of rules. A rule is of the form 〈e, f, ε, τ〉 where e and f are two events, ε is defined to be

1 if the rule belongs to the initial marking and 0 otherwise, and τ = [l, u] is a compact

interval with lower bound l and upper bound u. In [98] timing constraints and delays are

treated in the same manner. In this dissertation we make the distinction between timing

constraints and circuit delays. We adapt the ER system as follows:

Definition 2.5.1.- A constraint rule associated with the timed probabilistic Petri

net N = 〈P, T, F, M0, Γ〉 is a tuple cij = 〈ti, tj, ∆ij, ε〉 where ti, tj ∈ T is a pair of transitions of

the net, ∆ij ∈ ℑ is a non-empty compact real interval (ℑ is the set of compact real

intervals [112]), and ε is an integer in {0, 1}.

Let us denote the time of firing of the i-th occurrence of transition a as τa(i). The

interval ∆ij of a constraint rule cij = 〈ti, tj, ∆ij, ε〉 defines a time window with respect to the

k-th occurrence of transition ti (ti(k)), given by τti(k) + ∆ij, such that the (k+ε)-th occurrence

of tj (tj(k+ε)) must occur within this window for any occurrence index k. Notice that the

bounds of ∆ij are not required to be non-negative.

Definition 2.5.2.- The set of constraint rules CN = { cij} associated with the timed

probabilistic Petri net N = 〈P, T, F, M0, Γ〉 denotes a set of timing constraints given on tran-

sitions of the net N.

As illustrated in Figure 2.5.1 for constraint rule cij = 〈a, b, ∆1, 0〉, once the k-th

occurrence of transition a(k) fires at time τa(k), then the (k+ε)-th occurrence of transition

35

b(k) must occur during the interval τa(k) + ∆1, where interval addition [112] is used, other-

wise the constraint rule is violated. It is said that transition b is constrained by the firing of

transition a, or equivalently that transition a is constraining transition b.

Although constraint rules are defined for transitions of a probabilistic timed Petri

net, the extension of constraint rules to be defined for signal transitions of a signal transi-

tion graph can be done in the obvious way by using the signal transition labeling function

λ of the STG (refer to Section 2.3.3). Graphically in an AOC STG, a constraint rule can be

depicted as a directed edge from the constraining transition to the constrained transition,

labeled with the constraint interval, as shown in Figure 2.5.1. We use the convention that

constraint edges are drawn using dotted lines. Because ε can take only the values 0 or 1, in

the former case the directed arc connects two transitions belonging to the same cycle; in

the latter case, the directed arc “folds back” connecting a transition belonging to a current

cycle to a transition which belongs to the next cycle (called ε constraints in [46]).

There is no causality implied in a constraint rule because the lower bound of the

constraint interval can be negative, in which case the constrained transition can occur

before the constraining transition. As a matter of fact if the upper bound of the constraint

interval is also negative, the constrained transition must occur before the constraining tran-

sition. We shall give an example in Section 2.5.5. It is this fact that makes difficult to rep-

resent timing constraints using places.

Figure 2.5.1 Constraint rule for transitions a and b.

a

b

τa(k)

τb(k+ε)
∆1

∆1

x

τx time

time

36

The trivial constraint interval is ∆ = (−∞,+∞), which signifies that the constrained

transition is not constrained at all by the firing of the constraining transition. If the con-

straint interval is non-negative (i.e., its lower bound is non-negative), the constraint rule is

called a sequencing constraint.

The basis of our timing verification and timing analysis for synthesis procedures is

the satisfaction of the constraint rules. In Chapter 3 we develop some concepts that shall

prove useful to check that the constraint rules are not violated.

2.5.2 OR causality revisited

In Section 2.4.1 we mentioned that for proper operation of the OR causality sub-net (refer

to Figure 2.5.2) it is required that there be a token in place τε2 before a token arrives at

place τε1 due to the firing of the first of a(k) or b(k), for any k > 0. In this section we show

that sequential constraint rules (refer to Section 2.5.1) can be used to detect this potential

problem.

Figure 2.5.2 OR causality constraints.

a b

∆1 c ∆2

+
c(k)

ε3(k)

τε1
τε2

τ1 τ2

ε1(k)
ε2(k)

τ1 τ2

a(k+1) b(k+1)

a(k) b(k)

∆1 ∆2

cAND

(a)

(b)

τ1 τ2
τ1 τ2τε3

37

Consider the sub-net shown in Figure 2.5.2a where transition c is OR-caused by

transitions a and b. We shall show that by adding the sequential constraint rules

c1 = 〈ε3, a, ∆1, 1〉 and c2 = 〈ε3, b, ∆2, 1〉, it is guaranteed that, in a correct behavior, the k-th

occurrence of transitions a and b must precede the (k+1)-th occurrence of transition c.

Theorem 2.5.1.- Let us assume that the initial marking assigns a token to place τε2

and no tokens to places τε1 and τε3. Then if constraint rules c1 = 〈ε3, a, ∆1, 1〉 and

c2 = 〈ε3, b, ∆2, 1〉 are satisfied, where ∆1 and ∆2 are non-negative non-empty compact

intervals, there is a token in place τε2 before a token arrives at place τε1 due to the firing of

a(k) or b(k) for any index k > 0.

Proof.- Clearly for k = 1 the OR sub-net is properly initialized. We have to check

that this is also the case for k > 1. If the sequential constraint rules c1 and c2 are satisfied,

then, using the fact that ∆1 and ∆2 are non-negative non-empty compact intervals, the k-th

occurrence of transition ε3 must precede the (k+1)-th occurrence of both transitions a and

b, for any k > 1. When transition ε3 fires, it sends a token immediately to place τε2. But

place τε2 makes the token visible immediately. Therefore a token is visible at place τε2

prior to or at the same time as the first of the (k+1)-th occurrences of transitions a or b.

In our short-hand graphical notation, we describe constraint rules c1 and c2 as con-

straint edges from a virtual transition cAND which is AND-caused by transitions a and b.

Notice that in this case the same random variable is associated to two edges, the original

OR edge and the virtual AND edge. Thus the firings of the virtual cAND and ε3 are indistin-

guishable.

2.5.3 Interface specifications

The aim of this chapter is to develop a formal representation capable of describing accu-

rately the temporal behavior of off-the-shelf components of hardware systems, in particu-

38

lar components of microprocessor-based systems. Because a system is comprised of the

interconnection of several components, there are two facets in component specifications:

the internal operation of the component and the set of constraints that the environment

must satisfy for proper operation. In the previous sections we have developed two formal

structures: timed signal transition graphs suitable to model delays, and constraint rules

suitable to describe timing constraints. In this section we put both structures together to

form a new structure that we call interface specification.

Definition 2.5.3.- Given a timed signal transition graph Σ = 〈N, Y, λ〉 and a set of

constraint rules CN = { cij}associated with net N, an interface specification is the pair

Ψ = 〈Σ, CN〉.

In preparation for the examples of component interface specifications, in the fol-

lowing section we present a simple transformation

2.5.4 Projections

Our goal is to use interface specifications to formally specify the behavior of hardware

components. Manufacturers usually provide this information in the form of timing dia-

grams and associated timing parameters. In this section we address the problem of inter-

preting the timing information from the timing diagrams to construct an equivalent

interface specification.

As mentioned in the previous section, an interface specification consists of a timed

signal transition graph and a set of constraint rules. The signal transition graph is com-

posed of places, transitions, the connectivity of the net, the initial state, a set of random

variables associated with the places, and a set of signal transitions associated with the tran-

sitions. A constraint rule defines an occurrence window for a transition with respect to a

reference transition. Thus in our model, operational timing is captured by the set of ran-

39

dom variables, and environmental timing is specified by the ∆ij windows of constraint

rules.

In component data sheets, timing parameters may be classified as delays and tim-

ing constraints (a common nomenclature is to call them switching characteristics and tim-

ing requirements respectively), although sometimes there is no indication of the type of

parameter and ingenuity from the part of the designer is required to interpret the parame-

ters correctly. Consider for example the simple timing diagram shown in Figure 2.5.3. The

timing diagram describes three timing relationships between two signals, sigA and sigB

(according to our notation, sigA is an output signal, and sigB is an input signal). One can

interpret timing relationship tr1 as a timing constraint, and the other two, ts1 and ts2, as

delays. It is easy to see why tr1 is a timing constraint, if one considers that it goes from an

output signal transition to an input signal transition, and therefore it could not be an inter-

nal propagation delay, but a restriction on the environment. Analogously, ts1 should be a

delay because it relates an input signal transition to an output signal transition.

The sequence of signal transitions implied by the above timing relationships is

described by the graph shown in Figure 2.5.4, where solid lines represent the two delays,

and the dotted line describes the timing constraint.

Timing parameters are usually given as intervals [τmin, τmax] in the data sheets. For

the timing diagram of Figure 2.5.3, the timing parameters are: ts1 = [5, 10], ts2 = [0, 10],

Figure 2.5.3 A simple timing diagram.

ts1 tr1ts2
sigA

sigB

40

and tr1 = [5, ∞). The problem we want to address is how to convert the timing parameters

into the parameters of the corresponding interface specification. For a constraint timing

parameter, which is to be transformed into a constraint rule cij = 〈ti, tj, ∆ij, ε〉, the mapping

of the timing parameter to the window ∆ij is direct. For a delay timing parameter, the map-

ping is not as straightforward because in our model a delay is modeled using a random

variable, and the set of random variables of the probabilistic timed Petri net is character-

ized by a joint probability density function (pdf). To solve this problem, let us first take a

look at possible representations of delay information.

Delays can be modeled in increasing degree of accuracy by: a fixed

parameter [111, 117]; a value belonging to an interval [124, 114, 67]; or a random variable

with a certain probability density function [49]. The single value case is the easiest to ana-

lyze but not very realistic when considering an ensemble of components subject to differ-

ent conditions (e.g., temperature variations). Cerny and Khordoc [72] have previously

identified that timing specifications of components describe more complex timing behav-

ior than AND and OR causality. They have developed timing verification techniques under a

Figure 2.5.4 Interface specification corresponding to the timing diagram
shown in Figure 2.5.3.

tr1

tr2

ts1

sigA+

sigB−

sigB+

sigA−

41

different framework based on process algebra which includes what they have called con-

junctive constraints to model timing correlation.

Probabilistic models have proved expressive in related domains of gate-level

power estimation [99, 100], and gate-level timing analysis [70]. In this dissertation we use

both intervals and random variables to describe delays. Furthermore, we have made a con-

nection between the interval representation and the probabilistic representation by means

of the concept of projections which is discussed in the rest of this section.

Our probabilistic interface timing verification manipulates the joint probability

density function of the random variables to obtain a detailed picture of the temporal

behavior of the circuit. Our timing analysis for synthesis is to be used prior to synthesis,

when some timing parameters are still missing, thus an interval analysis is more appropri-

ate. In this section we show the relation between the interval representation and the statis-

tical representation of a delay.

For the sake of simplicity, let us first consider the case in which all the random

variables are independent. Then the joint probability density function is given by:

fτ1 … τM(τ1, …, τM) = fτ1(τ1) … fτM(τM) (Eq. 2.5.1)

where the set of random variables is {τi| i=1, …,M}. Thus each random variable τi is char-

acterized by its pdf fτi(τi). Chip manufacturers usually have process data that can be used to

construct the pdf’s that characterize the delays of a component [23]. In the data sheets,

manufacturers only provide the boundaries of the values of the pdf’s. Thus a delay param-

eter [τmin, τmax] defines an infinite set of pdf’s which are non-zero in the interval

[τmin, τmax] and are zero otherwise (refer to Figure 2.5.5).

The case in which some or all the random variables are not independent is more

interesting. In that case, one needs to know the expression for the joint pdf

fτ1 … τM(τ1, …, τM).

42

To get an intuitive idea of the problem, consider the following example taken from

a microprocessor data transfer cycle. The address lines add are used to select a particular

device. In order to avoid incorrect selection while the address lines are changing, a strobe

signal as is used to indicate when the add lines contain a valid address. The timing rela-

tionships between the add and as∗ signals and the clock are shown in Figure 2.5.6. There

are four signal transitions of interest: clk0 and clk1, the rising and falling clock transitions

respectively, add+v, that indicates the moment when the address lines are guaranteed to be

in a valid state, and as+, the high-to-low transition on the negative-logic signal as∗ (refer

to Section 2.3.2).

Typical values of the timing parameters are given in Table 2.5.1. There are four

timing parameters specified in the table. For instance tCHAV is the duration from the rising

edge of the clock (state 0) and the instant when all the address lines are valid. A minimum

Figure 2.5.5 Probability density function of an independent delay.

Figure 2.5.6 Timing relationship between add and as.

fτi(τi)

τi

τmin
τmax

tAVSAtCHAV

tCLSA

S0 S1
tCHCL

clk

add

as∗

43

and a maximum value are given for each timing parameter due to variations in temperature

and fabrication process. The manufacturer guarantees that a chip will perform within the

minimum and maximum given times.

Figure 2.5.7 shows a graphical representation of the timing diagram shown in

Figure 2.5.6. One can identify two clock transitions, which are indexed by the correspond-

ing states, the instant when the address lines contain a valid address, and the assertion of

the address strobe signal. The four timing parameters of Table 2.5.1 label the edges in the

graph.

With the exception of tAVSA, which is the object of our discussion, the other timing

parameters describe causal relationships between the corresponding signal transitions. For

instance, the range of tCHCL in Table 2.5.1 specifies that the (high) pulse width of the input

Symbol Timing parameter Min Max Unit

tCHAV Clock high to Address valid 0 40 ns

tCLSA Clock low to as asserted 0 40 ns

tAVSA Address valid to as asserted 20 - ns

tCHCL Clock high to Clock low 35 45 ns

Table 2.5.1. Timing specifications (Motorola MC68030)

Figure 2.5.7 Signal transition graph.

clk0

clk1

add+v

as+

tCHAV

tCLSA

tCHCL

tAVSA

44

clock signal should be between 35ns and 45ns. Timings tCHAV and tCLSA describe the delay

from the respective clock transition to add+v and as+.

The fourth timing parameter, tAVSA, specifies that add+v always precedes as+ by at

least 20 ns. One may be tempted to add a causal edge from add+v to as+ (as shown by the

dashed edge in Figure 2.5.7). However it turns out that tAVSA is not a propagation delay. To

understand this, one needs to refer to Figure 2.5.8 where a possible implementation of the

circuit that generates signals add and as is depicted. Two logic blocks drive as and add

respectively to their appropriate values (taking as inputs the clock and other internal sig-

nals which are not shown for the sake of simplicity).

Let us call d1 and d2 the delays from clk0 to as+ and add+v respectively. From the

parameters in Table 2.5.1, it can be inferred that d1 ∈ [0, 40] and d2 ∈ [35, 85] without

taking tAVSA into consideration. It is clear that there are some combinations of values for d1

and d2 for which tAVSA is not satisfied. For example if d1 = 40 and d2 = 35. Notice that we

have chosen the maximum value for d1 and the minimum value for d2.

However the sources of delay variation (e.g. process fabrication tolerances, tem-

perature effects, etc.) are likely to affect both delays in the same direction, making the

above choice of values for the delays improbable. Thus we say that d1 and d2 are not inde-

pendent of each other but are correlated. That is, the probability that d1 take certain value

is not independent of the value that d2 takes. Figure 2.5.9 shows a joint probability density

Figure 2.5.8 Generation of the address lines and address strobe signals.

as logic

add logic

clk as

add

45

function of two variables. Note that for different values of x, the range of values that y can

take varies. A similar behavior is expected between d1 and d2, i.e., the values of the delays

are not independent of each other.

Once the joint probability density function is known, it is possible to perform a

timing analysis of a design [48]. However if complete information about the joint proba-

bility density function is not available, a simplification is possible if the boundary values

of the function are known. The general idea is to look just at the possible values that the

delays can take, disregarding the probability information. In that case a worst-case analy-

sis can be performed. The effect of the specialization can be seen as the projection of the

probability density function fx1…xn(x1,…,xn) into the hyperplane x1…xn.

In Figure 2.5.10 the shaded area describes the projection of the probability density

function fd1,d2(d1,d2), which better expresses the intention of the timing information pro-

vided by the manufacturer (c.f. Table 2.5.1), namely that the values that the delays d1 and

d2 can take are such that always the transition of the add lines to valid precede the asser-

tion of as by at least 20 ns (i.e., d1 − d2 ≥ 20 ns). If d1 and d2 were independent, the projec-

Figure 2.5.9 Joint probability density function.

fxy(x,y)

x

y

46

tion would be the rectangle whose perimeter is depicted by a dashed line. Note that the

boundary of the projection in Figure 2.5.10 can be described by linear expressions on d1

and d2. Although arbitrary boundaries can be used (e.g., the dark area shown in

Figure 2.5.10), linear boundaries have a clear computational advantage, and lend them-

selves to a concise description.

Now we proceed to formalize the concept of projection of a joint pdf.

Definition 2.5.4.- The projection of a joint probability density function

fτ1 … τM(τ1, …, τM) is the maximal set {(τ1, …, τM) | fτ1 … τM(τ1, …, τM) > 0} (with respect to

inclusion).

Geometrically, the projection of a joint pdf can be represented as a region in the M-

dimensional euclidean space RM. As mentioned before, it is sometimes convenient to

approximate the actual projection by another region which contains the original region but

whose representation is easier. Convex regions have the property that any two points in the

region can be connected by a line that is included in the region [109]. In this dissertation

we only consider a particular type of convex approximations.

Definition 2.5.5.- A hyperplane in RM is the set of points (τ1, …, τM) ∈ RM such

that α1⋅τ1 + … + αM⋅τM = β, for the set of given constants α1, … αM, β ∈ R.

Figure 2.5.10 The projection (dark region) and a linear projection (gray area) of a
probability density function for delays d1 and d2.

d2

d1

35

85

40

47

A half-space is the portion of RM lying on one side of a hyperplane. A closed half-

space is a half-space including the hyperplane.

Definition 2.5.6.- A polyhedral set, or in short polyhedron, in RM is the intersec-

tion of a finite set of closed half-spaces.

Definition 2.5.7.- A linear projection of a joint pdf fτ1 … τM(τ1, …, τM) is a polyhe-

dral set PS that includes the projection of fτ1 … τM(τ1, …, τM).

In the sequel a polyhedral set shall be referred simply as a polyhedron. It is well

known that a polyhedral set is a convex set that can be described by a set of inequalities on

the variables τi [104].

Now we address the problem of extracting a linear projection from the correlation

edges of an interface specification.

Definition 2.5.8.- Given two transitions t0, tn ∈ T of a probabilistic timed Petri net

N = 〈P, T, F, M0, Γ〉, the sequence t0t1…tn is called a directed path if all the transitions are

distinct and for any i, i = 1, … n, there exists a pj such that (ti−1, pj) ∈ F and (pj, ti) ∈ F, for

i = 1…n.

Definition 2.5.9.- A directed path is called simple if for each pair of adjacent tran-

sitions ti−1,ti in the path, there exists only one place pi such that (ti−1, pi) ∈ F. The delay of

a simple directed path is given by , where τi is the random variable

associated with place pi.

Definition 2.5.10.- Given three transitions t0, t1, and t2 ∈ T of a probabilistic timed

Petri net N = 〈P, T, F, M0, Γ〉, transition t0 is called a simple fork transition for t1 and t2 if

d t0 tn,() τi

i 1=

n

∑=

48

there exists a simple directed path from t0 to t1 and there exists a simple directed path from

t0 to t2. The time separation from t1 to t2, denoted τt2 − τt1, is given by:

d(t0, t2) − d(t0, t1).

Definition 2.5.11.- A timing parameter πij associated with two transitions ti and tj

of a net N = 〈P, T, F, M0, Γ〉 is the tuple 〈ti, tj, pij, τij〉 where pij is a place of the net such that

(ti, pij) ∈ F and (pij , tj) ∈ F, and τij ∈ ℑ+ is a non-empty non-negative compact real inter-

val (ℑ+ is the set of compact non-negative real intervals [112]).

A timing parameter πij represents a causal delay from transition ti to transition tj,

modeled by the random variable associated with place pij whose unique input transition is

ti and whose unique output transition is tj.

Definition 2.5.12.- A correlation rule φij associated with two transitions ti and tj of

a net N = 〈P, T, F, M0, Γ〉 is the triple = 〈ti, tj,ρij〉 where ρij ∈ ℑ is a non-empty compact real

interval (ℑ is the set of compact non-negative real intervals [112]).

A correlation rule describes a time restriction on the time separation τt2 − τt1 from

t1 to t2, such that τt2 − τt1 ∈ ρij . A correlation rule is represented graphically as an edge

from t1 to t2. To distinguish a correlation edge from delay edges and constraint edges, we

use the convention of drawing correlation edges as dashed lines (refer to Figure 2.5.7).

Correlation rules and delay timing parameters can be used to construct a projection

of a joint pdf with the interpretation given above. The collection of timing parameters and

correlation rules of a specification describes a region of possible values for the delays τ.

The following procedure simply describes how to construct such a region.

Procedure 2.5.1.- Construction of the projection of a joint pdf of a probabilistic

timed Petri net N = 〈P, T, F, M0, Γ〉 given a set of delay timing parameters {πij} and a set of

correlation rules {ρij}.

49

1. For every timing parameter πij = 〈ti, tj, pij, τij〉 such that τij = [τij ,min, τij ,max], a

pair of linear inequalities τij ,min ≤ τij ≤ τij ,max are generated.

2. For every correlation rule φij = 〈ti, tj,ρij〉 such that ρij = [ρij ,min, ρij ,max], a pair of

linear inequalities .

In this dissertation we further restrict that a correlation edge be placed from transi-

tion t1 to transition t2 only if there exists a simple fork transition t0 for t1 and t2. In this case

the expressions of the form can be computed in a simple way.

The following Lemma states that also the region of possible values of the delays δ accord-

ing to the specification is a polyhedral set. Thus such region can be thought of as a linear

projection of the pdf fτ1 … τM(τ1, …, τM).

Lemma 2.5.2.- Let N = 〈P, T, F, M0, Γ〉 be a probabilistic timed Petri net and let

Π = { πij} be a set of timing parameters and Φ = { φij} be a set of correlation rules. If for

each ρij from transition ti to transition tj there exists a simple transition fork for ti and tj,

then the region defined by both Π and Φ is a polyhedral set.

Proof.- Step 1 of Procedure 2.5.1 defines an M-dimension cube in RM described by

τij ,min ≤ τij ≤ τij ,max, which is clearly a polyhedral set. We now show that the addition of

correlation inequalities generates a polyhedral set. Consider a

correlation rule φij = 〈ti, tj,ρij〉 from ti to tj. If there is a simple fork transition for ti and tj

then, according to Definition 2.5.10, can be expressed as the difference

. Thus a constraint rule specifies:

(Eq. 2.5.2)

ρi j min, τti
τtj

– ρi j max,≤ ≤

ρ ij min, τti
τtj

– ρi j max,≤ ≤

ρi j min, τti
τtj

– ρ ij max,≤ ≤

τti
τtj

–

τi
i

∑ τj
j

∑–

ρi j min, τi
i

∑ τj
j

∑– ρi j max,≤ ≤

50

Equation 2.5.2 defines a region in RM between two hyperplanes. Therefore the region con-

structed by Procedure 2.5.1, provided that each pair of transitions related by a correlation

rule has a simple fork transition, is thus described by a linear set of inequalities.

Notice that a correlation rule is not part of the flow relation of the Petri net. How-

ever it is often convenient to show a correlation rule in an interface specification at the STG

level as a different type of edge between two signal transitions. In the sequel we draw a

correlation rule as a correlation edge between two signal transitions of the interface speci-

fication as shown in Figure 2.5.4 (the correlation edge is labeled with tAVSA).

In the following section we show some examples of interface specifications of

commercial components which contain time correlation information.

2.5.5 Examples of interface specifications

From the previous sub-section, an interface specification of a component consists of two

parts: a signal transition graph Σ and a set of constraint rules C, which is denoted com-

pactly as Ψ = Σ + C. There is a graphical representation for both STG’s and constraint

rules. We shall represent in this dissertation interface specifications in graphical form for

its more intuitive grasp. However it should be clear that a textual description, which is

more convenient for large specifications, is also possible.

Although the fundamentals presented here can be applied to different areas, the

examples we use throughout this work are from microprocessor-based systems. In

Chapter 3 we shall discuss the interface design problem in the context of microprocessor-

based systems. Microprocessor components can be classified into processors (i.e., CPU’s,

DSP’s), memory devices (e.g., RAM, ROM), and I/O devices (e.g., parallel ports, serial ports).

Systems are built around standard buses to facilitate the integration of system components.

51

The interface behavior of a component describes the protocols followed by the

ports of the component to be able to communicate with other components. Informally a

protocol is a predefined series of events. Events are encoded in hardware components as

signal transitions. Interface protocols can be described by interface specifications. As

mentioned before, an interface specification has two parts: the description of the internal

operation of the component and a set of restrictions on the environment of the component.

The interface behavior of microprocessor components can be quite involved. It is

convenient to separate the overall behavior into sub-behaviors. For example a CPU may

transfer data to and from other devices, may accept external hardware interrupts, may arbi-

trate the use of its data transfer lines by other active devices (called masters, refer to

Section 3.2.1), or may support cache coherency mechanisms. Each of these capabilities is

specified by a protocol. The overall component behavior is given by all its capabilities. At

this moment we have concentrated on studying protocols of capabilities. An area of future

research is to develop extensions to our approach that work with the overall behavior.

Component behavior are usually given in the form of timing diagrams in the man-

ufacturer’s data sheets. We prefer to use a formal description, interface specifications, for

it allows us to develop formal methods for timing analysis and verification. The internal

operation of the single capability protocols that we have studied can be easily described

using AOC STG’s. In this section we illustrate the read cycles (i.e., the protocol of the read

capability) of the Texas Instrument SM64C16 SRAM device, and the Analog Devices

SHARC DSP. We shall use other interface protocols in subsequent chapters of this disserta-

tion.

2.5.5.1 SRAM read cycle

The Texas Instrument SM64C16 SRAM device is a static random access memory device

organized as 4,096 words by 4 bits. Although this is an early device, the new static RAM

chips follow the basic interface protocol of the SM64C16, only with faster timing parame-

52

ters. The interface protocol of the SM64C16 is representative of other static RAM’s with

different configurations. There are four group of signals: data lines (4-bit bidirectional

ports that are represented by a 4-bit input port D and 4-bit output port Q), address lines

(12-bit input port A), and control lines (1-bit input ports E∗, and W∗), and power lines

(GND and VCC). The ‘∗’ after a name of a port indicates that it uses negative logic (refer

to Section 2.3.2). The power lines do not play any role in the protocol description. W∗ is

the write signal, which is ‘1’ if the cycle is read, and ‘0’ if the cycle is write. E∗ is the

enable signal, which is ‘0’ if a read or a write cycle is taking place, or ‘1’ if the device is in

standby mode.

The read protocol or cycle of the SM64C16 device is described in the manufac-

turer’s data sheets [120] by two timing diagrams, reproduced in Figures 2.5.11 and 2.5.12.

The first timing diagram (refer to Figure 2.5.11) shows the sequence of signal transitions

on the data lines (the output port) caused by signal transitions on the address lines (the

input port) when the control inputs are: W∗ is ‘1’, or negated, and E∗ is ‘0’, or asserted.

Both ports alternate values between a valid state and an invalid state. There are three tim-

ing parameters in the timing diagram: tc(rd), tv(A), and ta(A). The first parameter, tc(rd), is a

timing constraint that restricts the width of the valid state of the address lines. The other

two parameters, tv(A) and ta(A), are propagation delays of a signal transition in the data lines

caused by a signal transition in the address lines. In the data sheets of the SM64C16, prop-

agation delays and timing constraints are differentiated (they are called switching charac-

Figure 2.5.11 Timing diagram of an SRAM read cycle from address.

ta(A)
tv(A)

tc(rd)

A0:11

Q0:3 valid

invalid

previous
valid

valid
invalid

invalid
cycle

53

teristics and timing constraints respectively). However in other data sheets (e.g. [95])

there is no indication of the type of timing information and some ingenuity from the

designer is required to identify the timing relationships.

The second timing diagram (refer to Figure 2.5.12) describes the sequence of sig-

nal transitions of the data lines as caused only by the control signals. The address lines

must be valid prior to or simultaneously with the high-to-low transition of E∗ (i.e., E∗+, a

transition from negated to asserted). The timing constraints are: tc(rd), a restriction on the

pulse width of E∗; and tsu(W)rd and th(W)rd, a set-up and hold times of W∗ with respect to

E∗. The propagation delays are: ten(E), the propagation delay from E∗+ to Q↑; ta(E), the

propagation delay from E∗+ to Q+v; and tdis(E), the propagation delay from E∗− to Q↓ (for

the special signal transition symbols, refer to Table 2.3.1).

The value ranges of the timing parameters are given in Table 2.5.2. A constraint

parameter ∆ij can be transformed into the constraint rule cij = 〈ti, tj, ∆ij, ε〉. A delay parame-

ter is transformed to a place of a probabilistic timed Petri net. Such a place is associated

with a random variable. The set of random variables of the Petri net are characterized by a

joint probability density function (pdf). If all the random variables are assumed to be inde-

pendent, each random variable is characterized by its pdf. Chip manufacturers count with

data that can be used to construct either the joint pdf, or the independent pdf’s [23]. In the

Figure 2.5.12 Timing diagram of an SRAM read cycle from enable.

tsu(W)rd th(W)rd

tc(rd)

ten(E)
ta(E) tdis(E)

valid

W*

E*

Q0:3

54

data sheets, manufacturers only provide the boundaries of the values of the pdf’s. Thus a

delay parameter [tmin, tmax] defines an infinite set of pdf’s which are non-zero in the inter-

val [tmin, tmax] and are zero otherwise.

timing parameter range (ns)

tc(rd) (C) [25,∞)

tv(A) (D) [0, ∞)

ta(A) (D) [0, 25]

tsu(W)rd (C) [0, ∞)

th(W)rd (C) [0, ∞)

ten(E) (D) [5, ∞)

ta(E) (D) [0, 25]

tdis(E) (D) [0, 15]

Table 2.5.2. Timing parameters for the 25 ns version of the SRAM device
(C: timing constraint; D: propagation delay).

Figure 2.5.13 Partial interface specification of the SRAM read protocol.

A+v

A−v

Q↓

Q+v

Q↑

E∗+

E∗−

W∗−

W∗+

tc(rd) tc(rd)

tsu(W)rd

th(W)rd

tdis(E)

tv(A)

ta(A)

ta(E)

ten(E)

Q−v+

55

One would like to combine the information of the two timing diagrams into a sin-

gle specification. This is accomplished by the interface specification shown in

Figure 2.5.13. As before, solid edges describe delays, and dotted edges describe timing

constraints. With the exception of the thick edge, which requires further explanation, the

other edges can be easily identified from the timing diagrams in Figures 2.5.11 and 2.5.12.

At the end of the read cycle there are two concurrent actions: the data lines become invalid

after the address lines become invalid; and the data lines are tri-stated after the enable line

is negated. Then the following three scenarios are possible: the data lines first become

invalid and then tri-stated, or the data lines become at the same time invalid and tri-stated,

or the data lines become tri-stated (forcing the data lines to invalid too). OR causality is

invaluable in this case to model the three aforementioned scenarios by stating that the data

lines become invalid either after the address lines become invalid or after the data lines

become tri-stated due to the negation of the enable signal. If the pdf characterizing the ran-

dom variable associated with the thick edge/place is the Dirac’s impulse function, then the

place makes the token visible immediately as desired.

Figure 2.5.14 Interface specification of the SRAM read cycle.

A+v

A−v

Q↓

Q+v

Q↑

E∗+

E∗−

W∗−

W∗+

tc(rd)
tc(rd)

tsu(W)rd

th(W)rd
tdis(E)

tv(A)

ta(A) ta(E)

ten(E)

Q−v+

56

In the timing diagrams some information is implicit, namely the sequencing of

states of a signal. That is, a port cannot be in two states simultaneously and thus imple-

ments a sequential process. Additional edges that guarantee port sequencing complete the

interface specification of the SRAM device, which is shown in Figure 2.5.14. Notice that

the delay edges (solid lines) connect an input transition to an output transition (except for

the special OR causality edge from Q↓ to Q−v). The added edges to transitions of input

ports A, E∗ and W∗ are clearly timing constraints (with associated interval ∆ = [0, ∞)

which indicates a precedence constraint) because the ports are manipulated by the environ-

ment.

However the four added edges to transitions of Q require further explanation. The

edge from Q+v to Q−v is a precedence constraint that checks for an inconsistent specifica-

tion that assigns value ranges for tc(rd), tv(A), and ta(A) such that transition Q−v occurs after

Q+v. Using the same argument, one can see that the edge from Q↓ to Q↑ must be a prece-

dence constraint. The edge from Q−v to Q↓ is actually not necessary because the OR cau-

sality edge from Q↓ to Q−v ensures that Q−v will occur not later than Q↓.

Finally the edge from Q↑ to Q+v is a correlation edge shown as a dashed line (refer

to Section 2.5.4). This correlation edge specifies that the value of delays ten(E) and ta(E) are

not independent, so that delay ten(E) is always smaller than ta(E). From Table 2.5.2, and our

previous discussion on transforming delay parameters to pdf’s of random variables, one

can see that while ta(E) is a positive number not exceeding 25 ns, ten(E) can be take any

value greater than or equal to 5 ns. The correlation edge restricts the values of both ten(E)

and ta(E) so that sequentiality of the data lines is always observed. Let us call τ1 and τ2 the

random variables associated with the delay places labeled respectively with timing param-

eters ten(E) and ta(E). The linear projection of the joint pdf fτ1τ2(τ1, τ2) obtained according

to Procedure 2.5.1 is described by the following set of inequalities:

57

5 ≤ τ1 < ∞
0 ≤ τ2 ≤ 25
0 ≤ τ2 − τ1

and it is shown in Figure 2.5.15.

2.5.5.2 DSP read cycle

The Analog Devices SHARC (Super Harvard ARchitecture Computer) DSP is a highly par-

allel high-performance processor. In this section we model the SHARC’s read cycle.

The read cycle is described in the SHARC’s data sheet [4] by the timing diagram

reproduced in Figure 2.5.16. Four groups of ports are involved in the read cycle: the 1-bit

CK clock input line, the 32-bit input ADD address lines, the 48-bit bi-directional DAT data

lines (as output lines), and the control lines RD and ACK.

The value ranges of the timing parameters are shown in Table 2.5.2. The timing

parameters are classified in the data sheet as switching characteristics and timing require-

ments. Timing requirements correspond directly to our timing constraints; however

switching characteristics specify not only propagation delays but also time correlation

data, as explained below.

Figure 2.5.15 Projection of the probability density function fτ1τ2(τ1, τ2).

τ2

τ1

25

5

5

25

58

The interface specification of the SHARC read cycle is shown in 2.5.17. Once the

Figure 2.5.16 Timing diagram of the SHARC read cycle.

timing parameter range (ns)

tSACKC (C) [6, ∞)

tHACKC (C) [-1, ∞)

tSSDATI (C) [3, ∞)

tHSDATI (C) [2, ∞)

tDAAK (C) (−∞, 10]

tDADRO (D) [0, 8]

tHADRO (D) [0, ∞)

tDRWL (D) [8, 13]

tDRDO (D) [1, 4]

tDARL (R) [2, ∞)

tRW (R) [13,∞)

tRWR (R) [6, ∞)

Table 2.5.3. Timing parameters for the 40 MHz version of the SHARC DSP
(C: timing constraint; D: propagation delay; R: correlation data).

tSACKC
tHACKC

tSSDATI

tHSDATI

tDAAK

tDARL

tRW tRWR

tDADRO

tHADRO

tDRWL

tDRDO

CK

ADD

ACK

RD*

DAT

tCK

59

type of timing information has been determined, the construction of the interface specifi-

cation from the timing diagram is straightforward. Each timing parameter of the timing

diagram is represented by an edge in the specification of the corresponding type (delay,

timing constraint or correlation). Sequentiality edges have been added as discussed before.

Notice that CK1+ corresponds to CK0+ of the next cycle.

Notice that the lower bound of the timing constraint tDAAK is a negative value.

Specification formalisms in which timing constraints are modeled with places of a Petri

net (e.g., [124] and [114]) will have problems handling “negative-valued” timing con-

straints, because tokens in places behave causally.

We now discuss briefly the correlation edges. Consider the edge tDARL. As dis-

cussed in Section 2.5.4, this edge does not describe a causal (delay) timing relationship

Figure 2.5.17 Interface specification of the SHARC read cycle.

CK0+

CK1+

ADD+v

DAT−v

DAT+v

RD∗+

RD∗−ACK−

ACK+

tDAAK

tHACKC

tDADRO

tHSDATI

tDRWL

tRWR
tSACKC

tDARL

tSSDATI

ADD−v

tHADRO

tDRDO

tRW

tCK

60

from transition ADD+v to transition RD+, which will imply some circuitry that generates

RD+ using ADD+v as one of its inputs. The manufacturer can guarantee that RD+ always

follows ADD+v because delays tDADRO and tDRWL are not independent (due for example to

the proximity of the circuits that generate RD+ and ADD+v in the chip wafer, so that they

are affected similarly by fabrication process variations and temperature changes). A simi-

lar argument can be applied to understand why the edges tRW, tRWR, and (the added sequen-

tial edge) tADD_SEQ specify time correlation data.

Notice that the associated transitions to each correlation edge have a simple fork

transition (refer to Definition 2.5.10). The random variables τi associated with the delay

edges of the interface specification are shown in Figure 2.5.18. The expressions generated

by step 2 of Procedure 2.5.1 are:

Figure 2.5.18 Construction of a linear projection of the joint pdf
fτ1τ2τ3τ4τ5(τ1, τ2, τ3, τ4, τ5).

CK0+

CK1+

ADD+v

RD∗+

RD∗−

tRWR

tDARL

ADD−v

tRW

τ3

τ2
τ1

τ5
τ4

tADD_SEQ

61

τ2 − τ1 ⊆ tDARL
τ3 + τ5 − τ2 ⊆ tRW
τ2 − τ5 ⊆ tRWR
τ1 − τ4 ⊆ tADD_SEQ

The linear projection of the joint pdf fτ1τ2τ3τ4τ5(τ1, τ2, τ3, τ4, τ5) is a region in R5,

so that we do not attempt to visualize it. However, standard techniques can be used for its

manipulation [109].

We shall come back to the interface specification of the SRAM and the DSP read

cycles in Chapter 4 where we shall use linear projections to construct joint pdf’s given

some assumptions.

2.6 Summary

In this chapter we have presented interface specifications, our formal framework to

describe the behavior of hardware components used to build up a system. An interface

specification consist of two parts: a description of the component’s internal operation, and

a restriction on the component’s environment. The first part can be described using an

interpreted Petri net called timed signal transition graph. The second part can be specified

as a set of constraint rules.

In the following chapter we shall address the interconnection of components.

There we shall show that the behavioral properties of the system can be inferred by study-

ing a “merged” graph which consists of the interface specifications of the components that

comprise the system. Furthermore, if the components cannot be connected directly and

glue logic is necessary, we show that the system consisting of the components plus the

interface logic can be described as a graph which contains the interface specifications of

the interconnected components plus additional edges that represent the interface logic.

Chapter 3

Timing and the Interface Design 3

3.1 Introduction

As hardware systems become more complex, the design process shows a trend towards the

use of CAD tools that automatically carry out the clerical, time-consuming, and error prone

synthesis and verification tasks. Timing is a critical aspect of the design which, except in

toy systems, cannot be separated from other parts of the design such as design specifica-

tion, synthesis, and verification. This is particularly true for high-performance systems, for

which achieving the maximum possible throughput is of paramount importance.

In the previous chapter we presented a formal framework to specify the interface

behavior of components, that we called interface specifications. Those components are

independent modules that can be used to build up more complex systems. The main goals

of this chapter are: to show how interface specifications can be used to facilitate the

description and validation of systems composed of an aggregation of components; and to

provide the foundation of our verification and analysis techniques that will be discussed in

Chapters 4 and 5.

In the following section, we discuss the interface design problem, that arises when

a hardware system is to be constructed using predefined modules (e.g., off-the-shelf

microprocessor components, parameterized libraries, special function cores, etc.). Our

main contribution is the formulation of the interface design problem as the “merging” of

63

interface specifications. The rest of the chapter discusses the concept of time-consistency

as applied to the interface design problem.

3.2 Interface design problem

Reuse is a powerful concept that makes it possible to construct more complex systems out

of pre-existing ones. In this dissertation we use microprocessor-based systems as one

example, although the underlying ideas are applicable to other areas where a system is

composed of well-defined sub-components or modules. An essential ingredient that

empowers reuse is a clean component interface.

In the case of microprocessor-based systems, a system is composed of off-the-shelf

components that can be classified as processors, memory devices, and input/output (or I/O)

devices. Single-processor systems are rapidly being superseded by multi-processor sys-

tems, with a complex memory hierarchy and high-throughput I/O, to satisfy the demands

for increasing power. In the previous chapter, we introduced a formal specification of

interface behavior of digital hardware components called interface specifications. In this

section we use interface specifications to specify the temporal behavior of complete sys-

tems composed of off-the-shelf components and interface, or glue, logic.

3.2.1 System integration and interface design

System integration is the process of building systems out of pre-existing components. In

microprocessor-based systems, it may not be possible to connect the components directly

together. For instance, a memory device may expect a positive logic signal to initiate a

read, while the processor may use a negative logic signal. This type of incompatibility is at

the physical (electrical in this case) level, and signal conditioning (e.g., an inverter) is

involved. A more serious incompatibility arises when a processor initiates a read differ-

64

ently from what the memory device expects. We say that the processor follows a different

protocol from the one used by the memory. Interface logic is a circuit that must be placed

between microprocessor components to resolve incompatibilities so that the components

can exchange information. In this section we introduce some terminology and provide an

example to illustrate our ideas.

Microprocessor components are complex modules themselves, and they may per-

form different operations. For example, a processor typically is capable of transferring

data with other components, of accepting external hardware interrupts, of allowing other

processors to take over its data transfer lines, etc. Such operations are called capabilities,

e.g., the data transfer capability, the bus arbitration capability, etc. The logic and temporal

behavior of a capability can be described by a protocol. Informally a protocol is a series of

actions, or atomic operations, that are used to perform a capability. Components are con-

nected to other components through input and output ports (refer to Section 2.3.2). The

actions of the protocol are encoded as signal transitions, i.e. changes on the values of the

ports.

Consider for example a microprocessor system which consists of multiple masters

shown in Figure 3.2.1. Among its several capabilities (such as transferring data, accepting

hardware interrupts, etc.), a master is able to initiate a data transfer via a shared resource:

the data transfer bus. This capability is called bus arbitration. The bus arbitration lines are

Figure 3.2.1 Multi-master system.

arbitration

arbiter

interface

master

lines

interfaceinterfaceinterface

master

interface

data transfer bus

65

used to guarantee that at most one master requesting the bus takes over the DTB at any

given time. A bus arbitration protocol is defined by the standard bus, and each of the mas-

ters may use a different bus arbitration protocol. The interface logic placed between a mas-

ter and the standard bus generates the input actions to both components.

Protocols are usually given in the component data sheets in the form of timing dia-

grams. The timing diagram of a bus arbitration protocol used by a typical master is shown

in Figure 3.2.2. According to our notation (refer to Section 2.3.2) in Figure 3.2.2 input sig-

nals are underlined and output signals are overlined. The REQ∗/ACK∗ signals are control

signals which can be asserted and negated, while the DTB is a group of lines that are ini-

tially in a high-impedance state, and are driven by the master (when the master takes over

the bus).

The bus arbitration protocol can be described by a sequence of actions. The master

signals to the arbiter that it wants to use the bus by asserting the output REQ∗ signal (a ‘∗’

suffix identifies a negative logic signal), and it waits for ACK∗ to become asserted before it

can take over the bus. When the master ends its transaction, it releases REQ∗. The arbiter

then releases ACK∗ so that another arbitration cycle can take place.

An interface specification embodies the previous protocol description with a pre-

cise meaning. The actions of the protocol correspond to signal transitions. For clarity, we

use short names to describe the various signal transitions: req+ (req−) indicates the change

Figure 3.2.2 Master bus arbitration protocol.

REQ∗

ACK∗

DTB

r+

a+

r−

b↑ b↓

a−

66

from asserted to negated (negated to asserted) of the REQ∗ signal; similarly ack+ (ack−)

indicates the change from asserted to negated (negated to asserted) of the ACK∗ signal;

dtb↑ (dtb↓) indicates the change from tri-stated to driven (driven to tri-stated) of the DTB

lines. The interface specification shown in Figure 3.2.3a describes the bus arbitration pro-

tocol. From Section 2.5.3, we know that an interface specification consists of two parts:

the internal operation of the component (delays), described by a timed signal transition

graph, and a restriction on the behavior of the environment (timing constraints), given as a

set of constraint rules. Delays and constraints are graphically represented as solid and dot-

ted edges respectively (correlation edges can also appear in an interface specification as

discussed in Section 2.5.4). Each delay edge is associated with a random variable τi, and

each constraint is labeled by a timing interval ∆i. For example, in Figure 3.2.3, the random

variable τa represents the internal propagation delay in the master from the receiving of the

bus grant (ack+) to the driving of the DTB lines; and the interval ∆a specifies that a grant

(ack+) is expected to occur some time after the master issues a request (req+).

Notice that an interface specification, as discussed in Section 2.5.3, combines two

types of information, a specification of the internal operation of the component, given by a

Figure 3.2.3 Interface specification of a bus arbitration protocol.

req+

ack+

dtb↑

dtb↓

req−

ack−

τd

∆a

τa

τb

τc

∆b

67

timed signal transition graph (with underlying Petri net), and a restriction on the behavior

of the environment of the component, given by a set of constraint rules. The underlying net

is not connected, and thus, tokens cannot propagate through the net. The main objective of

this section and the following section is to introduce the concept of complete graph, which

informally is a signal transition graph that describes the “complete” operation of a system

composed of two or more components, and thus there is an additional requirement that the

graph be connected. Please the reader be aware that our usage of complete is different

from the concept of complete graphs studied in Graph Theory [73].

An interesting variation of the protocol shown in Figure 3.2.3, which is called full

handshake, is the bus arbitration protocol shown in Figure 3.2.4, followed by typical DMA

devices. This variation is called a partial handshake, for reasons that shall become obvi-

ous. The difference is that while in the original protocol, req− is generated after the master

has released the DTB lines, in the latter req− is generated just before the release of the DTB

lines. Let us examine the implications of this modification. There is a potential problem in

the second protocol, if the arbiter grants the bus to another master before the current mas-

ter tri-states DTB. The constraint edge ∆c checks for this hazard. (Notice that ∆c is an exam-

Figure 3.2.4 A bus arbitration protocol variant.

req+

ack+

dtb↑

dtb↓

req−

ack−

τd

∆a

τa

τb

τc

∆c

∆b

68

ple of a constraint edge between two output signal transitions). However if the delay from

req− to a new grant ack+ is larger than the delay τc, then potentially the second protocol

can display higher throughput because the arbitration for a new cycle occurs concurrently

with the releasing of DTB by the current master.

Suppose that one wants to build up a system with our DMA device around the VME-

bus. The VMEbus bus arbitration protocol is more involved [69]; it implements the arbiter’s

behavior. The VMEbus standard defines three control signals (BR∗, BG∗, and BBSY∗) and

one status signal (BUSY) (refer to Figure 3.2.5). The structural view of the system is

shown in Figure 3.2.5a. Notice that the DMA device uses two signals to perform bus arbi-

Figure 3.2.5 Bus arbitration interface: (a) structural view; (b) behavioral
view.

BG*
BBSY*

BR*

REQ*

ACK*
Interface

VMEbus DMA

(a)

(b)

VMEbus

DMA
br+

bg+

bbsy+

B+

τ3

∆1

τ1

∆9

τ2

∆2

∆5

∆10

br−

bg−

bbsy−
B−

∆3

∆4

ack+

req+

ack−

req−

dtb↑

dtb↓

τa

τb

τc

τd

∆b

∆a

∆c

BUSY

dtbdata transfer bus

∆6

∆7

∆8

dtb

69

tration while the VMEbus defines three controls signals and a status signal for bus arbitra-

tion. Thus interface logic is required to convert the two different protocols.

For the sake of clarity of the graph representation, we use the following short

names: br for BR∗, bg for BG∗, bbsy for BBSY∗ and B for BUSY. The VMEbus bus arbitra-

tion interface specification is shown in Figure 3.2.5b. After a request is received (br+) a

grant is generated (bg+). A master being granted the bus acknowledges the grant by assert-

ing the grant-acknowledge signal (bbsy+) to which the arbiter responds by releasing grant

(bg−). bbsy is used to speed up the arbitration similarly to the partial handshake described

previously by allowing the arbitration to take place while the last part of the transaction is

still in progress. The master must wait until the busy status signal (B) is negated before

driving the bus lines.

The last piece of information describes the relationship between the use of the bus

(dtb) and the busy status signal (B). A desirable behavior is that transitions B+ and B−

“frame” the utilization of the bus (between dtb↑ and dtb↓), as shown in Figure 3.2.6a. This

is known as a strobe relation, and has the advantage that B becomes negated only after the

bus lines have been released by the master, so that by monitoring B it is possible to avoid

bus collisions. However the VMEbus allows the designer to use one of the DTB lines (the

address strobe signal) as the indicator of the status of the bus. Then dtb and B actually

observe the relation shown in Figure 3.2.6b. Thus constraint link ∆10 needs to be added to

Figure 3.2.6 Bus busy status signal: (a) strobe relation; (b) actual relation.

(a) (b)

B+

B−

dtb↑

dtb↓

τx

τy

B−

dtb↑

dtb↓

B+
∆10

∆9

∆9
τz

τx

τy

τz

70

prevent the possibility of a bus collision. All constraint places ∆i in Figures 3.2.5 and 3.2.6

are assigned the interval [0, ∞) except ∆3 and ∆4, which according to the VMEbus

specifications [69] are assigned intervals [30, ∞) and [90, ∞) respectively, indicating a pre-

cedence requirement.

The question that arises is whether it is possible to carry out the design of an inter-

face between two components whose protocols are described by these interface specifica-

tions (refer to Figure 3.2.5b). In this dissertation, we shall assume that a designer (human

or machine) has produced a design. In the following paragraphs we give an informal dis-

cussion of some ideas of how to go about carrying a design needed to substantiate our def-

inition of what we have called a “complete” graph, which is used to describe a system

consisting of two (or more) interface specifications together with the interface logic that

accomplishes the system integration. We stress that our aim is not to derive a theory about

the construction of complete graphs but rather to introduce some basic requirements that

we have identified. As a matter of fact in the following sections and chapters we shall

assume that a complete graph is given.

First notice that the interface acts as the environment of each component. There-

fore the interface must generate the necessary input actions expected by one component

using the output actions. One possible approach is to add delay edges from the output sig-

nal transitions to the input transitions. For example, a delay edge may be added that con-

nects req+ to br+. This is the approach considered in this work. Then the system can be

described by a graph which contains the interface specifications of the components that

are to be interconnected together with some additional edges corresponding to the inter-

face logic. The resulting graph is called a “complete” graph, which shall be discussed fur-

ther in the following section.

A procedure that automatically carries out the interface design is beyond the scope

of this dissertation, although we believe that this is an important topic which demands fur-

ther investigation. On another track, the implementation of the interface logic that realizes

71

the added delay edges in the complete graph was explored in [42]. We also leave this prob-

lem for future work, although we believe that synthesis techniques that have been used for

signal transition graphs are good candidates [79, 97, 123]. In this work, the starting point

is a complete graph, and our goal is to investigate the temporal properties of the complete

graph. These are the topics of Chapters 4 and 5.

3.2.2 Complete graphs

Two components can be interconnected if they share some capabilities (e.g., data transfer,

bus arbitration, etc.). The behavior of each capability is given by a protocol, which in turn

can be formally described by an interface specification. In the previous section we intro-

duced the interface design problem which arises when the protocols followed by two com-

ponents to implement a capability are not “complementary” of one another (e.g., there is

no one-to-one correspondence between the input ports of one component and the output

ports of the other component). If that is the case, interface logic is necessary to achieve the

interconnection. In the previous section we also hinted at the possibility that a system

composed of the components to be interconnected and the interface logic can be described

using some sort of interface specification. In this section, we characterize such a represen-

tation that we have called a complete graph.

First we shall discuss the issue of describing the purpose of a protocol. This issue

has been investigated in the related area of communication protocols where it has been

given the name of semantic seed [102]. A semantic seed is intended to capture the seman-

tics (or purpose) of the protocol. For example, the purpose of a bus arbitration protocol is

to arbitrate the use of a shared resource, the data transfer bus lines, among several masters

so that at most one master can take over the DTB at any given time. In [102] the semantic

seed is represented as an automaton. In this work, we use constraint rules, which are more

suitable to describe expected relationships (as discussed in Section 2.5.1), to specify the

semantics of the protocol; constraint rules can describe non-causal timing relationships

72

such as a hold time of -1 nsec for the input data with respect to the negated transition of

the clock in a latch. We call this additional piece of information a semantic specification.

Definition 3.2.1.- Given two Petri nets Na = 〈Pa, Ta, Fa, Ma0, Γa〉 and

Nb = 〈Pb, Tb, Fb, Mb0, Γb〉, a semantic specification on Na and Nb is a set of constraint rules

S= { sij}, where sij = 〈ti, tj, ∆ij, ε〉, such that ti, tj ∈ Ta ∪ Tb.

The two nets that Definition 3.2.1 refers to are the underlying Petri nets of the

interface specifications that describe the protocols of two components that are to be inter-

connected. Although a semantic specification defines relationships between pairs of tran-

sitions of a Petri net, it can be extended to define relationships between pairs of signal

transitions in the obvious way. Thus a semantic specification consists of timing constraints

between selected signal transitions of the two protocols. As before, constraint rules can be

represented graphically. For example Figure 3.2.7 shows the semantic specification of a

bus arbitration protocol. It specifies that any consecutive uses of resource dtb must not

overlap given that the ∆x and ∆y are [0,∞).

Before defining a complete graph, we need to define some basic concepts.

Definition 3.2.2.- An undirected path between two transitions t0 and tn of a Petri

net N = 〈P, T, F, M0, Γ〉 is a sequence of transitions t0t1 ... tn such that, for each

Figure 3.2.7 Bus arbitration semantic specification.

dtb↑

dtb↓

∆x

∆y

73

i = 0,…, n-1, there exists a possibly non-unique pi ∈ P such that either (ti, pi) or (pi, ti)

belongs to F and either (pi, ti+1) or (ti+1, pi) belongs to F.

Definition 3.2.3.- A directed path between two transitions t0 and tn of a Petri net

N = 〈P, T, F, M0, Γ〉 is a sequence of transitions t0t1 ... tn such that, for each i = 0,…, n-1,

there exists a possibly non-unique pi ∈ P such that (ti, pi) and (pi, ti+1) ∈ F.

Definition 3.2.4.- A Petri net N = 〈P, T, F, M0, Γ〉 is connected if there is an undi-

rected path between any two transitions of the net.

A complete graph is an interface specification (refer to Definition 2.5.3) which sat-

isfies a set of conditions as given in the following definition:

Definition 3.2.5.- Given two interface specifications Ψa = 〈Σa, CNa〉 and

Ψb = 〈Σb, CNb〉, with associated timed signal transition graphs Σa = 〈Na, Ya, λa〉 and

Σb = 〈Nb, Yb, λb〉, and a semantic specification S on Na and Nb, a complete graph is the

interface specification Ψc = 〈Σc, CNc〉 with associated timed STG Σc = 〈Nc, Yc, λc〉 and set of

constraint rules CNc that satisfies the following conditions:

1. Na and Nb are subgraphs of Nc;

2. CNa, CNb and S are subsets of CNc;

3. Nc is connected, and for every ti ∈ Tc there exists a directed path from a differ-

ent tj ∈ Tc;

4. There does not exist a place p ∈ Pc \ (Pa ∪ Pb) such that λc(•p) is a signal tran-

sition of an output port, where \ denotes set difference; and

5. Nc is live.

74

The first two conditions of Definition 3.2.5 ensure that the sub-graphs contained in

the interface specifications are part of the complete graph, and that the purpose of the pro-

tocols’ capability is achieved. Notice that Nc is not necessarily the union of Na, Nb and S

for the case that additional signal transitions are required for instance to achieve protocol

conversion. The third condition ensures that there are no dangling transitions and that each

signal transition is generated by other transition(s). Examples of nets that do not satisfy

condition 3 are shown in Figure 3.2.8. The first net is disconnected but there is a directed

path that terminates in every transition. The second net is connected but there are no

directed paths that terminate in transitions a or b. Notice that connectivity is only checked

on the Petri net part of the complete graph. The fourth condition disallows new delay

places which sink into an output transition: output signal transitions of the interface speci-

fications are generated internally by a component and should not be driven by the interface

logic. Finally the fifth condition guarantees that every signal transition is live, and thus

deadlock does not occur (refer to Section 2.2.1).

Given two interface specifications for two components that are to be intercon-

nected, there may be quite a few different ways of designing an interface. Some designs

may have nicer properties than others (e.g., a design may be faster or may occupy less sili-

con area). Our definition of a complete graph aims to describe a minimum set of structural

properties that a graph representing an interface design should have. For example that

Figure 3.2.8 Examples of nets that do not satisfy condition 3 of

Definition 3.2.4.

a b

c

a

b d

c

(a) (b)

75

input ports must not be disconnected. The term structural properties refers to properties

concerning the connectivity of the graph, and not the behavior of the underlying Petri net.

It may be the case that a valid complete graph may not exhibit a correct behavior (e.g.,

because it violates some of the timing constraints). At the end of this chapter we shall dis-

cuss the concept of feasibility of an interface. Informally, an interface is feasible if it

implements the environment of each of the components correctly from the point of view of

timing. Thus feasibility shall be used to check the correctness of the timing behavior of the

interface.

A complete graph derived from the bus arbitration interface specifications shown

in Figure 3.2.5 and the semantic specification shown in Figure 3.2.7 is depicted in

Figure 3.2.9. The added delay edges are shown as thicker lines and are labeled with ran-

dom variables δi. One can check that the four conditions of Definition 3.2.4 are satisfied:

the original interface specifications and the semantic specification are part of the complete

graph; the underlying petri net is connected and every signal transition has an incoming

delay place; finally none of the added delay edges sinks into an output signal transition as

stated in Definition 3.2.5.

Let us recall that the intention of Definition 3.2.5 is to provide necessary, although

maybe not sufficient, conditions for a representation of an interface design. Also notice

that if components share more than one capability then an interface design may consist of

several complete graphs. A procedure to efficiently combine all the complete graphs is left

as future work.

3.3 Time-consistency of complete graphs

From our previous discussion, a complete graph, like an interface specification, consists of

an STG and a set of constraint rules. The STG of a complete graph is a connected net such

76

that every transition is generated by other transition(s); and the complete graph “contains”

two component interface specifications and a semantic specification. There are some addi-

tional edges in the complete graph in addition to the ones corresponding to the component

interface specifications and the semantic specification: those edges describe the interface

circuit that realizes protocol conversion. In general the construction of a complete graph

may result in an STG which is not AOC (refer to Section 2.4.2). As we already mentioned it

is not our aim to develop a theory to construct complete graphs. We shall assume in the

sequel that the STG part of a complete graph is AOC. How severe this assumption is we do

not know, although from our experience it seems reasonable. Moreover should this

assumption prove too limiting in some cases, our approach could provide a basic frame-

work for future development.

In this section, we shall investigate the temporal behavior of complete graphs. As

mentioned in the previous section, it is possible that a complete graph may not exhibit a

Figure 3.2.9 Bus arbitration interface design.

br+

bg+

bbsy+

B+

br−

bg−

bbsy−

B−

ack+

req+

ack−

req−

dtb↑

dtb↓

δ1

δ2
δ3

δ4

δ5

δ7

δ6

τa

τb

τc

τd

∆b

∆a

τ3

∆1

τ1

∆9

τ2

∆2

∆5

∆3

∆4

∆6

∆7

∆8

∆c

τx

τy
∆d

77

correct temporal behavior. The question we are trying to answer is: Is it possible to deter-

mine if all the possible temporal behaviors of a complete graph satisfy all the given timing

constraints? We have found conditions under which the answer to the question is positive.

First we discuss the timed execution of an AOC STG.

3.3.1 STG unfolding

A key problem of our verification and analysis techniques is to find the time separation

between two transitions, as it will be discussed in Section 3.3.2. This problem is not trivial

for live nets, even for sub-classes of Petri nets using deterministic firing times [110, 117],

or using interval data [3, 67]. In this section we describe the execution of a signal transi-

tion graph using partial orders.

Partial orders have been used to describe the operational semantics of concurrent

systems [54, 12]. In contrast to the interleaving semantics of reachability graphs (refer to

Section 2.2.1), partial orders avoid the state explosion that occurs in highly concurrent

systems by not having to represent all possible interleavings of a net. The STG unfolding

presented in this section is a partial order technique.

We shall need the following definitions adapted from [113] in subsequent sections:

Definition 3.3.1.- Let A be a set. A binary relation ρ ⊆ A × A is called a similarity

relation if and only if ∀ a,b ∈ A:

1. a ρ a

2. a ρ b ⇒ b ρ a

Definition 3.3.2.- Let A be a set. A binary relation ρ ⊆ A × A is called a partial

order if and only if ∀ a,b ∈ A:

78

1. ¬(a ρ a)

2. a ρ b ∧ b ρ c ⇒ a ρ c

Thus a similarity relation is reflexive and symmetric, and a partial order is irreflex-

ive and transitive. Notice that conditions 1 and 2 of a partial order imply anti-symmetry

(i.e., a ρ b ⇒ ¬(b ρ a)). Let us denote a partial order by ‘<’.

Definition 3.3.3.- Let A be a partially ordered set.

1. Let li ⊆ A × A be given by a li b if and only if a < b or b < a or a = b

2. Let co ⊆ A × A be given by a co b if and only if ¬(a li b) or a = b.

Relations li and co stand for linear (precedence) and concurrent respectively. It can

be shown that li and co are similarity relations [113].

Definition 3.3.4.- A subset B ⊆ A is called a region of a similarity relation ρ if and

only if:

1. ∀ a,b ∈ B: a ρ b

2. ∀ a ∈ A: a ∉ B ⇒ ∃ b ∈ B: ¬(a ρ b)

Definition 3.3.5.- Let A be a partially ordered set, and let B ⊆ A. B is called a line

if B is a region of li . B is called a cut if B is a region of co.

Figure 3.3.1 shows the graphical representation of a partial ordered set, or poset,

where there is a directed edge from a to b if and only if a < b and there is no c such that

a < c < b. The similarity relations li and co are also depicted (if ρ is a similarity relation,

then a graphical representation draws an undirected edge from a to b if and only if a ρ b).

The li relation formalizes the idea of a path in a poset; that is, if a li b then there is an

directed path from a to b or from b to a. The cut relation describes events that are concur-

rent; if a co b then a and b can occur simultaneously.

79

The connectedness and liveness properties of the signal transition sub-graph of a

complete graph imply the presence of cycles (i.e., directed paths which start and end at the

same transition). Acyclic graphs, graphs without cycles, are easier to analyze [58]. The

unfolding of a signal transition graph is an acyclic graph in which different occurrences of

the transitions are considered as different nodes of the graph. The notion of the unfolded

graph of an STG corresponds to the notion of processes and occurrence nets in Condition/

Event Systems [113].

So far we have represented the operational behavior of an interface specification,

or a complete graph, graphically using its AOC di-graph Ω = 〈TΩ, PΩ, MΩ0, ΓΩ, ctΩ, Y, λΩ〉,

and we have used the equivalent STG Σ = 〈N, Y, λ〉 with associated net N = 〈P, T, F, M0, Γ〉

for the development of the theory. The STG unfolding procedure that we shall describe

below is more easily understood in terms of Ω. Notice however that the translation of the

results to the STG is straightforward (refer to Section 2.3.3). The left arrow ← is used to

denote assignment, and 0 is the special root transition of the di-graph.

Figure 3.3.1 A poset (a) and its relations (b) li ; and (c) co.

e gf

a b

d

c

(a)

(b)

eg

f

a

b

d

c eg

f a

b

d

c

(c)

80

Procedure 3.3.1.- The unfolding of an AOC di-graph Ω is the di-graph

ΩU = 〈TUΩ, PUΩ, ΓUΩ, ctUΩ, Y, λUΩ〉 constructed from Ω according to the following steps:

TUΩ ← { 0}, PUΩ ← {}
Define the index function idx : TΩ → ℵ
∀ t ∈ TΩ, idx(t) ← 0
U ← { tj : MΩ0((ti, tj)) = 1 ∧ (ti, tj) ∈ PΩ}
∀ tj ∈ U, idx(tj) ← idx(tj) + 1
V ← { tj(idx(tj)) : tj ∈ U} , W← {(0, tj(idx(tj))) : tj ∈ U}
TUΩ ← TUΩ ∪ V, PUΩ ← PUΩ ∪ W
∀ tj ∈ U ∧ (ti, tj) ∈ PΩ, ΓUΩ((0, tj(idx(tj)))) ← ΓΩ((ti, tj))
∀ tj ∈ U, ctUΩ(tj(idx(tj))) ← ctΩ(ti)
∀ tj ∈ U, λUΩ(tj(idx(tj))) ← λΩ(j)
do forever

U′ ← { tj : ti ∈ U ∧ (ti, tj) ∈ PΩ}
∀ tj ∈ U′, idx(tj) ← idx(tj) + 1
V ← { tj(idx(tj)) : tj ∈ U′}
WI ← {(ti(idx(ti)), tj(idx(tj))) : tj ∈ U′ ∧ ti ≠ tj ∧ (ti, tj) ∈ PΩ}
WII ← {(ti(idx(ti)-1), ti(idx(ti))) : (ti, ti) ∈ PΩ}
TUΩ ← TUΩ ∪ V, PUΩ ← PUΩ ∪ WI ∪ WII
∀ tj ∈ U′ ∧ (ti, tj) ∈ PΩ, ΓUΩ((ti(idx(ti)), tj(idx(tj)))) ← ΓΩ((ti, tj))
∀ tj ∈ U′, ctUΩ(tj(idx(tj))) ← ctΩ(tj)
∀ tj ∈ U′, λUΩ(tj(idx(tj))) ← λΩ(tj)
U ← U′

end do

Procedure 3.3.1 constructs ΩU as follows: First it sets the root transition 0, which

represents time τ = 0. The function idx keeps track of the number of occurrences of each

transition. The transitions ti enabled by the initial marking of Ω are added to TUΩ as nodes

ti(1), that is the first occurrence of each transition, and idx(ti) is increased by 1; edges

(0, ti(1)) are added to PUΩ. The new nodes (edges) added to ΩU are labeled with the signal

transitions and causality type (random variables) of the original nodes (edges) in Ω. The

same process is repeated indefinitely for transitions tj to which that transitions ti are con-

nected.

81

Consider for example the STG shown in Figure 3.3.2. The initial marking assigns

one token to each of the edges labeled with random variables τ4 and τ5. Those tokens are

assumed to arrive at the places at time τ = 0. Thus from the root transition 0, two edges

labeled τ4 and τ5 are connected to two nodes labeled a+(1) and b+(1) respectively. From

a+(1), there is an edge τ1 to b+(1), and from b+(1) there are two edges τ2 and τ3 connected to

a+(1) and b−(1) respectively. Thus from a+(1), edge τ1 is added to b+(1), and edges τ2 and τ3

are added to a−(1) and b−(1) respectively.

Notice that the unfolding of the AOC STG is an infinite acyclic graph.

Lemma 3.3.1.- Given an unfolding ΩU, let ρ be a binary relation on TUΩ such that

ti(m) ρ tj(n) if and only if (ti(m), tj(n)) ∈ PUΩ. Then the transitive (but not reflexive) closure of

ρ, denoted by ρ*, is a partial order.

Proof.- From Definition 3.3.2, a partial order is a binary relation which is transitive

and irreflexive. Relation ρ* is by construction transitive. Then we shall show that ρ* is

irreflexive, that is (ti(m), ti(m)) ∉ PUΩ for ti(m) ∈ TUΩ. To show this fact, suppose that

(ti(m), ti(m)) ∈ PUΩ for a transition ti(m) ∈ TUΩ. The set PUΩ is constructed in the step

PUΩ ← PUΩ ∪ WI ∪ WII . By construction, (ti(m), ti(m)) could only be added to PUΩ in WII

Figure 3.3.2 Signal transition graph and a partial view of its infinite
acyclic unfolding.

a+

b+
a−

b−

a+(1)
b+(1)

a−(1)

b−(1)

a+(2)
b+(2)

a−(2)

b−(2)

τ1

τ2

τ3

τ4

τ1

τ2
τ3

τ4
τ5τ5

τ3

τ4 τ5

τ1

τ2

τ=0 0

82

which takes care of the case that (ti, ti) ∈ PΩ in the original AOC di-graph. But explicitly

the construction of W guarantees that if (ti, ti) ∈ PΩ, then (ti(m-1), ti(m)) is added to PUΩ.

Thus ρ* is a partial order on the infinite set TUΩ, and the AOC di-graph can be

thought of as the graphical representation of ρ*. In the sequel we shall call ρ* the prece-

dence relation< of the unfolding ΩU.

3.3.2 Time-consistency

From a timing perspective, a complete graph Ψc = 〈Σc, CNc〉 describes two different

aspects: a net execution given by the signal transition graph Σc, and a set of timing con-

straints CNc which specify a desired behavior. The connectivity properties of the signal

transition graph Σc of a complete graph assure that; this is not the case with interface spec-

ifications, whose input signal transitions are not generated by other signal transitions (i.e.,

there are no delay edges incoming to input signal transitions). Time-consistency is a prop-

erty of a complete graph whose net execution satisfies its timing constraints. Notice that

time-consistency is not a property of the interface specifications.

As discussed in Section 2.5.1, a constraint rule cij = 〈ti, tj, ∆ij, ε〉 on two transitions

of the net N = 〈P, T, F, M0, Γ〉 defines a time window ∆ij with respect to the k-th occurrence

Figure 3.3.3 Constraint rule for transitions a and b.

a

b

∆1
∆1

time

time

τa(k)

τb(k+ε)

83

of the constraining transition ti during which the (k+ε)-th occurrence of the constrained

transition tj is allowed (refer to Figure 3.3.3).

Definition 3.3.6.- Given a complete graph Ψc = 〈Σc, CNc〉, a constraint rule

cij = 〈ti, tj, ∆ij, ε〉 of CNc is said to be satisfied if for every possible execution of the underly-

ing Petri net Nc of Σc = 〈Nc, Yc, λc〉, it is true that:

(Eq. 3.3.1)

for all k > 0, where is the time of the k-th occurrence of transition ti. Otherwise cij is

said to be violated.

Eq. 3.3.1 is called the constraint equation for constraint rule cij. The expression

 denotes the time separation from the k-th occurrence of transition ti to the

(k+ε)-th occurrence of transition tj (recall that ε can be either 0 or 1).

Definition 3.3.7.- A complete graph Ψc = 〈Σc, CNc〉 is said to be time-consistent if

every constraint rule cij ∈ CNc is satisfied.

To compute the time separation of Eq. 3.3.1, we can unfold the STG starting from

the initial marking, and then check that Eq. 3.3.1 applies. Notice that we have to do this for

an infinite number of occurrences (i.e., k > 0); moreover, because the occurrences are

not deterministic, we have to consider a possibly infinite ensemble of occurrences

(refer to Section 2.3.4).

One point to note is that in general if there is no trivial constraint (i.e., a constraint

with associated interval (−∞, +∞)) between two transitions, they should have a common

ancestor, otherwise the constraint would not be satisfied because the time occurrence of

the transitions would be independent of one another and their time separation can be arbi-

τtj k ε+()
τti k()

– ∆ij∈

τti k()

τtj k ε+()
τti k()

–

τti k()

τti k()

84

trarily large. Suppose for the moment that such a common ancestor exists (refer to

Figure 3.3.4). If the common ancestor is within finite reach, then one does not have to

check an infinite number of time separations.

In the following section we shall show that such a common ancestor does exist in

an unfolding of an AOC STG. Rather than finding and separately and then

computing Eq. 3.3.1 for each possible and , we could determine Eq. 3.3.1

with respect of the common ancestor.

Consider for example the time separation τb+(1) − τa+(1) in Figure 3.3.2, The com-

mon ancestor to both a+(1) and b+(1) is the root transition 0. Transition a+(1) occurs at time

τa+(1) = τ4. Transition b+(1) occurs when there are visible tokens at both edges τ1 and with

τ5, that is at τb+(1) = max(τ4+τ1, τ5). Then τb+(1) − τa+(1) = max(τ4+τ1, τ5) − τ4.

We shall discuss more thoroughly our algebraic approach to computing Eq. 3.3.1

in Section 3.3.4. Notice that we still have to deal with an infinite number of occurrences.

In the following section we introduce a notable type of common ancestor, the cycle-invari-

ant fork transition, that can solve this problem.

Figure 3.3.4 Time separation between transitions a and b with respect to a
common ancestor transition.

a

b

∆1

x

τx

time

time

τa(k)

τb(k+ε)

τti k()
τtj k ε+()

τti k()
τtj k ε+()

85

3.3.3 Fork transitions

The satisfaction of timing constraints plays an important role in our approach. As men-

tioned in the previous section, the constraint equation must check that the constraint rule is

satisfied over all executions of the net, that is, for all k > 0. In this section we investigate

under which circumstances the constraint equation becomes independent of the occur-

rence index k. First we formalize the concept of common ancestor of two transitions.

A common ancestor of two transitions a and b from which the left-hand side

expression of the constraint equation (Eq. 3.3.1) can be computed is called a

fork transition.

Definition 3.3.8.- Given the unfolding ΩU of an AOC di-graph, a transition x is

called a fork transition of transitions ti(k) and tj(k+ε) if in the partial order< induced by the

unfolding, x < ti(k) and x < tj(k+ε), and every line of< containing either ti(k) or tj(k+ε) contains

also x.

According to Section 3.3.1, a line is a region of the li relation generated by the pre-

cedence relation<. Thus a line of< corresponds to a single path in the AOC di-graph. Con-

Figure 3.3.5 Fork transition x of transitions a and b.

τtj k ε+()
τti k()

–

a ∆
b

x1

x2

p
q

rs

t
u

86

sider for example the di-graph shown in Figure 3.3.5. Transition s is not a fork transition

of a and b, because there are lines of< containing a but not s (e.g., line {a, u, q, x1, x2}).

Transition x1 is a fork transition of a and b. Notice that a fork transition may not be unique.

For example, x2 is also a fork transition of a and b.

Lemma 3.3.2.- Every pair of transitions of an unfolding ΩU have at least one fork

transition.

Proof.- From the construction of ΩU by Procedure 3.3.1, it is easy to see that the

root transition 0 precedes every transition. Also every path starts at transition 0, therefore

every line of< contains transition 0.

As mentioned in the previous section, we would like to compute

with respect to a common ancestor of ti(k) and tj(k+ε), rather than computing each possible

 and . As shown in Figure 3.3.5, not every ancestor is suitable. For instance,

had transition s in Figure 3.3.5 been chosen as an ancestor, then the effect of transition u

on the firing of a would have been ignored, as it would have been the effect of r on the fir-

ing of b.

Thus a fork transition is a synchronization point, or time origin, from which the

time separation can be computed. From this point of view, it should be clear

that the root transition 0 is a fork transition for every pair of transitions. However we are

interested in the fork transition closest to the transitions ti(k) and tj(k+ε). Furthermore, we

are interested in a fork transition that “moves” with ti(k) and tj(k+ε).

Definition 3.3.9.- A pair of transitions ti and tj of a complete graph Ψc = 〈Σc, CNc〉

has a cycle-invariant fork transition if in the unfolding ΩU of Σc there exist two integers, λ

and M, and a transition x(k−λ), such that x(k−λ) is a fork transition of ti(k) and tj(k+ε) for all

k ≥ M.

τtj k ε+()
τti k()

–

τti k()
τtj k ε+()

τtj k ε+()
τti k()

–

87

Definition 3.3.10.- Given a complete graph Ψc = 〈Σc, CNc〉 and a constraint rule

cij = 〈ti, tj, ∆ij, ε〉 such that cij ∈ CNc, the ordered pair (ti, tj) is said to be a pair of transitions

constrained by cij, written as (ti → tj)cij.

Definition 3.3.11.- A complete graph Ψc = 〈Σc, CNc〉 is said to be cycle-invariant if

every pair of transitions (ti, tj) of Σc such that (ti → tj)cij, where cij ∈ CNc, has a cycle-

invariant fork transition.

There must be a cycle-invariant fork transition for every constrained pair of transi-

tions, which must be checked according to the interface and semantic specifications.

Definition 3.3.12.- A pair of transitions ti(k) and tj(k+ε) of an unfolding ΩU are said

to be repeatable if there exist an integer M for which the probability density function of the

time separation is invariant for k ≥ M.

Lemma 3.3.3.- If a pair of constrained transitions (ti → tj)cij is repeatable, then

there is a finite procedure that can check if the constraint rule cij is satisfied.

Proof.- First check the constraint equation for cij for all 0< k < M. According to

Definition 3.3.12, the left-hand side of the constraint equation for cij is invariant for k ≥ M,

so that it is sufficient to check the constraint equation for k = M to determine if the con-

straint is satisfied for k ≥ M.

It is clear from the previous presentation that it is desirable to find if two con-

strained transitions are repeatable. In the following section we shall show that a cycle-

invariant fork transition is a necessary condition for repeatability.

τtj k ε+()
τti k()

–

88

3.3.4 Computing constraint equations

In this section we give a procedure to express constraint equations in terms of the random

variables associated with the edges of the AOC di-graph.

The characterization of a fork transition x of two transitions a and b given by

Definition 3.3.8 makes it suitable to be considered as a time origin, because all the paths of

the unfolding of the STG from the root transition 0 to either a or b must pass through x. In

this section we try to compute the time separations τa − τx, from x to a, and τb − τx from x

to b, in terms of the random variables associated with the edges (refer to Figure 3.3.6).

Because x is a common reference point for both a and b, then the left-hand side of

Eq. 3.3.1 can be written as:

τb − τa = (τb − τx) − (τa − τx) (Eq. 3.3.2)

The computation of τb − τx, or τa − τx, in term of the random variables associated

with the edges must obey the firing semantics of AND and OR causality (refer to

Section 2.4.1) that we reproduce below.

Figure 3.3.6 Unfolding for transitions a and b from their fork transition.

a ∆
b

x

p
q

rs

t
u

τ2τ1

τ4
τ3

τ6

τ7

τ8 τ9

τ5

τ10

+

89

If transition d is AND-caused by transitions a, b, and c (refer to Figure 3.3.7a), then

the occurrence time of d is:

τd = max(τa + τ1, τb + τ2, τc + τ3) (Eq. 3.3.3)

where τa, τb, and τc are the occurrence times of transitions a, b, and c respectively.

Similarly, if transition d is OR-caused by transitions a, b, and c (refer to

Figure 3.3.7b), then the occurrence time of d is:

τd = min(τa + τ1, τb + τ2, τc + τ3) (Eq. 3.3.4)

Finally if there is only one transition that causes d, say a, then:

τd = τa + τ1 (Eq. 3.3.5)

and the causality type is not important.

A procedure to compute the time separation, say τa − τx, is as follows:

Procedure 3.3.2.-

1. Expand τa according to the causality type of transition a, by using Eq. 3.3.3,

Eq. 3.3.4, or Eq. 3.3.5.

Figure 3.3.7 (a) AND causality; (b) OR causality.

d

a b c

τ2τ1 τ3τ3 τ1

τ2 +

d

a b c

(a) (b)

90

2. Recursively expand the occurrence times of transitions that appear in the

expression for t, until the fork transition is reached.

At the end of the procedure, the expression for τa contains min/max/linear terms

on the random variables τi and τx. Moreover, each linear term that contains τx is of the

form τx + … + τi.

Once Procedure 3.3.2 is applied to find an expression for τb in terms of τi and τx,

the expression for the time separation τb − τa can be computed from Eq. 3.3.2, where

τb τx and τa − τx are given by the expressions produced for τb and τa by Procedure 3.3.2

in which the terms τx, corresponding to the reference point, have been removed.

For example, consider the di-graph shown in Figure 3.3.6. The expression for τa is

min(τu + τ6, τs + τ7), which is expanded into min(τq + τ3 + τ6, τp + τ4 + τ7), and finally

into min(τx + τ1 + τ3 + τ6, τx + τ2 + τ4 + τ7). Similarly the final expression for τb is

τ2 + τ10 + max(τx + τ4 + τ8, τx + τ5 + τ9). Then,

τb − τa = τ2 + τ10 + max(τ4 + τ8, τ5 + τ9) − min(τ1 + τ3 + τ6, τ2 + τ4 + τ7) (Eq. 3.3.6)

In Chapter 4 we shall give a procedure to obtain the probability density function of

Eq. 3.3.2. Now we can prove the following lemma.

Lemma 3.3.4.- If a pair of transitions ti and tj of a complete graph Ψc = 〈Σc, CNc〉

has a cycle invariant fork transition then ti and tj are repeatable.

Proof.- Consider transitions ti and tj. By Definition 3.3.9, transitions ti(k) and tj(k+ε)

of the unfolding ΩU have a transition x(k−λ) for each k ≥ M (refer to Figure 3.3.8). We can

find equations for the time separations τti(k) − τx(k−λ), from x(k−λ) to ti(k), and τtj(k+ε) − τx(k−λ)

from x(k−λ) to tj(k+ε) using Procedure 3.3.2. These two time separations are invariant for

k ≥ M, because by construction of the unfolding ΩU from the AOC di-graph Ω (refer to

91

Procedure 3.3.1) the same sub-graph must exist from x(k−λ) to ti(k) and tj(k+ε). Thus a cycle-

invariant fork transition is a synchronization point for both transitions ti(k) and tj(k+ε). Then

(Eq. 3.3.7)

applies for all k ≥ M. Eq. 3.3.7 implies that the probability density function of the time

separation τtj(k+ε) − τti(k) is invariant for k ≥ M. Therefore ti and tj are repeatable.

The existence of a cycle-invariant fork transition is only a sufficient condition.

That means that a pair of transitions without a cycle-invariant fork transition may be

repeatable. This subject has been studied in the literature (cf. [6], and [67]). One example

is the STG shown in Figure 3.3.9. It can be shown that for any pair of transitions there is no

cycle-invariant fork transition. Such type of nets may exhibit repeatable behavior, however

they may also exhibit non-repeatable periodic behavior with arbitrarily long transients by

just changing the delays, and thus they are difficult to analyze. In the interface specifica-

tion of components that we have studied, we have never found this type of net. We conjec-

ture that the reason is that their behavior is time-dependent, that is, by changing the timing

parameters, it is possible for the same system to exhibit radically different behaviors,

something that is not desirable in a protocol.

Figure 3.3.8 Fork transition for k ≥ M.

ti(k) tj(k+ε)

x(k−λ)

τtj k ε+()
τti k()

– τtj k ε+()
τx k λ–()

–() τti k()
τx k λ–()

–()–=

92

So far we have assumed that a (cycle-invariant) fork transition has been found. In

the following section we present an algorithm that can find a fork transition, if one exists,

of two transitions in a finite unfolding of an AOC STG.

3.3.5 Procedure to find fork transitions

The procedure that is discussed in this section finds a fork transition of two transitions ti(k)

and tj(k+ε) of a finite unfolding of an AOC STG, if one exists, otherwise flags that no fork

transition could be found. The finite unfolding is a finite graph ΩUf produced by

Procedure 3.3.1 by expanding the AOC STG until transitions ti(k) and tj(k+ε) are added to ΩUf,

for a k = M.

The fork transition procedure requires that the unfolding ΩUf be sorted in topolog-

ical order. A topological ordering or sort of an acyclic di-graph assigns a level to each

node of the graph.

A di-graph can be represented as a pair G = 〈V, E〉, where V is a set of nodes and

E ⊆ V × V is a set of edges. A node a of a directed graph is called a root node if there does

not exist a node b such that (b, a) is an edge of the graph. The in-degree of node b is the

Figure 3.3.9 An STG whose transitions do not have a cycle-invariant fork
transition.

a+

b+
a−

b−

a+(1)
b+(1)

a−(1)

b−(1)

a+(2)
b+(2)

a−(2)

b−(2)

τ1

τ2

τ3

τ4

τ1

τ2
τ3

τ4
τ5τ5

τ3

τ4 τ5

τ1

τ2

τ=0 0

τ6

τ7

τ8

τ6

τ6

τ7

τ8

τ7

93

number of edges (ai, b) of the graph. The topological level of a node a ∈ V in G is com-

puted as follows: the root node is assigned to level 0; then recursively if A is the set

{ aj | level of aj is i}, the nodes in set {bk | (aj, bk) ∈ E and aj ∈ A} are assigned to level i+1.

Notice that a topological level is defined only for acyclic di-graphs.

The following procedure computes the topological level of the nodes of a graph

G [73]. The N = |V| nodes of G are named 1, 2,…, N. M = |E| is the number of edges.

Procedure 3.3.3.- Topological level of the nodes of an acyclic di-graph G = 〈V, E〉:

for j ← 1 to N, c[j] ← 0
for each edge (i, j) ∈ E, c[j] ← c[j] + 1
Level[0] ← { j ∈ V | c[j] = 0}
k ← 0
repeat

L ← Level[k] , L’ ← ∅
for each node i ∈ L do

for each edge (i, j) do
c(j) ← c(j) − 1
if c(j) = 0 then L’ ← L’ ∪ { j}

k ← k + 1
Level[k] ← L’

until L = ∅
return Level

The procedure first computes the in-degree c(j) of node j. Level[0] is the set of root

nodes. The level variable k is set to zero. Iteratively: set L is set to Level[0] and L’ is set to

empty; the in-degrees of the nodes to which the nodes in L are connected are decreased by

one; if the in-degree of a node becomes zero, the node is added to L’; the level variable is

increased by one; and Level[k] is set to L. The iterations continue until L is empty.

The Procedure 3.3.3 finds a topological sort of G in running time O(N + M) [73].

Consider for example the AOC STG shown in Figure 3.3.10. For the procedures

given in this section, the causality type and the time label of an edge are not important, and

thus they are ignored. Notice that node e is not connected to other nodes.

94

A finite unfolding for k = 2, called 2-unfolding, of the AOC STG of Figure 3.3.10 is

shown in Figure 3.3.11. The corresponding topological sort is given in Table 3.3.1.

A topological sort has the following property:

Lemma 3.3.5.- Let < be the partial order induced by a topological sorted di-graph

G = 〈V, E〉. If, for a, b ∈ V, a < b and a is assigned to level la and b is assigned to level lb,

then la < lb.

Proof.- If a < b then there is a set of nodes {ei ∈ V | (a, e1), (e1, e2), …,

(en, b) ∈ E}. From the computation of topological level, if (ei, ej) ∈ E and ei is assigned to

level i then ej is assigned to level i + 1. A topological sort is only defined for acyclic di-

graphs, then la < lb.

Figure 3.3.10 AOC signal transition graph.

j

h

b
a

dg c

e f

i

+

95

Figure 3.3.11 2-unfolding of the STG of Figure 3.3.10.

j(1)

h(1)

b(1)
a(1)

d(1)g(1) c(1)

e(1)
f(1)

i(1)

j(2)

h(2)

b(2)
a(2)

d(2)g(2) c(2)

e(2)
f(2)

i(2)

0

96

Given a k-unfolding of an AOC STG, represented by the di-graph G = 〈V, E〉, where

V is the set of transitions and E is the set of edges of the unfolding, the following proce-

dure finds a fork transition of a selected pair of transitions a and b of G. The procedure is

an application of a best-first search, where the topological levels of G are used as the cost

function [129].

Procedure 3.3.4.- Algorithm that finds a fork transition of a pair of transitions

a, b ∈ E of an acyclic di-graph G = 〈V, E〉, where G has been topologically sorted.

OPEN← { a, b}
while |OPEN| > 1 do

sort OPEN in descending order on the topological level
j ← first(OPEN)
OPEN← OPEN\{ j} ∪ { i | (i, j) ∈ E}

end while
return OPEN

level nodes

0 0

1 a(1), b(1)

2 c(1), d(1), g(1)

3 e(1), f(1)

4 h(1)

5 i(1)

6 j(1), b(2)

7 a(2)

8 c(2), d(2), g(2)

9 e(2), f(2)

10 h(2)

11 i(2)

12 j(2)

Table 3.3.1. Topological sort of the 2-unfolding of Figure 3.3.11.

97

The procedure first initializes set OPEN to contain the transitions a and b. Then

until the size of OPEN is less than two, it selects as j the highest element of OPEN, removes

j from OPEN, and adds all the direct ancestor transitions of j to OPEN.

At termination of Procedure 3.3.4, OPEN has either one or zero elements. We shall

show in Theorem 3.3.7 that OPEN actually has always one element, and that such element

is a fork transition. In the case of k-unfoldings of AOC STG’s, the root transition 0 will be

returned instead if there is no cycle-invariant fork transition.

We need the following lemma to prove the correctness of Procedure 3.3.4.

Lemma 3.3.6.- If x and y are two distinct fork transitions of transitions a and b,

with topological level lx and ly respectively, then lx ≠ ly.

Proof.- We have to show that distinct fork transitions x and y cannot have the same

level. Suppose they have the same level; by the definition of fork transition (refer to

Definition 3.3.8) there exists a line containing say x and a but not y otherwise that would

mean by Lemma 3.3.5 that lx ≠ ly; this is a violation of Definition 3.3.8 which requires that

every line containing a also contains y. Then if x and y are distinct either x < y or y < x.

The following theorem proves the correctness of Procedure 3.3.4.

Theorem 3.3.7.- When applied to a k-unfolding of an AOC STG, Procedure 3.3.4

terminates with a fork transition of transitions a and b or the root transition 0.

Proof.- Suppose that Procedure 3.3.4 does not terminate; that implies that transi-

tions are continuously being added to OPEN; because the k-unfolding has a finite set of

transitions, the only way of continuously adding transitions to OPEN is to add transitions

previously removed; however when a transition is removed, it has the highest topological

level in OPEN; that implies that none of the transitions left in OPEN is preceded by the

removed transition; then it is not possible to add a removed transition again to OPEN,

98

which is a contradiction, therefore Procedure 3.3.4 terminates. When Procedure 3.3.4 ter-

minates the size of OPEN is either 0 or 1. Suppose it is 0, then the size of OPEN changed

from 2 or greater to 0 in one iteration of the while loop; however OPEN is decreased only

by removing one element, first(OPEN), which is a contradiction. Therefore when

Procedure 3.3.4 terminates OPEN has size 1. Now suppose that the unique element y of

OPEN when Procedure 3.3.4 terminates is not a fork transition; by Lemma 3.3.2 one knows

that there is at least one fork transition, let us call x the closest fork transition to a and b.

Firstly suppose that x > y, then by Lemma 3.3.6 the topological level of x is greater than

the topological level of y; but OPEN is sorted in descending order so that x would be in

front of y; furthermore x would be the only transition at topological level lx otherwise there

would be a line containing either a or b but not x thus violating Definition 3.3.8; then

Procedure 3.3.4 would have returned x which is a contradiction, then x < y. Secondly con-

sider the case that x < y (note that by both Lemma 3.3.6 and the definition of fork transi-

tion, if x and y are distinct, they cannot have the same topological order); note that then

there must exist a path from x to either a or b that does not include y (refer to

Figure 3.3.12); without loss of generality, let us say that it is a path from x to a given by

x ... v w... a; let us choose v and w such that their topological levels lv and lw respectively

are lv < ly ≤ lw, where ly is the topological level of y; such an assignment always exist,

because there is also a path x ... y ... a, and together with path x ... v w... a imply the fol-

lowing relations between the topological levels of the transitions on each path: lx < ly < la

and lx < lv < lw < la; because ly ≤ lw, w must have been in OPEN before the termination of

Procedure 3.3.4. But then when the direct ancestors of w were added to OPEN, v must have

been added to OPEN, and because lv < ly, v cannot be removed from OPEN before y, which is

a contradiction. Therefore y must be a fork transition. Finally Lemma 3.3.2 states that the

root transition 0 is a fork transition for every pair of transitions, then if the only fork tran-

sition of transitions a and b is 0, Procedure 3.3.4 returns {0}.

99

Before we can determine the time complexity of Procedure 3.3.4, we have to intro-

duce the counting sort procedure adapted from [33]. The inputs of counting sort is a posi-

tive integer k, and a matrix A that contains |A| (possibly repeated) integers in the range

[0, M] to be sorted. The result of counting sort is a matrix B of the same size as A which

contains the elements of A sorted in descending order.

Procedure 3.3.5.- Counting sort

for i ← 0 to M,
c[i] ← 0

for j ← 1 to |A|,
c[A[j]] ← c[A[j]] + 1

for i ← M−1 to 0,
c[i] ← c[i+1] + c[i]

for j ← 1 to |A|,
B[c[A[j]]] ← A[j]
c[A[j]] ← c[A[j]] − 1

Procedure 3.3.5 uses a counting array of size M+1 to store in c[j] the number of

integers in A which are greater than or equal to integer j. The first for loop initializes c.

The second for loop counts the number of times integer j appears in A. The third for loop

places in c[j] the number of integers in A which are greater than or equal to integer j. The

last for loop places the sorted integers of A in B. Notice that multiple occurrences of an

integer j are allowed in A. The running time of counting sort is O(|A| + M) [33]. We are

Figure 3.3.12 Construction for Theorem 3.3.7.

a
b

x

w

v y

100

going to use counting sort to sort OPEN in topological descending order; then M is the max-

imum topological level of a k-unfolding, and both M and |A| are O(|V|), where V is the set

of transitions of the k-unfolding. Therefore counting sort has a running time O(|V|) to sort

OPEN in Procedure 3.3.5.

The following lemma determines the running time of Procedure 3.3.4.

Lemma 3.3.8.- Procedure 3.3.4 has a running time O(|V|2).

Proof.- The operations inside the while loop of Procedure 3.3.4 have the following

running times: We use counting sort to implement the sort operation and thus the sort

operation has a running time of O(|V|). Selecting the first element of OPEN can be done in

O(1). Removing j from OPEN and adding the direct ancestors of j to OPEN can be done in

O(1) + O(|V|), because the number of direct ancestors of a transition is O(|V|). Thus the

running time of one iteration of the while loop is O(|V|). The while operation can be exe-

cuted O(|V|) times, because a transition can be added only once to OPEN, and when it is

removed from OPEN, it cannot be added to OPEN again.

Now we study under which conditions the fork transition returned by

Procedure 3.3.4 is a cycle-invariant fork transition.

Definition 3.3.13.- An AOC STG Σ = 〈N, Y, λ〉 is called simple if every transition of

the net is associated either with a distinct signal transition a ∈ A(Y) or the silent transition

ε, where A(Y) is the alphabet of Y (refer to Section 2.3.3).

Theorem 3.3.9.- If Procedure 3.3.4 terminates with a fork transition different from

the root transition 0 when applied to find the fork transition of transitions a(k) and b(k+ε) of

a (k+ε)-unfolding of a simple AOC STG, then the fork transition is cycle-invariant.

Proof.- Let us call x(k-λ) the fork transition of a(k) and b(k+ε) that is different from

the root transition 0. Let paths(x(k-λ), a(k)) be the set of all transition paths

101

x(k-λ) … y(k-λ1) z(k-λ2) … a(k) from x(k-λ) to a(k), and let pathi(x(k-λ), a(k)) ∈ paths(x(k-λ), a(k)).

Similarly let paths(x(k-λ), b(k+ε)) be the set of all paths from x(k-λ) to b(k+ε). For each path

pathi(x(k-λ), a(k)), there is a (possibly not simple [58]) non-indexed path

pathi(x, a) = x … y z… a in the AOC STG. Now consider the (k+ε+1)-unfolding, which is

constructed from the (k+ε)-unfolding by adding one cycle of the simple AOC STG (i.e., one

set of transitions and edges; notice that the signal transitions are not repeated). Consider

first a(k+1); construct a path pathi(x(k-λ+1), a(k+1)) by incrementing the indices k of

pathi(x(k-λ), a(k)) by one. Path pathi(x(k-λ+1), a(k+1)) must appear in the (k+ε+1)-unfolding

because its corresponding non-indexed path x … y z… a is a path of the AOC STG. Simi-

larly construct paths(x(k-λ+1), b(k+ε+1)) from paths(x(k-λ), b(k+ε)). Moreover x(k-λ+1) must be a

fork transition for a(k+1) and b(k+ε+1). Suppose x(k-λ+1) is not a fork transition of a(k+1) and

b(k+ε+1), then there is a line containing a(k+1) or b(k+ε+1) but not x(k-λ+1); but that would

imply that there is a line containing a(k) or b(k+ε) but not x(k-λ), which is a contradiction. If

x(k-λ+1) is a fork transition then it is a cycle-invariant fork transition.

Theorem 3.3.9 suggests a simple procedure to find a fork transition. For a con-

straint rule cij = 〈ti, tj, ∆ij, ε〉 of a complete graph Ψc = 〈Σc, CNc〉, obtain the

(ε+1)-unfolding, and apply Procedure 3.3.4 to find a fork transition of ti(k) and tj(k+ε). If the

root transition 0 is returned, then add one cycle to the unfolding, otherwise the returned

transition is the sought cycle-invariant fork transition. We have not found a tight upper-

bound on the number of cycles required to guarantee that a cycle-invariant fork transition

will be found. The number of transitions in the AOC STG is an upper-bound but we believe

it is not tight. A more likely candidate, we conjecture, is the size of the cuts of the unfold-

ing. A cut is a snapshot of the unfolding, and thus gives an indication of the degree of con-

currency. For instance all the cuts of a sequential process (a total ordering) have size 1, and

the cycle-invariant fork transition of two transitions a and b, is a if a < b, b otherwise,

which can be found in the (ε+1)-unfolding.

102

3.4 Summary

In this chapter we introduced the interface design problem, that arises when two compo-

nents, that are to be interconnected to construct a system, require interface logic to be able

communicate. The case in which protocol conversion is necessary is particularly interest-

ing. Protocols can be described by interface specifications (refer to Chapter 2) which

describe the internal operation and the desired environment of a component.

We have shown that one can view the interface design as the “merging” of two

interface specifications with additional delay edges that generate the input signal transi-

tions (the environment) of the interface specifications. This merged graph is called a com-

plete graph. A complete graph consists of a live net, and a set of constraint rules. We

developed the concept of time-consistency that checks if the set of constraints rules is sat-

isfied by all possible executions of a complete graph.

Typically there is an infinite number of possible executions of a net (we are dealing

with dense, or continuous, time). Thus it is important to find procedures that can deter-

mine if a complete graph is time-consistent. The concept of a cycle-invariant fork transi-

tion established that it is possible to check all the net executions by analyzing a finite

unfolding of the net. Not all nets have cycle-invariant fork transitions; however we have

found that all the interface specifications that we have studied possess that property. More-

over, nets that do not have cycle-invariant fork transitions may exhibit fundamentally dif-

ferent behavior if the time (delay) parameters of the net are slightly modified.

In the next chapter we shall present our probabilistic interface timing verification

procedure which is heavily founded on the concepts developed in this and the previous

chapters.

Chapter 4

Probabilistic interface timing verification 4

4.1 Introduction

Once the implementation of a digital system has been completed, one would like to check

that the system operates correctly. One approach is to check one instance of the system,

against a suite of tests which are intended to detect any malfunctioning. This approach suf-

fers two major drawbacks. Firstly the chosen instance of the system may happen not to be

representative of the production run. Secondly the suite of tests, unless exhaustive, may

fail to detect a problem. If a problem eluded the checking procedure, eventually it would

show up later on at a time when it would be very expensive to fix. Thus there is a market

force that is driving system checking towards formal techniques.

Formal verification attempts to prove mathematically that the implementations of a

system are going to function correctly under all circumstances. In this sense, it is equiva-

lent to exhaustive system checking. It is no surprise that usually formal verification is

computationally very expensive. And until recently [19, 31, 83], its application was lim-

ited to toy systems. However due to the potential benefits, and the development of efficient

formal verification techniques, industry has been more receptive and is adopting formal

verification techniques, at least in parallel with standard checking, in their design method-

ology.

104

The aim of this dissertation is to develop formal timing verification techniques to

certify that a system composed of sub-components and interface logic satisfies timing con-

straints given in the interface specifications of the components. In the previous chapter we

have presented a formal representation of the interface design, called a complete graph,

that is amenable to formal timing verification. In this chapter we shall present a procedure

that relies on probability theory which can be used to certify that an ensemble of instantia-

tions represented by the complete graph satisfies all the timing constraints.

An important remark is that our approach uses a probabilistic, rather than a statisti-

cal, analysis, as differentiated in [100]. Statistical techniques are essentially Monte Carlo

methods that are based on statistical sampling, and thus are close in spirit to simulation. A

probabilistic technique propagates the probability measure directly through the system.

Clearly a probabilistic approach is preferable, although sometimes it is not feasible due to

the complexity of the problem. The main contribution of this chapter is the development of

a probabilistic technique to compute time separation between transitions that propagate

the probability density functions of the delays exactly.

4.2 Verification problem formulation

A complete graph is a formal description of a system composed of two components and

interface logic (refer to Section 3.2.2). There are two parts of that description: the specifi-

cation of the operation of the components that make up the system, and the description of

the timing constraints that each component imposes on its environment for proper opera-

tion.

In the previous chapter we characterized time-consistency of a complete graph as a

constraint satisfaction problem. A complete graph is time-consistent if and only if the set

of all the timing constraints are satisfied by every possible execution of the net describing

the operation of the system. We pointed out the difficulty involved in checking time-con-

105

sistency, namely the infinite number of possible executions of the net. To avoid that prob-

lem we identified a sub-class of nets with a remarkable property whose behavior is

repeatable (refer to Definition 3.3.12). Moreover, the existence of a cycle-invariant fork

transition for each constraint, being a structural property, implies that it can be easily veri-

fied.

In this section we show that for repeatable nets there is a simple procedure to solve

the interface timing verification problem that we define below.

Definition 4.2.1.- Given a complete graph Ψc = 〈Σc, CNc〉 with associated timed

STG Σc = 〈Nc, Yc, λc〉 and set of constraint rules CNc, the interface timing verification prob-

lem is the problem of determining if every constraint rule cij ∈ CNc is satisfied by every

execution of the STG.

In other words, the goal of the interface timing verification problem is to find if a

complete graph is time-consistent. From our discussion of Chapter 3, it is clear that the

interface timing verification problem for the general case may involve checking an infinite

number of executions. Fortunately, as mentioned above, for repeatable nets it is possible

check if a constraint is satisfied in a finite number of steps.

Recall that a constraint rule cij = 〈ti, tj, ∆ij, ε〉 defines a time window ∆ij with respect

to the k-th occurrence of the constraining transition ti during which the (k+ε)-th occurrence

of the constrained transition tj is allowed. The constraint rule is satisfied if for all occur-

rence indices k > 0, the following constraint equation for cij is true:

τtj(k+ε) − τti(k) ⊆ ∆ij (Eq. 4.2.1)

If a net is repeatable, then the time separation τtj(k+ε) − τti(k) is invariant for k ≥ M.

Thus it is possible to check Eq. 4.2.1 for k ≥ M by checking Eq. 4.2.1 for k = M. In

Chapter 3, we identified a structural condition on the net, the presence of a cycle-invariant

fork transition (refer to Definition 3.3.9), that guarantees repeatability. Furthermore, as

106

discussed in Section 3.3.4, one can express the left-hand side of Eq. 4.2.1 with respect to a

cycle-invariant fork transition x as:

τtj(k+ε)◊x − τti(k)◊x ⊆ ∆ij (Eq. 4.2.2)

where each of τtj(k+ε)◊x and τtj(k+ε)◊x are expressions containing linear/min/max terms on a

set of random variables that defines the timing behavior of the net.

The set of random variables is characterized by a joint probability density function

(or pdf). Our goal is to propagate the probability information of the random variables to

the constraint equation. Let us denote the constraint equation by zij = τtj(M+ε) − τti(M). It is

clear that zij is a random variable. If the pdf of zij is known, then the constraint rule is satis-

fied if and only if all the values of zij lie within ∆ij.

Consider for example Figure 4.2.1. There is a constraint rule from transition a to

transition b. Let us define z = τb − τa. If the pdf of z, fz(z), is given by the shaded area, and

the interval ∆ of the constraint “covers” the pdf, then the constraint is satisfied because all

the values that the time separation z can take are within the allowed time window ∆. Let us

formalize these ideas.

Definition 4.2.2.- Given a constraint rule cij = 〈ti, tj, ∆ij, ε〉 of a complete graph

Ψc = 〈Σc, CNc〉, the k-th time separation from ti to tj is the random variable zij(k) = τtj(k+ε) −

τti(k), for a positive integer k.

Figure 4.2.1 Checking if z = τb − τa satisfies the constraint ∆.

a

b z = τb − τa

∆

∆
x

z

fz(z)

107

Definition 4.2.3.- Given a constraint rule cij = 〈ti, tj, ∆ij, ε〉 of a complete graph

Ψc = 〈Σc, CNc〉, the cover of the k-th time separation over ∆ij, denoted by Iij(k), is given by:

(Eq. 4.2.3)

where is the probability density function of the k-th time separation.

The cover of the time separation is the area of the pdf of the time separation that is

within the interval ∆ij.

To understand the significance of a cover, let us briefly introduce pdf’s. The inter-

pretation of a probability density function is as follows: Let x be a random variable with

pdf given by fx(x). For a sufficiently small ∆x,

fx(x0) ∆x ≈ Prob{x0 < x < x0 + ∆x} (Eq. 4.2.4)

The equality is approached as ∆x → 0. Thus the probability that x takes a value in a

small interval is proportional to fx(x). Clearly if the Probability is zero, then fx(x) is also

zero. Thus the cover of the time separation is the probability that the time separation lies

within the window ∆ij. Thus if Iij(k) = 1 it is certain that the constraint is satisfied.

Without the existence of a cycle-invariant fork transition one would have to check

an infinite number of covers.

Definition 4.2.4.- Given a constraint rule cij = 〈ti, tj, ∆ij, ε〉 of a complete graph

Ψc = 〈Σc, CNc〉, and a cycle-invariant fork transition of ti and tj for k ≥ M, the invariant time

separation from ti to tj is the random variable zij = τtj(n+ε) − τti(n), for any n ≥ M.

Definition 4.2.5.- Given a constraint rule cij = 〈ti, tj, ∆ij, ε〉 of a complete graph

Ψc = 〈Σc, CNc〉 of transitions ti and tj, the cover of the invariant time separation over ∆ij,

I ij k() fzij k() zij k()() zij k()d
∆i j

∫≡

fzij k() zij k()()

108

denoted by Iij, is the integral of the probability density function of the invariant time sepa-

ration, denoted by , over the constraint interval ∆ij:

(Eq. 4.2.5)

Theorem 4.2.1.- Given a constraint rule cij = 〈ti, tj, ∆ij, ε〉 of a complete graph

Ψc = 〈Σc, CNc〉, and an invariant fork transition of ti and tj for k ≥ M, the constraint equation

is satisfied for k ≥ M if and only if the cover of the invariant time separation Iij is 1.

Proof.- If Iij = 1, then all the values of zij are within ∆ij. It is easy to show that the

converse is also true.

The constraint satisfaction procedure that solves the interface timing verification

problem can be stated as follows:

Procedure 4.2.1.- Given a cycle-invariant complete graph, for every constraint

rule cij ∈ CNc do:

1. Compute the cover of the k-th time separation Iij(k) for k = 1, 2, …, M−1.

2. Compute the cover of the invariant time separation Iij .

3. The complete graph is time-consistent if and only if,

(Eq. 4.2.6)

for k = 1, 2, …, M−1, and

(Eq. 4.2.7)

Theorem 4.2.2.- Procedure 4.2.1 solves the interface timing verification problem.

fzij
zij()

I ij fzij
zij() zijd

∆ i j

∫≡

I ij k() 1=

I ij 1=

109

Proof.- In a cycle-invariant complete graph there is a cycle-invariant fork transition

for every pair of transitions involved in a constraint rule (refer to Definition 3.3.11). Then

for each constraint rule there is an invariant time separation. According to Theorem 4.2.1,

checking the cover of the invariant time separation Iij guarantees that the constraint rule is

satisfied for k ≥ M. Using a similar argument, checking the cover of the k-th time separa-

tion Iij(k) for k = 1, 2, …, M−1, guarantees that the constraint rule is satisfied for k = 1, 2,

…, M−1.

Thus Procedure 4.2.2 checks a finite number of covers to find if a cycle-invariant

complete graph is time-consistent.

The rest of the chapter presents the techniques that we have developed to deter-

mine the pdf’s of the invariant time separation. We provide several examples to illustrate

our ideas. The chapter concludes with a discussion of a reliability analysis for the case that

some of the covers are less than 1.

4.3 Probability distribution of functions of random

variables

The time of occurrence of each transition in a complete graph is a random variable, as it is

the time separation between two transitions. In this section we state some results from

probability theory [105] that will be needed to compute the time separation between tran-

sitions.

110

4.3.1 One function of two random variables

Given two random variables x and y and a scalar function g(a, b) of two real variables a

and b, the random variable z = g(x, y) is formed. The probability density function of z can

be expressed in terms of the joint probability density function fxy(x, y) of the random vari-

ables x and y, and the function g, as discussed below.

Let the random variable z be a given value Z. Denote by Dz the region of the ab

plane such that g(a, b) ≤ Z, Then:

{ z ≤ Z} = { g(x, y) | g(x, y) ≤ Z} = {(x, y) | (x, y) ∈ Dz} (Eq. 4.3.1)

The probability that the point (X, Y) of the pair of random variables (x, y) is in a

region Dz of the ab plane is given by the following integral:

(Eq. 4.3.2)

The cumulative probability distribution function of z is given by:

Fz(Z) = Prob{ z ≤ Z} = Prob{(x, y) ∈ Dz} (Eq. 4.3.3)

Thus, to determine Fz(z) one has to find the region Dz and evaluate the integral in

Eq. 4.3.2.

The probability density function can be determined similarly. Let ∆Dz be the

region of the ab plane such that Z ≤ g(a, b) < Z + dZ. Then,

{ Z ≤ z < Z + dZ} = {(x, y) | (x, y) ∈ ∆Dz} (Eq. 4.3.4)

(Eq. 4.3.5)

Prob x y,() Dz∈{ } fxy x y,() x d ydDz
∫∫=

fz Z() dz Prob Z z≤ Z dz+<{ } fxy x y,() x d yd∆Dz
∫∫= =

111

4.3.2 Statistics of linear/max/min functions

In Section 3.3.4 we have shown that the left-hand side of the constraint equation

(Eq. 4.2.1) when computed with respect to the fork transition of transitions ti(k) and tj(k+ε)

is an expression on a subset of the random variables containing min, max and linear terms

only. Thus, the constraint equation is an expression of the form E1 − E2, where each of the

Ei is recursively defined as follows in BNF notation:

E ← nil |
τi |
E + τi |
max(E, τi) |
min(E, τi)

where nil means that E is empty. This occurs if either ti(k) or tj(k+ε) coincide with the fork

transition (only one of them could be the fork transition, assuming that ti(k) and tj(k+ε) are

distinct).

In this section we summarize the application of Eqs. 4.2.3 and 4.2.6 to the special

functions that can appear in a constraint equation derived from a fork transition.

Let x and y be two random variables with joint pdf fxy(x, y).

1. z = x + y

The region Dz of the ab plane such that a + b ≤ Z, and the region ∆Dz, given by

Z ≤ a + b < Z + dZ are shown in Figure 4.3.1.

After integrating over the corresponding region, Eqs. 4.2.3 and 4.2.6 can be written

as:

(Eq. 4.3.6)Fz z() fxy x y,() xd yd
∞–

z y–

∫
∞–

∞

∫=

112

(Eq. 4.3.7)

If x and y are independent random variables, i.e., fxy(x, y) = fx(x)⋅fy(y), then

Eq. 4.3.7 becomes the convolution of the individual pdf’s:

(Eq. 4.3.8)

2. z = y − x

The region Dz of the ab plane such that b − a ≤ Z, and the region ∆Dz, given by

Z ≤ b − a < Z + dZ are shown in Figure 4.3.2.

Figure 4.3.1 Probability regions for z = x + y.

Figure 4.3.2 Probability regions for z = x − y.

a

b

a + b = z + dz

a + b = z

dz

Dz
∆Dz

z

z

fz z() fxy z y– y,() yd
∞–

∞

∫=

fz z() fx z y–()fy y() yd
∞–

∞

∫=

a

b

b − a = z + dz
b − a = z

dz

Dz

∆Dz

z

113

After integrating over the corresponding region, Eqs. 4.2.3 and 4.2.6 can be written

as:

(Eq. 4.3.9)

(Eq. 4.3.10)

If x and y are independent random variables then Eq. 4.3.10 becomes the cross-cor-

relation of the individual pdf’s:

(Eq. 4.3.11)

3. z = max(x, y)

The region Dz of the ab plane such that max(a, b) ≤ Z, and the region ∆Dz, given by

Z ≤ max(a, b) < Z + dZ are shown in Figure 4.3.3.

After integrating over the Dz, Eq. 4.2.3 can be written as:

(Eq. 4.3.12)

Figure 4.3.3 Probability regions for z = max(x, y).

Fz z() fxy x y,() yd xd
∞–

z x+

∫
∞–

∞

∫=

fz z() fxy x x z+,() xd
∞–

∞

∫=

fz z() fx x()fy x z+() xd
∞–

∞

∫=

a

b

max(a, b) = z + dz

max(a, b) = z
dz

Dz

∆Dz

z

z

Fz z() Fxy z z,()=

114

and fz(z) is obtained after differentiating Eq. 4.3.12:

(Eq. 4.3.13)

where

(Eq. 4.3.14)

is the cumulative joint distribution function of x and y.

If x and y are independent random variables, Eqs. 4.3.13 becomes:

(Eq. 4.3.15)

4. z = min(x, y)

The region Dz of the ab plane such that min(a, b) ≤ Z, and the region ∆Dz, given by

Z ≤ min(a, b) < Z + dZ are shown in Figure 4.3.4.

After integrating over the Dz, Eq. 4.2.3 can be written as:

Figure 4.3.4 Probability regions for z = min(x, y).

fz z() zd
d

Fxy z z,()=

Fxy x y,() fxy α β,() α d βd
∞–

x

∫
∞–

y

∫=

fz z() fx z()Fy z() fy z()Fx z()+=

a

b

min(a, b) = z + dz

min(a, b) = z

dz

Dz

∆Dz

z

z

115

(Eq. 4.3.16)

and fz(z) is obtained after differentiating Eq. 4.3.16:

(Eq. 4.3.17)

If x and y are independent random variables, fz(z) is commonly expressed in terms

of the reliability function Rx(x) defined as:

Rx(X) = Prob{x ≥ X} = 1 − Fx(X) (Eq. 4.3.18)

Then Eq. 4.3.17 becomes:

(Eq. 4.3.19)

Notice that the expressions for the +, max, and min operators are commutative. It is

easy to show that they are also associative.

4.3.3 Point conditional probability

The results of the previous section can be used directly to compute the time separations

τtj(k+ε)◊x and τti(k)◊x with respect to a fork transition x. However to compute τtj(k+ε)◊x −

τti(k)◊x we have to address the issue of the so-called reconvergence fan-out [28]. The effect

of reconvergence fan-out is due to the presence of common random variables in expres-

sions τtj(k+ε)◊x and τti(k)◊x. In a correct analysis, the value used for a common random vari-

able that appears in both expressions should be the same. As we shall discuss below, even

if the delay random variables are independent, the topology of a net may introduce corre-

lation.

Fz z() Fx z() Fy z() Fxy z z,()–+=

fz z()
zd

d
Fx z() Fy z() Fxy z z,()–+()=

fz z() fx z()Ry z() fy z()Rx z()+=

116

Consider for example the two unfoldings shown in Figure 4.3.5. For the sake of

clarity, let us assume that the random variables τi associated to the edges of the unfoldings

are independent. To check constraint ∆, one has to compute the time separation from tran-

sition a to transition b with respect to the fork transition x, given by:

τb◊x − τa◊x ⊆ ∆ (Eq. 4.3.20)

where both expressions τa◊x and τb◊x are functions of the τi.

For the unfolding shown in Figure 4.3.5a, the time separation τb◊x − τa◊x is simply

z = { τ2 + τ4} − { τ1 + τ3}. Application of Eqs. 4.3.8 and 4.3.11 obtains the pdf of z from

the pdf’s of the random variables τ1 to τ4. An interesting property of this unfolding is that

τb◊x = { τ2 + τ4} and τa◊x = { τ1 + τ3} are two independent random variables.

For the unfolding shown in Figure 4.3.5b, the time separation z = τb◊x − τa◊x is

given by the following expression:

z = max(τ2 + τ4, τ8 + τe◊x) − max(τ1 + τ3, τ7 + τe◊x) (Eq. 4.3.21)

where τe◊x = max(τ1 + τ5, τ2 + τ6) is the occurrence time of transition e with respect to the

fork transition x.

Figure 4.3.5 Two partial unfoldings (a) a and b independent; (b) a and b
correlated.

x

a
b

x

c d

(a) (b)

e

a b

c d

τ1 τ2

τ3 τ4

τ1 τ2

τ8
τ4

τ5 τ6

τ7

τ3

∆
∆

117

Notice that τe◊x appears in both max terms. It is clear that to compute z for a partic-

ular set of values of the random variables τi, one has to make sure that the same value for

τe◊x is used in both max terms. This implies that the two max terms in Eq. 4.3.21 are not

independent of one another, even if the τi are independent. Thus common random vari-

ables τi in expressions τa◊x and τb◊x introduce correlation in random variable z.

To take into account the dependency introduced by common terms we use point

conditional probability [106]. Let x and y be two vectors of random variables τi and let

fxy(x, y) be a function of x and y. The point conditional probability of fxy(x, y) provided

that x = X, written fy|x(x, y), is given by the following equation:

(Eq. 4.3.22)

if fx(x) ≠ 0.

Consider again the time separation z = τb◊x − τa◊x. To simplify the notation in the

following paragraphs, let us denote a = τa◊x, and b = τb◊x. To compute z, one can use

Eq. 4.3.10, which necessitates the joint probability distribution fab(a, b).

To determine the joint pdf fab(a, b) we use the following procedure based on point

conditional probability (Eq. 4.3.22). Let us denote by xa and xb two vectors of random

variables formed from the set of random variables τi on which random variables a and b

respectively depend. The dependency of random variables a and b on vectors xa and xb can

be explicitly written as a = a(xa), and b = b(xb). Let us denote by x∩ the vector containing

all the variables common to both xa and xb.

fy x x y,()
fxy x y,()

fx x()
----------------------=

118

The probability density function fab|x∩(a, b, x∩) describes the joint pdf of a and b

for a given value of x∩. For a fixed x∩, fa|x∩(xa, x∩) and fb|x∩(xb, x∩) are independent of one

another. Thus one can write fab|x∩(a, b, x∩) as:

fab|x∩(a, b, x∩) = fa|x∩(a, x∩) fb|x∩(b, x∩) (Eq. 4.3.23)

In Section 4.5 we shall show that it is straightforward to compute fa|x∩(xa, x∩) and

fb|x∩(xb, x∩). Finally, the joint pdf of a and b is given by:

(Eq. 4.3.24)

where (using Eq. 4.3.22):

(Eq. 4.3.25)

Thus point conditional probability allows us to take into account the reconvergence

fan-out due to common delays in the occurrence times of transitions a and b with respect

to fork transition x. Once Eq. 4.3.24 has been obtained, the application of Eq. 4.3.10 yields

the desired pdf of the time separation from a to b.

4.4 Reliability analysis

In this section we take a look at the case when a complete graph is not time-consistent. As

we shall discuss, it is for this case that our procedure can provide invaluable insight.

In Section 4.2 we introduced the cover of the time separation, which computes for

a constraint cij = 〈ti, tj, ∆ij, ε〉 the area under the pdf of the time separation between the tran-

sitions over the interval ∆ij. Our interface timing verification procedure checks that the

cover of the time separation is 1, that means that every possible value that the time separa-

fab a b,() … fabx∩
b a x∩, ,() x∩d

∞–

∞

∫
∞–

∞

∫=

fabx∩
a b x∩, ,() fab x∩

a b x∩, ,()fx∩
x∩()=

119

tion can take lies within the constraint window ∆ij. In this section we extend the yes/no

answer produced by Procedure 4.2.1 so that a designer can have, in case that the complete

graph is not time-consistent, a measure of the deviation from time-consistency.

Definition 4.4.1.- The set of reliability factors of a constraint rule cij = 〈ti, tj, ∆ij, ε〉

of a cycle-invariant complete graph Ψc = 〈Σc, CNc〉 is the set of covers of the time separa-

tion {Iij(k) | k = 1, 2, …, M−1} ∪ { Iij}.

In essence, a cover of a time separation associated to a constraint represents the

probability that the constraint is satisfied by the net. The verification procedure of

Section 4.2 requires that the constraint be satisfied 100%. By keeping the values of the

covers, rather than just checking if they are 1 or not, it is possible to qualify a design. Con-

sider for example two possible pdf’s of a time separation for the same constraint shown in

Figure 4.4.1. Neither of the pdf’s satisfy the constraint. However, the probability that fz1(z)

would violate the constraint is significantly smaller than the probability that fz2(z) would

violate the constraint.

This is particularly important when the joint pdf that characterizes the set of delay

random variables describes an ensemble of components. The reliability factor would pro-

vide some indication about the reliability of a design. For instance, an estimation of the

Figure 4.4.1 Reliability factor.

a

fz(z)

z

b

fz1(z)

fz2(z)

∆

120

number of finished boards that would be returned. Moreover, the [τmin, τmax] are likely

approximations of the actual ranges such that, say 99.5% of the components show a delay

in that range.

The reliability factor of a constraint is actually a set of values. To determine a reli-

ability figure of a design, one may want to develop a strategy to combine the reliability

factors of all constraints of the complete graph into a single figure. A simple approach is to

use the minimum of the values of the reliability factor set to represent a constraint and then

choose the minimum of the constraints’ values to represent the design. However different

applications may require different strategies and we have preferred to leave this decision to

the designer.

4.5 Examples

In this section we look at some examples to illustrate our probabilistic timing interface

verification procedure. Our first example considers the case in which all the delays are

independent. A second example considers the case in which some delays are not indepen-

dent. Then we analyze a read interface design involving the SHARC DSP and an SRAM mem-

ory chip (the interface specifications of these two components, which contain correlation

data, were presented in Chapter 2). Finally we explore the relation between the traditional

interval representation of delays and our probabilistic representation by analyzing some

special cases.

4.5.1 Example with independent random variables

In this example we shall explore the effect of using different pdf’s. We have chosen uni-

form and Gaussian functions as representative pdf’s. For the sake of simplicity, the ran-

121

dom variables are assumed to be independent. In the following example we shall look into

the effect of correlation.

Consider the net unfolding shown in Figure 4.5.1. The time separation from d to e

with respect to the fork transition a is the random variable z = τe − τd, where

τe = max(τ1, τ2 + τ3) + τ4, and τd = τ2 + τ5. The delays are assumed to be independent, and

their projections (refer to Section 2.5.4) can be described by the following intervals: for τ1,

[0, 90]; for τ2, [0, 100]; and or τ3, τ4, and τ5, [10, 20].

First we tackle the task of finding the joint pdf that characterizes the delays of the

unfolding. Because the delays are independent, the joint pdf has the following form:

fτ1τ2τ3τ4τ5(τ1, τ2, τ3, τ4, τ5) = fτ1(τ1) fτ2(τ2) fτ3(τ3) fτ4(τ4) fτ5(τ5) (Eq. 4.5.1)

where fτi(τi) is the pdf of the independent random variable τi.

As mentioned in Section 2.5.4, the projection of a pdf describes an infinite number

of possible pdf’s. First let us assume that it is known that the pdf’s of the τi’s are uniform.

That defines unequivocally the pdf’s given their projections. For example, the pdf of τ1 is

shown in Figure 4.5.2.

The next step is to determine the pdf of the time separation z = τe◊a − τd◊a from d to

e with respect to a. The expressions for each of the terms involved in z are

Figure 4.5.1 Constraint satisfaction by a net unfolding.

a

b

c

e
d

τ1

∆

τ2

τ3

τ5
τ4

122

τe◊a = max(τ1, τ2 + τ3) + τ4 and τd◊a = τ2 + τ5. The random variable τ2 is common to both

terms, thus one must use point conditional probability as discussed in Section 4.3.3 to find

fτd◊a|τ2(τd◊a, τ2) and fτe◊a|τ2(τe◊a, τ2) to obtain the joint pdf fτd◊aτe◊a(τd◊a, τe◊a) required in

Eq. 4.3.10 to compute fz(z). Figure 4.5.3 shows the intermediate step to find the condi-

tional pdf of x given a fixed τ2 where x = max(τ1, τ2 + τ3).

The resulting pdf of z is shown in Figure 4.5.4. The projection of fz(z) is the inter-

val [0, 100] (not clearly shown in the plot due to resolution). Hence any constraint interval

∆ that includes [0, 100] is satisfied by the net unfolding.

Let us consider now the case in which the pdf’s of the τi are Gaussian distributions,

such that 99.7% of their values lie within the above intervals, i.e., within three times the

standard deviation σ to each side of the mean. For example, the mean and standard devia-

tion of the Gaussian distribution corresponding to τ1 are 45 and 15 respectively. The

Figure 4.5.2 Probability density function fτ1(τ1) of τ1.

Figure 4.5.3 Probability density function of fx|τ2(x, τ2),
x = max(τ1, τ2 + τ3), for: (a) 0≤ τ2 ≤ 70; (b) 70≤ τ2 ≤ 80; (c) 80≤ τ2 ≤ 100.

900

fτ1(τ1)

0.011

τ1

10
+τ

2

90

20
+τ

2

10
+τ

2

90

20
+τ

2

10
+τ

2

90

20
+τ

2

fx|γ2 fx|γ2 fx|γ2 0.1

0.011

0.1

(a) (b) (c)

123

resulting pdf of z is shown in Figure 4.5.5. Notice the similarities of this pdf to the pdf

shown in Figure 4.5.4. This is due to the filtering effect of the operations performed on the

random variables (i.e., convolution, and correlation).

Figure 4.5.4 Probability density distribution of z = τe◊a − τd◊a: uniform
pdf’s.

Figure 4.5.5 Probability density distribution of z = τe◊a − τd◊a: Gaussian
pdf’s.

fz (z)

z

fz (z)

z

124

The area under fz(z) within the interval [0, 100] (i.e., Fz(100)− Fz(0)) is 0.997,

therefore a constraint interval ∆ = [0, 100] is satisfied by the unfolding in 99.7% of its exe-

cutions.

In both cases, for uniform and Gaussian pdf’s, it is clear that a tighter constraint

would be satisfied by the unfolding with a lower probability. To investigate the effect of

the reliability factor r on a constraint for the time-separation distribution shown in

Figure 4.5.5, consider the variable constraint [0,dmax]. Figure 4.5.6 shows the plot of

r vs.dmax. Note the two main regions in the plot: for low values of dmax, a variation in dmax

causes a noticeable change in r; starting from dmax ≈ 25, the slope asymptotically dimin-

ishes towards zero. For dmax ≥ 80, r ≈ 1.

4.5.2 Example with correlated random variables

In our second example we investigate the impact of ignoring correlation data in the verifi-

cation procedure.

Figure 4.5.6 Reliability figure r.

r (%)

dmax

125

Consider for example the partial unfolded graph shown in Figure 4.5.7. Transition

d will occur as soon as the first of b or c occurs (OR causality). Suppose the delays have

projections with the following lower/upper bounds: τ1 and τ2 in [0,20]; τ3 in [10,50]; τ4 in

[0,60]; and τ5 in [10,30]. Moreover τ1 and τ2 are related by a correlation edge ρ1 whose

range is [-5,5]. Correlation ρ1 states that for all possible values of τ1 and τ2, τ1 − τ2 ∈ ρ1,

which can be written as -5≤ τ1 − τ2 ≤ 5. Note that non-causality is not implied by ρ1, as

transitions b and c always occur after transition a. The other delays are assumed to be

independent. Finally let us assume that the pdf’s are uniformly distributed so that we can

reconstruct a joint pdf for the delays from the given projections. The joint probability den-

sity function fτ1τ2(τ1,τ2) is shown in Figure 4.5.8. The joint pdf that characterizes the delays

of the unfolding is thus given by:

fτ1τ2τ3τ4τ5(τ1, τ2, τ3, τ4, τ5) = fτ1τ2(τ1, τ2) fτ3(τ3) fτ4(τ4) fτ5(τ5) (Eq. 4.5.2)

Figure 4.5.7 Partial unfolded graph with correlation between transitions b
and c.

Figure 4.5.8 Joint probability density function of delays τ1 and τ2.

a

b c

d
e

τ1

∆

τ2

τ3

τ5

τ4

ρ1

+

τ2

τ1

20

55
15 20

15

fτ1 τ2

1/175

126

To check constraint ∆ one must find the time separation from e to d, which is given

by the random variable z = τd◊a − τe◊a, where τd◊a = min (τ1+τ3, τ2+τ4), and τe◊a = τ2 + τ5,

relative to the fork transition a. Figure 4.5.9 shows the probability density function of z.

The bounds on the time separation z from d to e are [-45,30]. Therefore any con-

straint ∆ such that [-45,30]⊆ ∆ would be satisfied. If ∆ is not satisfied, the probability that

the constraint can be violated by the interface circuit can be determined by computing the

cover of the time separation. Suppose that ∆ = [-30,30]; then I = 0.9703, that is ∆ would be

violated in about 3% of the executions.

If correlation ρ1 is not taken into consideration, it can be found that the bounds on

z are [-50,40] (refer to Figure 4.5.9) thus yielding pessimistic results.

As a side remark, we comment on the simpler problem of obtaining just the bounds

on the time separation of the events related by the constraint. One might think that it could

be possible to determine the constraint bounds by computing the time separation for every

combination of the extreme (i.e. min/max) values of the delays τi. This in general does not

Figure 4.5.9 Probability density distribution of z = τe◊a − τd◊a: continuous
line, with correlation; dashed line, without correlation.

fz (z)

z

-45 30

-50 40

127

hold. For instance in the previous example the -45 bound occurs only in the following

cases:

1. τ1 + τ3 ≥ τ2 + τ4, and τ4 = 55, τ5 = 10.

2. τ1 + τ3 ≤ τ2 + τ4, and τ1 = 5, τ2 = 0, τ3 = 50, τ5 = 10 or τ1 = 25, τ2 = 5, τ3 = 50,

τ5 = 10.

In general taking correlation into consideration tightens up the bounds on the time

separation z = τd◊a − τe◊a. To see that consider the linear projections shown in 4.5.10. If the

random variables are independent the linear projection is given by the rectangular projec-

tion, indicating that the values that each r.v. can take does not depend on the values of the

other one. If they are correlated, this is described by the hexagonal shape, indicating that

there is some depedency between the values of the two r.v.

Because the projection for the case of independent r.v. properly contains the pro-

jection for the case of correlated r.v., the possible values for the time separation z = τd◊a −

τe◊a for the latter case is always a subset of the possible values for the time separation z

= τd◊a − τe◊a for the former case.

Figure 4.5.10 Two linear projections of pdf’s of two random variables: independent
(dotted boundary) and correlated (gray area).

d2

d1

128

4.5.3 Memory read interface example

In our last example we shall examine a read interface design involving a DSP and a RAM

device. The interface specifications of these two components were covered in Chapter 2,

where it was shown that the operational part of the interface specification included time

correlation data, i.e., some of the delays were not independent.

Consider a high-performance system comprising the SHARC DSP and some fast, no-

wait state, RAM. The DSP’s clock cycle is 25 nanoseconds. The designer of this system

would like to choose a ram chip that is not an overkill, because it will increase the cost of

the system, but at the same time she would like to certify that the system will not fail. Our

interface timing verification procedure is a tool that can help her in making the right

choices.

Figure 4.5.11 Interface read design.

DSP SRAM

ADD[0:31]

RD*

WR*

ACK

DAT[0:31]

ADD[0:11]

E*

W*

DAT[0:31]

Interface

Clock

CLK

CLK

se
le

ct
o

r

129

Figure 4.5.11 shows a block diagram (a structural view) of a system composed of a

DSP, an SRAM component and interface logic. The interface logic consists of a selector that

generates the enable signal of the SRAM, and of the generation of the ack signal. Due to the

design requirements, the ack signal is generated as soon as possible to avoid incurring wait

states.

The complete graph describing the read cycle of this design is shown in

Figure 4.5.12. Notice that the complete graph provides a behavioral view of the design.

The complete graph contains the interface specifications for the read cycle of the DSP and

the SRAM. The semantic specification that defines a data transfer, given by the sequence

dat+ → dat+ → dat− → dat− -> dat+, is already included in the interface specifications.

Finally there are some additional delay edges, shown as thick lines, which correspond to

Figure 4.5.12 Complete graph representing the interface read design.

ck0+

ck1+

add+

dat+

add−

dat−

add+

dat+

add−

dat−

dat↑

dat↓

ack+

ack−

rd+

rd−

e+

e−

τ1

τ2

τ3

τ4

τ5

τa τb

τc

τd

τe

δ1

δ3

δ5

δ4

δ6

δ8

δ7

δ10

δ2

δ9
+

+

DSP RAM

∆

130

the interface logic. For example the two delays δ2 and δ3 represent the propagation delays

from the address lines and the address strobe signal rd in the DSP, through the selection

block in the interface block, to the enable signal e in the SRAM. Notice that those delays are

able to represent also interconnection delays; this is very important in the new sub-micron

technologies for which interconnection delays are comparable to gate delays, and thus not

negligible.

To certify the design one must check that each one of the constraints is satisfied. In

this example we shall focus our attention on one constraint, which is usually overlooked:

the back-to-back cycle constraint that monitors that the data lines in the previous cycle are

tri-stated before a new piece of data is placed in the data bus during the current cycle. The

interval associated with the constraint is ∆ = [0, ∞).

Figure 4.5.13 shows a partial net unfolding for constraint ∆. Notice that ck1+ of the

previous cycle coincides with ck1+ of the current cycle.

Figure 4.5.13 Back-to-back cycle constraint ∆.

ck0+

add+

dat↑

dat↓rd+

rd−

e+

e−

τ1

τ2

τ4

τa

δ3

δ8

δ7

δ2

+

τd

∆

131

The bounds of the delays are as follows: τ1 ∈ [0, 8], τ2 ∈ [8, 13], τ4 ∈ [0, 5],

τa ∈ [5, 7], τd ∈ [0, 8], δ2 ∈ [2, 5], δ3 ∈ [2, 4], δ7 ∈ [3, 6], and δ8 ∈ [1, 5]. Delays τ1, τ2,

and τ4 are correlated, according to the following inequalities:

τ2 − τ1 ≥ 5
τ2 − τ4 ≥ 8

Moreover, the interface delays are also assumed to be correlated according to the

following inequalities:

-1 ≤ δ8 − δ3 ≤ 1
-1 ≤ δ7 − δ2 ≤ 1

We assume that the joint pdf is uniform. The joint pdf that characterizes the ran-

dom variables of the net unfolding fτ1τ2τ4δ2δ3δ7δ8τaτd(τ1, τ2, τ4, δ2, δ3, δ7, δ8, τa, τd) is

given by:

fτ1τ2τ4(τ1, τ2, τ4) fδ2δ7(δ2, δ7) fδ3δ8(δ3, δ8) fτa(τa) fτd(τd) (Eq. 4.5.3)

The projection of fδ2δ7(δ2, δ7) is shown in Figure 4.5.14. The projection of

fδ2δ7(δ2, δ7) can be similarly obtained. The projection of fτ1τ2τ4(τ1, τ2, τ4) is shown in

Figure 4.5.15. To obtain the actual uniform pdf from its projection, one first must find the

hypervolume of the projection. In this dissertation we consider projections described by

Figure 4.5.14 Projection of fδ2δ7(δ2, δ7).

δ2

2 5

6

3

δ7

132

set of inequalities (i.e., polytopes [104]). The problem of finding efficient algorithms to

compute the volume of a polytope has received recently considerable attention in the

literature [32, 75, 59, 80, 18]. We have used to compute the volume of the polytopes in our

examples Prof. Fukuda’s cdd code [56], which we gratefully acknowledge.

The constraint equation for ∆ can be written as:

τdat↓ − τdat↑ ⊆ ∆ (Eq. 4.5.4)

which can be expressed in terms of the delays with respect to the fork transition ck0+ as

follows:

{ max(τ2+δ3, τ1+δ2) + τa } − { min(τ4+δ8, τ1+δ7) + τd } ⊆ ∆ (Eq. 4.5.5)

We consider two cases: (a) the delays are assumed to be independent, which

implies that there is no correlation; and (b) the delays are correlated. For both cases we

have to compute fτdat↓τdat↑(τdat↓, τdat↑). Figures 4.5.16 and 4.5.17 show

fτdat↓τdat↑(τdat↓, τdat↑) for cases (a) and (b) respectively. Notice the symmetry of the pdf for

case (a), in contrast to the skewed pdf corresponding to case (b). This effect is due to the

phenomenon of time correlation among the delays.

Figure 4.5.15 Projection of fτ1τ2τ4(τ1, τ2, τ4).

τ1

5

3 8

13

8

τ2

τ4

133

The pdf of the time separation z = τdat↓ − τdat↑ for both cases is shown in

Figure 4.5.18. The continuous curve in Figure 4.5.18 corresponds to case (a) and the

dashed curve corresponds to case (b). The projection of the pdf for case (a) is the interval

[-3, 23], while for case (b) is the interval [4, 21]. The constraint ∆ = [0, ∞) is satisfied by

Figure 4.5.16 Joint pdf fτdat↓ τdat¦↓(τdat↓, τdat¦↓) without correlation.

Figure 4.5.17 Joint pdf fτdat↓ τdat¦↓(τdat↓, τdat¦↓) with correlation.

134

case (b) but not by case (a). Moreover, our procedure allows the designer to quantify the

probability that the timing constraint ∆ would be violated in case (a), which turns out to be

2.3%.

Let us interpret the previous two cases as follows: case (a) corresponds to the anal-

ysis of a circuit for which correlation among delays is ignored, while in case (b) correla-

tion is taken into consideration. Under this view, an analysis that neglects timing

correlation would yield an incorrect conclusion. In general, as discussed in Section 2.5.4,

timing correlation reduces the projection of the delays (cf. Figure 4.5.14).

In the following section we present several examples that show the relationship

between the probabilistic analysis that we have developed in this chapter and traditional

interval analysis techniques.

Figure 4.5.18 Probability density function of the time separation.

fz(z)

z

4 21

-3 23

without ρ

with ρ

135

4.5.4 Special cases

In this section we present a suite of special cases in order to show the relationship that

exists between an interval arithmetic (or bounded-delay) analysis [112] and our probabi-

listic approach for the case that the pdf’s are bounded (a bounded pdf is zero outside a

bounded interval).

We start with the sequencing of two transitions (refer to Figure 4.5.19): transition a

causes transition b which causes transition c. Let us find the time separation z from a to c.

Clearly the fork transition is a itself, thus z = τ1 + τ2. For the sake of simplicity let us

assume that τ1 and τ2 are independent. Rather than using specific pdf’s for τ1 and τ2, we

shall only assume that the pdf’s are bounded, i.e., that the pdf’s are non-zero only in the

interval [di, Di] (refer to Figure 4.5.19). Notice that a non-empty interval implies that

di ≤ Di.

Using the above assumptions, it can be seen that fz(z) can be computed using

Eq. 4.3.8, which denotes convolution. Figure 4.5.20 shows the integrand of Eq. 4.3.8 for a

particular z. We are not interested in the actual shape of fz(z), but in its bounds. It is easy to

check that the integrand is non-zero for z ∈ [d1 + d2, D1 + D2]. Hence fz(z) is non-zero in

Figure 4.5.19 Sequencing.

fτ1(τ1)

τ1

d1 D1

fτ2(τ2)

τ2

d2 D2

τ1 τ2
a b c

136

that interval (refer to Figure 4.5.21). This coincides with the result of the addition of inter-

vals [d1, D1] and [d2, D2].

Figure 4.5.20 Convolution.

Figure 4.5.21 Sequencing pdf.

Figure 4.5.22 Time separation.

fτ2(y)

d2 D2

fτ1(z−y)

z−D1 z−d1

y

z

fz(z)

d1+d2 D1+D2

fτ1(τ1)

τ1

d1 D1

fτ2(τ2)

τ2

d2 D2

τ1

τ2

a

b

c

137

The second special case is a simple time separation between two transitions (refer

to Figure 4.5.22): transition a causes both transitions b and c. Let us find the time separa-

tion z from c to b. The fork transition is a, thus z = τ1 − τ2. Let us assume again that τ1 and

τ2 are independent and that we only know that the pdf’s are bounded.

Using the above assumptions, it can be seen that fz(z) can be computed using

Eq. 4.3.11, which denotes the operation of correlation (not to be confused with the correla-

tion data in our interface specifications). Figure 4.5.23 shows the integrand of Eq. 4.3.11

for a particular z. The integrand is non-zero for z∈ [d1 − D2, D1 − d2]. Hence fz(z) is non-

zero in that interval (refer to Figure 4.5.24). This coincides with the result of the subtrac-

tion of intervals [d1, D1] and [d2, D2].

The third special case is simple AND causality (refer to Figure 4.5.25): transition c

is caused by both transitions a and b. Let us assume that both transitions a and b occurred

Figure 4.5.23 Time separation construction.

Figure 4.5.24 Time separation pdf.

fτ2(x)

d2 D2

fτ1(x+z)

z+d1 z+D1

y

z

fz(z)

d1−D2 D1−d2

138

at exactly the same time τ0. Let us find the time occurrence z of c with respect to τ0. Thus

z = max(τ1, τ2). As before, τ1 and τ2 are independent and we only know that the pdf’s are

bounded.

Hence fz(z) is fx(z)Fy(z) + fy(z)Fx(z) (refer to Eq. 4.3.15). Figure 4.5.26 shows Fx(z)

and Fy(z). It is easy to check that fz(z) is non-zero for z∈ [max(d1, d2), max(D1, D2)] (refer

to Figure 4.5.27). This coincides with the result of the max operation on intervals [d1, D1]

and [d2, D2].

The final special case is simple OR causality (refer to Figure 4.5.28): transition c is

OR-caused by both transitions a and b. Let us assume that both transitions a and b occurred

Figure 4.5.25 AND causality.

Figure 4.5.26 AND causality construction.

fτ1(τ1)

τ1

d1 D1

fτ2(τ2)

τ2

d2 D2

τ1

τ2

a

b

ctime = 0

Fy(z)

d2 D1

Fx(z)

d1 D2

z

1

Fz(z)

139

at τ0. The time occurrence z of c with respect to τ0 is z = min(τ1, τ2). As before, τ1 and τ2

are independent and we only know that the pdf’s are bounded.

Hence fz(z) is fx(z)(1 − Fy(z)) + fy(z)(1 − Fx(z)) (refer to Eq. 4.3.19). Figure 4.5.29

shows Fx(z) and Fy(z). It can be shown that fz(z) is non-zero for

Figure 4.5.27 AND causality pdf.

Figure 4.5.28 OR causality.

Figure 4.5.29 OR causality construction.

z

fz(z)

max(d1,d2) max(D1,D2)

fτ1(τ1)

τ1

d1 D1

fτ2(τ2)

τ2

d2 D2

τ1

τ2

a

b

ctime = 0 +

d2 D1d1 D2

z

1

Fz(z)

Fy(z)

Fx(z)

1−Fx(z)

140

z ∈ [min(d1, d2), min(D1, D2)] (refer to Figure 4.5.30). This coincides with the result of

the min operation on intervals [d1, D1] and [d2, D2].

More complicated graphs cannot be expressed using plain interval arithmetic

alone, due to correlation either implied by the joint pdf of the delays of the net, or intro-

duced by the topology of the net (reconvergence fan-out). Of course the interval analysis

techniques can be extended to handle more complicated situations.

4.6 Summary

In this chapter we have presented a probabilistic interface timing verification procedure

that not only can check if every constraint of a cycle-invariant complete graph is satisfied,

but if a constraint is not satisfied, it returns a reliability factor which is a measure of the

probability that a constraint will be satisfied.

Thus our verification procedure provides more information than traditional inter-

face timing verification techniques, which can be invaluable when evaluating the trade-

offs of a design. Our verification procedure is based on a probabilistic framework that

gives a natural interpretation to the time correlation data that crop up in component data

sheets. We also show in this chapter that by ignoring time correlation, a pessimistic result

may be obtained. In high-speed designs, where every nanosecond counts, it is important to

Figure 4.5.30 OR causality pdf.

z

fz(z)

min(d1,d2) min(D1,D2)

141

determine tighter bounds: a pessimistic result may seem to indicate a timing constraint

violation where none exists.

The verification procedure presented in this chapter requires that all the delays be

known. This is not the case prior to the interface logic synthesis. However it is possible to

adapt our procedure so that instead of checking for constraint satisfaction, it determines

the values of the delays that satisfy all the constraints. In the following chapter we shall

present this variation that we have called timing analysis for synthesis.

Chapter 5

Timing Analysis for Synthesis 5

5.1 Introduction

During the system integration phase of the design flow, interface logic may be required to

construct a system that uses off-the-shelf components. In Chapter 2 we presented a suit-

able formal specification to describe the interface behavior of the components, while in

Chapter 3 we addressed the issue of describing the glue, or interface, logic whose function

is to connect the components together, and in Chapter 4 we discussed a timing verification

procedure that, once the necessary logic has been implemented, not only checks if the new

circuitry meets the timing constraints given in the component specifications, but also gives

a measure of the reliability of the system in case some constraints are violated.

In this chapter we shall present an analysis procedure that can be used ahead of the

interface logic implementation, or synthesis. The problem that we face is that prior to

interface synthesis, the values that the interface delays can take are unknown. One solution

is to apply a timing verification procedure for which conservative estimates for the inter-

face delays are used [97, 98]. Our solution is to reformulate the timing interface verifica-

tion problem as the problem of finding the set of allowed values for the unknown delays so

that the constraints are satisfied, which we have called timing analysis for synthesis (TAFS)

in [47]. Amon and Borriello [2] suggested a similar idea, that they call symbolic timing

verification; however they studied only the convex case for which a solution can be given

143

using standard constraint satisfaction programming techniques [127, 68, 122], and failed

to point out that in general “symbolic verification” results in a non-convex problem.

5.2 Timing analysis for synthesis problem formulation

Timing analysis for synthesis (TAFS) is a technique that can be used in advance of the

interface logic synthesis to determine the values that the interface delays can take if they

are to meet the timing constraints given in the interface specifications. The importance of

TAFS is that it can break the series of iterations between interface design and implementa-

tion that usually occur during the design flow (i.e., a design is implemented, then checked

for timing constraint satisfaction, and if violations are encountered, the implementation

and/or the design of the interface logic must be redone), because it can be applied on a

description of the interface design prior to implementation.

In Chapter 3 we suggested that the interface logic required to integrate off-the-

shelf components to build up a system can be described as the “merging” of the interface

specifications describing the protocols followed by the components to implement certain

capability (e.g., a bus arbitration operation), where the “merging” consisted of adding

delay edges, corresponding to the interface logic, to generate the input signal transitions of

the specifications. The result of the interface design was a complete graph. To clarify the

previous ideas we briefly present the bus arbitration interface design discussed in

Chapter 3.

Figure 5.2.1 shows a system comprising a DMA component and the VMEbus. The

bus arbitration interface block converts the request-acknowledge protocol used by the DMA

component to the more involved request-grant-done bus arbitration protocol defined in the

VMEbus standard (refer to Figure 5.2.2).

144

The complete graph that describes the component protocols and the interface logic

is shown in Figure 5.2.3. The interface logic is represented by the interface delay edges

shown as thick lines. It is not possible to check if the complete graph is time-consistent

without knowing the interface delays δ. In this chapter we formulate timing analysis for

synthesis as the problem of finding the tightest bounds on the interface delays δ such that

the timing constraints are satisfied. If there is no such set of values then the interface must

be redesigned (e.g. by modifying some or all of the δ links in the merged graph or by

Figure 5.2.1 Structural view of a bus arbitration interface.

Figure 5.2.2 Interface specifications of the bus arbitration protocols

followed by the components of the system shown in Figure 5.2.1.

BG*
BBSY*

BR*

req*

ack*
Interface

VMEbus DMA

BUSY

dtbusdata transfer busdtbus

VMEbus

DMA
BR+

BG+

BBSY+

BUSY+

τ3

∆1

τ1

∆9

τ2

∆2

∆5

∆10

BR−

BG−

BBSY−
BUSY−

∆3

∆4

ack+

req+

ack−

req−

dtbus↑

dtbus↓

τa

τb

τc

τd

∆b

∆a

∆c
∆6

∆7

∆8

δ

145

choosing different components). Otherwise those bounds can be used to select an appro-

priate target technology and guide time-driven synthesis tools. Finally a correct realization

of the interface must not exceed the bounds computed by the analysis.

Definition 5.2.1.- Given

1. a complete graph Ψc = 〈Σc, CNc〉, where Σc = 〈Nc, Yc, λc〉 is a timed STG with

underlying Petri net Nc = 〈Pc, Tc, Fc, Mc0, Γ〉 and CNc is a set of constraint

rules,

2. a partition on the set of places Pc into the set of τ-places Pτ and the set of

δ-places Pδ, with associated sets of random variables τ = { τi | τi = Γ(pi),

pi ∈ Pτ} and δ = { δi | δi = Γ(pi), pi ∈ Pδ},

Figure 5.2.3 Bus arbitration interface design.

BR+

BG+

BBSY+

BUSY+

BR−

BG−

BBSY−

BUSY−

ack+

req+

ack−

req−

dtb↑

dtb↓

δ1

δ2
δ3

δ4

δ5

δ7

δ6

τa

τb

τc

τd

∆b

∆a

τ3

∆1

τ1

∆9

τ2

∆2

∆5

∆3

∆4

∆6

∆7

∆8

∆c

τx

τy
∆d

146

3. a joint pdf characterizing the set of random variables x = τ ∪ δ that can be writ-

ten as:

fx(x) = fτ(τ) ⋅ fδ(δ) (Eq. 5.2.1)

where fτ(τ) and fδ(δ) are joint pdf’s of the random variables τ and δ respectively.

4. a projection Rτ ⊆ Rm of the joint pdf fτ(τ), where m is the size of Pτ, and

5. a region Ra ⊆ Rn of allowed values for δ, where n is the size of Pδ;

the timing analysis for synthesis (TAFS) problem is the problem of finding the largest pro-

jection Rδ ⊆ Ra of the joint pdf fδ(δ) such that any possible execution of net Nc satisfies all

the constraint rules cij ∈ CNc.

Let us compare TAFS and interface timing verification. In timing verification, the

input is a complete graph, with a fully specified signal transition graph and the problem is

to check that every possible execution of the net satisfies the constraints. In TAFS, the input

is also a complete graph, but some of the random variables are unspecified, and thus the

problem is to find a characterization of the set of unspecified random variables δ that satis-

fies the constraints. Such characterization of δ is not a joint pdf but its projection. The sig-

nificance of this fact can be understood by realizing that the set δ represents the delays of

the logic that is yet to be implemented, so that it makes sense to try to determine the pro-

jection of the pdf (which from the discussion of Section 2.5.4, specifies only the domain of

the delay values by neglecting the probability measure of the joint pdf) rather the pdf

itself, otherwise the solution of TAFS would be too restrictive by yielding a specific joint

pdf that the interface logic must implement. In this sense, the result of TAFS is ideal to

guide the interface implementation because there exist many possible implementations

that can satisfy a projection. Notice however that, by dealing with a projection, the proba-

bility measure, which was key for our reliability analysis discussed in Chapter 4, is lost.

This is not severe because at this phase of the design, the designer is more concerned with

147

getting a broader picture of the properties of a design that has not been fully carried out

down to silicon. Notice however that although TAFS is an interval analysis, it solves a more

difficult problem than interval interface timing verification. Other comments regarding

Definition 5.2.1 are discussed in the following paragraphs.

Condition 3 of the definition assumes that the joint pdf of the net is separable into

two pdf’s, that is the set of τ delays and the set of δ delays are independent; this assump-

tion is not unrealistic, mainly because the interface block is implemented as a separate

entity from the components, and although the components and the interface will operate

under similar temperature conditions, this will amount to a weak correlation; stronger cor-

relation results from, for example, sharing locality in silicon. (On the other hand, from the

discussion of Chapter 4, correlation data improves the time separation calculation so that

by neglecting correlation one would expect conservative results.) In the sequel we shall

refer to the two components of the set of random variables x, the set of δ delays and the set

of τ delays by the symbols δ and τ respectively for the sake of conciseness.

The reader may find the presence of Ra in step 5 of Definition 5.2.1 superfluous,

because one seeks to find a solution region Rδ, but Ra seems to be “constraining” Rδ. Our

reasoning is that in some circumstances one may know up-front a characterization of the

interface delays δ. For instance, if just a known set of technologies is being considered, it

might be possible to put an upper bound on the maximum δ values. If no knowledge is

assumed on the δ values, the allowed region Ra turns out to be the non-negative hyper-

octant {δi ≥ 0} (notice that even in this “unconstrained” case, the values of delays δ are

required to be non-negative). Thus, if partial information is known about the values of δ,

this can be specified in our general scheme by defining a suitable Ra.

Finally Rδ may turn out to be empty. This particular result signifies that there is no

possible assignment for the delays that satisfy the constraint rules of the complete graph.

In other words, it is possible to check if an interface design is feasible, prior to implemen-

tation, thus saving considerable design effort. Moreover, even if Rδ is not empty, by study-

148

ing Rδ it may be possible to detect potential problems that would arise during

implementation; for example, if the maximum value of a given interface delay is too small,

then it may not be possible to implement it given a target technology.

In summary, the goal of TAFS is to best characterize the set of unknown delays δ by

finding the largest projection of the joint pdf that satisfies the timing constraints of the

design. The TAFS problem for the case of protocol graphs with arbitrary underlying Petri

nets is an extremely difficult one. In this dissertation we solve TAFS for the same sub-class

that we studied in Chapters 3 and 4, namely the class of complete graphs whose timed STG

is a cycle invariant AOC STG. We also restrict the projections of pdf’s fτ(τ) and fδ(δ) and the

allowed regions Ra to be convex polyhedra [30].

5.3 Solving TAFS

In this section we first present a general procedure that solves the timing analysis for syn-

thesis problem, and then we develop algorithms that implement the procedure.

5.3.1 TAFS procedure

By its formulation, one can see that TAFS can be naturally cast as a constraint satisfaction

problem, namely one must find the largest set of values that the unknown delays δ can take

such that the timing constraints are satisfied. In this section we present a procedure that

solves TAFS for complete graphs whose timed STG is a cycle-invariant AOC STG. Firstly we

present some concepts that will be necessary to describe the TAFS procedure.

From Section 2.5.1, we know that a constraint rule cij = 〈ti, tj, ∆ij, ε〉 defines a time

window ∆ij with respect to the k-th occurrence of the constraining transition ti during

which the (k+ε)-th occurrence of the constrained transition tj is allowed to occur. The con-

149

straint rule is satisfied if for all occurrence indices k > 0, the following constraint equation

for cij is true:

τtj(k+ε) − τti(k) ∈ ∆ij (Eq. 5.3.1)

If a net is repeatable, then the time separation τtj(k+ε) − τti(k) is invariant for k ≥ M.

Thus it is possible to check Eq. 5.3.1 for k ≥ M by checking Eq. 5.3.1 for k = M. In

Chapter 3, we identified a structural condition on the net, the presence of a cycle-invariant

fork transition (refer to Definition 3.3.9), that implies repeatability. Furthermore, as dis-

cussed in Section 3.3.4, one can express the left-hand side of Eq. 5.3.1 with respect to a

cycle-invariant fork transition x as:

τtj(k+ε)◊x − τti(k)◊x ∈ ∆ij (Eq. 5.3.2)

where each of τtj(k+ε)◊x and τtj(k+ε)◊x are expressions containing linear/min/max terms on a

set of random variables that defines the timing behavior of the net.

With TAFS the probability measure of the delays has been dropped. Moreover, the

characterization of the random variables of the net is incomplete because one only knows

the projection of the joint pdf of the τ delays, which specifies the set of possible values that

τ can take. Then instead of checking if the constraint equation (refer to Eq. 5.3.2) is satis-

fied, one must find the projection of the joint pdf of the δ delays that satisfy the constraint

equation, for all possible values of the τ delays. To understand this crucial point, consider

that there are some values of δ, say δ0, that satisfy the constraint equation for some values

of τ, say τ0. However if δ0 together with another set of values of τ does not satisfy the con-

straint equation, then δ0 is only a particular solution which does not hold in general. Thus

the set of values of δ that satisfies the constraints must do so for all possible values of τ.

To solve TAFS we shall proceed in two steps: first we shall determine all the set of

values of δ and τ that satisfy the constraint equation; and then we shall restrict such set to

the values that satisfy the constraint equation for all values of τ.

150

Definition 5.3.1.- Given a TAFS problem, the allowed region for (τ, δ) is

Rτ+a = {(τ, δ) ∈ Rm+n | τ ∈ Rτ and δ ∈ Ra}.

The allowed region Rτ+a represents the set of allowed values (τ, δ) defined by the

projection of fτ(τ) and the allowed values of δ. In this sense, Rτ+a is the preliminary projec-

tion of the joint pdf describing the complete graph, where Ra is used as a first approxima-

tion of fδ(δ).

Definition 5.3.2.- Given a constraint rule cij = 〈ti, tj, ∆ij, ε〉 of a complete graph

Ψc = 〈Σc, CNc〉, the k-th constraint separation of cij is gcij(k) = τtj(k+ε) − τti(k).

Notice that when gcij(k) is calculated with respect to a fork transition, it is a func-

tion of the τ and δ random variables.

Definition 5.3.3.- Given a constraint rule cij = 〈ti, tj, ∆ij, ε〉 of a complete graph

Ψc = 〈Σc, CNc〉, the region of the k-th time separation from ti to tj is

R∆ij(k) = {(τ, δ) ∈ Rm+n | gcij(k) ∈ ∆ij}.

Hence R∆ij(k) represents the set of values (τ, δ) that satisfy the constraint equation

gcij(k) ∈ ∆ij .

Figure 5.3.1 Set of (τ, δ) values that satisfy a constraint ∆.

τ

δ
R∆

Rτ

Ra

Rτ+a

151

Consider for the moment a single constraint equation gcij(k) ∈ ∆. Given the set of

allowed values Ra of δ and the set of values Rτ that τ can take, one can construct the

allowed region Rτ+a of (τ, δ). Thus the allowed values of (τ, δ) that satisfy gcij(k) ∈ ∆ is

given by Rτ+a ∩ R∆ij(k). We call this region the feasible region of the constraint. These

ideas are illustrated in Figure 5.3.1. The regions Ra and Rτ define the box Rτ+a. The inter-

section of R∆ij(k) with Rτ+a (the shaded area) are the allowed values (τ, δ) that satisfy the

constraint equation.

However TAFS asks for the values of δ that satisfy the constraint equation for all τ,

which is Rδ. To compute this area one can “cut” the region Rτ+a ∩ R∆ij(k) into vertical

infinitesimal “slices” in Figure 5.3.1, and the horizontal intersection over all the slices

would be Rδ. We have called this procedure the reduction of the feasible region Rf.

Figure 5.3.2 illustrates region Rδ, of the values of δ that satisfy the constraint equation for

all τ. A formal treatment is presented in Section 5.3.4.

Without the existence of a cycle-invariant fork transition (refer to Section 3.3) one

would have to check an infinite number of constraint equations gcij(k) ∈ ∆ij. The following

definitions specialize Definition 5.3.3 for the important case of cycle-invariant fork transi-

tions.

Figure 5.3.2 Set of δ values that satisfy a constraint ∆ for all values of τ.

τ

δ
R∆

Rτ

Ra
Rδ

152

Definition 5.3.4.- Given a constraint rule cij = 〈ti, tj, ∆ij, ε〉 of a complete graph

Ψc = 〈Σc, CNc〉 and a cycle-invariant fork transition of ti and tj for k ≥ M, the invariant con-

straint separation of cij is gcij = τtj(n+ε) − τti(n) for any n ≥ M.

Definition 5.3.5.- Given a constraint rule cij = 〈ti, tj, ∆ij, ε〉 of a complete graph

Ψc = 〈Σc, CNc〉 and a cycle-invariant fork transition of ti and tj, the region of the invariant

constraint separation of cij is R∆ij = {(τ, δ) ∈ Rm+n | gcij ∈ ∆ij}.

The definitions above refer to a particular region of a constraint rule, either for a

particular cycle k, or in the presence of a cycle-invariant fork transition for an infinite

number of cycles as discussed in Chapter 3. In general the region of a constraint rule is the

intersection of the regions for all cycles.

Definition 5.3.6.- Given a constraint rule cij = 〈ti, tj, ∆ij, ε〉 of a complete graph

Ψc = 〈Σc, CNc〉, the total region of constraint cij is .

The following lemma establishes that for a constraint rule associated with a cycle-

invariant fork transition it is possible to compute the total region by a finite number of

intersections.

Lemma 5.3.1.- For a constraint rule cij = 〈ti, tj, ∆ij, ε〉 with associated cycle-invari-

ant fork transition from ti to tj, the total region of constraint cij is ,

k = 1, …, M.

Proof.- Direct from Definition 3.3.9 of cycle-invariant fork transition.

According to our previous discussion (cf. Figure 5.3.1), the following definitions

capture the concept of the feasible region of a constraint rule.

RT cij() R∆ ij k()
k 0>
∩=

RT cij() R∆i j k()
k

∩=

153

Definition 5.3.7.- Given a TAFS problem and a constraint rule cij = 〈ti, tj, ∆ij, ε〉 of a

complete graph Ψc = 〈Σc, CNc〉, the feasible region of constraint cij is

Rf(cij) = RT(cij) ∩ Rτ+a.

Definition 5.3.8.- Given a complete graph Ψc = 〈Σc, CNc〉, the feasible region of Ψc

is .

Finally the important concept of the δ-reduction of a feasible region is defined.

Definition 5.3.9.- Given a TAFS problem and a complete graph Ψc = 〈Σc, CNc〉, the

δ-reduction of the feasible region is Rr = { δ ∈ Rn | ∀τ ∈ Rτ, (τ, δ) ∈ Rf}.

Theorem 5.3.2.- The δ-reduction of the feasible region of a complete graph is the

solution of TAFS.

Proof.- From Definition 5.3.8, the feasible region Rf of a complete graph

Ψc = 〈Σc, CNc〉 clearly satisfies all the constraint equations gcij(k) ∈ ∆ij for all constraint

rules cij ∈ CNc. Then Rr also satisfies the constraints. We have to show that Rr is the largest

sub-set of {δ ∈ Ra} that satisfies the constraints for all possible values of τ. This is guaran-

teed by Definition 5.3.9. Therefore Rr is Rδ.

Theorem 5.3.2 links the δ-reduction operation to our original problem of finding

the solution of the TAFS problem. The following procedure summarizes the major steps

that one must follow to solve a TAFS problem.

Procedure 5.3.1.- Given a TAFS problem for a cycle-invariant complete graph

Ψc = 〈Σc, CNc〉,

1. For each constraint rule cij ∈ CNc, obtain the total region RT(cij).

Rf Rf cij()
cij CNc∈

∩=

154

2. For the complete graph Ψc = 〈Σc, CNc〉, obtain the feasible region Rf.

3. Obtain the δ-reduction of Rf, and return it as Rδ.

It is easy to prove using Theorem 5.3.2 that Procedure 5.3.1 solves TAFS. Using the

fact that the complete graph is cycle-invariant step 1 computes the total region of a con-

straint rule by considering a finite number of regions of constraint equations gcij(k) ∈ ∆ij.

In the following sections we shall discuss how to implement the three steps of

Procedure 5.3.1 for the case in which the projection Rτ of fτ(τ) is a polyhedron (refer to

Section 2.5.4). It will be shown that even if Rτ is convex, in general Rδ is not.

5.3.2 Linearization of the constraint equations

In this section we shall discuss how to obtain the feasible region of a complete graph. The

first step consists of determining the region of a constraint equation. The complete graphs

that we consider have an underlying AOC STG, thus from the discussion of Section 3.3.3,

the constraint equations contain only linear/min/max terms. We shall exploit the form of

the constraint equations to develop a procedure that, using standard techniques, can find

the feasible region of the complete graph.

As mentioned in the previous section, a constraint equation gcij(k) ∈ ∆ij defines a

region of the values (τ, δ) that satisfy the equation for a particular execution of the net. The

problem we want to address in this section is how to compute such a region. The crucial

point is that a constraint equation is an expression on the random variables (τ, δ) involving

only linear, min and max operators. We use a linearization technique that converts the non-

linear expression of a constraint equation into a set of linear expressions [82, 20] which, as

we shall show below, have some nice properties. To make evident the dependency of the

constraint separation gcij on (τ, δ) we shall denote gcij(k) by gcij(k, τ, δ) in the sequel.

155

Definition 5.3.10.- The i linear sub-case of a max term max(a1, … , an), for

i = 1, … ,n, replaces the max term with term ai and adds the set of inequalities {ai ≥ aj |

j = 1, … ,n and j ≠ i}.

Definition 5.3.11.- The i linear sub-case of a min term min(a1, … , an), for

i = 1, … ,n, replaces the min term with term ai and adds the set of inequalities {ai ≤ aj |

j = 1, … ,n and j ≠ i}.

Definition 5.3.12.- The linearization of a max, or a min, term is the set of n linear

sub-cases of the max, or min, term.

Definition 5.3.13.- A linear sub-case of a constraint equation gcij(k, τ, δ) ∈ ∆ij is

formed by selecting a linear sub-case for each of the max and min terms that appear in

gcij(k, τ, δ).

Thus to find a linear sub-case of a constraint equation one must choose a “winner”

for each max and min term in gcij(k, τ, δ). The linearization of a constraint equation com-

prises all the linear sub-cases.

Definition 5.3.14.- The linearization of a constraint equation gcij(k, τ, δ) ∈ ∆ij is

the set of all linear sub-cases of the constraint equation.

For example, the linearization of the left-hand side of the following constraint

equation gcij(k, τ, δ) ∈ ∆ij given by

gcij(k, τ, δ) = τ1 + max(min(τ2, δ3) + τ4, δ5) − δ3

consists of the following linear sub-cases:

1. (linear sub-case 1 of the max term, linear sub-case 1 of the min term):

τ1 + τ2 + τ4 − δ3 ∈ ∆ij
τ2 ≤ δ3
τ2 + τ4 ≥ δ5

156

2. (linear sub-case 1 of the max term, linear sub-case 2 of the min term):

τ1 + τ4 ∈ ∆ij
τ2 ≥ δ3
δ3 + τ4 ≥ δ5

3. (linear sub-case 2 of the max term, linear sub-case 1 of the min term):

τ1 + δ5 − δ3 ∈ ∆ij
τ2 ≤ δ3
τ2 + τ4 ≤ δ5

4. (linear sub-case 2 of the max term, linear sub-case 2 of the min term):

τ1 + δ5 − δ3 ∈ ∆ij
τ2 ≥ δ3
δ3 + τ4 ≤ δ5

Lemma 5.3.3.- The maximum number of linear sub-cases of a constraint equation

does not exceed the product of the linear sub-cases of its different max and min terms.

Proof.- In the worst case, the selection of each different linear sub-case of a max/

min term is independent of the selection of linear sub-cases of the other max/min terms

thus generating a maximum number of linear sub-cases which is the product of the terms

of all the max/min terms.

In the previous example, the constraint equation generated four linear sub-cases

corresponding to two independent selections of each of its two min/max terms (i.e., the

number of cases achieves the maximum of Lemma 5.3.3). However if there are some com-

mon terms to the min/max terms of a constraint equation, a fewer number of linear sub-

cases may be generated. For example, if the left-hand side of a constraint equation is given

by

max(a, b) + min (a, b)

157

one can notice that only two linear sub-cases belong to the linearization, namely for the

case that a ≥ b and for the case that a ≤ b due to the sharing of common terms in the min

and max terms.

Lemma 5.3.4.- Each linear sub-case of a constraint equation describes a polyhe-

dron in Rm+n, where m and n are the number of τ and δ variables respectively.

Proof.- A linear sub-case of a constraint equation consists of the original constraint

equation in which each max/min terms has been replaced by a particular winner term, and

a set of inequalities that have been added for each winner selection. Each added inequality

is linear according to Definitions 5.3.10 and 5.3.11. Also the new expression for the con-

straint equation is linear by construction, due to the replacement of the max/min terms (the

only non-linear terms in the constraint equation) with terms τi. Notice that the expression

g ∈ ∆, where ∆ is a closed interval [d, D], can be replaced by d ≤ g ≤ D. (If ∆ is not a

closed interval, the corresponding lower/upper bound of the interval that is not closed is

described using the strict inequality symbol ‘<‘.) Finally a set of linear inequalities on k

variables describes a convex polyhedron in Rk [30].

Before stating the property that the linear sub-cases of a constraint equation

describe non-overlapping regions, we need to give some basic definitions (adapted

from [60]). For a definition of a hyperplane, refer to Definition 2.5.5.

Definition 5.3.15.- A hyperplane H cuts a region A ⊆ Rk if both open spaces into

which Rk is divided by H contain points of A.

Definition 5.3.16.- The Euclidean distance between two points x1, x2 ∈ Rk, is

d(x1, x2) = (〈x1 − x2, x1 − x2〉)1/2, where 〈x1, x2〉 denotes the dot product of x1 and x2. The

Euclidean distance between regions A, B ⊂ Rk is d(A, B) = inf({ d(x1, x2) | x1 ∈ A and

x2 ∈ B}), where inf selects the minimum element of a set of values.

158

Definition 5.3.17.- A hyperplane H supports a region A ⊆ Rk if H does not cut A

and d(A, H) = 0.

Definition 5.3.18.- Let Pk be a polyhedron in Rk. A set F ⊂ Pk is a face of Pk if

there exists a hyperplane H that supports Pk and F = Pk ∩ H.

Definition 5.3.19.- Two polyhedra in Rk are non-overlapping if their intersection is

either empty or is a common face of the two polyhedra.

Lemma 5.3.5.- The polyhedron described by a linear sub-case of a constraint

equation is non-overlapping with any of the polyhedra described by the other linear sub-

cases of the constraint equation.

Proof.- A linear sub-case i differs from the other linear sub-cases of a constraint

equation by at least one selection of a winner for a given max/min term. Without loss of

generality, assume that for the given max term, term ai was chosen as the winner for linear

sub-case i, while aj was chosen as the winner, with j ≠ i, for the other linear sub-case. Then

an added inequality ai ≥ aj is one of the inequalities that describe the polyhedron of sub-

case i, while aj ≥ ai is one of the inequalities that describe the polyhedron of the other sub-

case. Each of these inequalities represents a closed half-space [30]. Furthermore, the two

half-spaces define two regions that do not overlap, and only have the hyper-plane ai = aj in

common. A polyhedron is the intersection of the half-spaces described by a set of inequal-

ities. Therefore the polyhedron corresponding to sub-case i does not overlap with any of

the polyhedra of the other sub-cases.

Definition 5.3.20.- The region of the linearization of a constraint equation

gcij(k, τ, δ) ∈ ∆ij is , where Pk is the polyhedron described by the k-th linear sub-case

of the constraint equation.

Pk
k

∪

159

Thus the geometric region corresponding to the linearization of a constraint equa-

tion can be described by a set of non-overlapping convex polyhedra. However the region

needs not be convex nor connected (refer to Figure 5.3.3).

Lemma 5.3.6.- Given two regions A, B ⊆ Rk, each one described as the union of

non-overlapping polyhedra, denoted and respectively, their intersection

A ∩ B is where , and .

Proof.- Consider one polyhedron from each region, say and . Their

intersection , is clearly in A ∩ B. Moreover is non-overlap-

ping with any other , and any other because of the non-overlapping property of

the sets and . Then is non-overlapping with any other

. Finally suppose that there is an element x ∈ A ∩ B but not in

Figure 5.3.3 Region of the linearization of a constraint equation.

τ

δ

PAi
i

∪ PBj
j

∪

PAB
ij

i j,
∪ PAB

ij PAi PBj∩= i j,() k l,()≠∀ PAB
ij PAB

kl∩, φ=

PAi1
PBj1

PAB
i1j1

PAi1
PBj1

∩= PAB
i1j1

PAk PBl

PAi
i

∪ PBj
j

∪ PAB
i1j1

PAB
kl PAk PBl∩=

160

. But then x must belong to one component of A and one component of

B, and therefore x must be in one partial intersection .

Lemma 5.3.6 states that the intersection of two (possibly non-convex and discon-

nected) regions described as the union of non-overlapping polyhedra can also be described

as the union of non-overlapping polyhedra.

Lemma 5.3.7.- The region of the linearization of a constraint equation can be rep-

resented as the union of non-overlapping polyhedra.

Proof.- It follows from Lemma 5.3.5.

Lemma 5.3.8.- The region of the linearization of a constraint equation

gcij(k, τ, δ) ∈ ∆ij is identical to the region R∆ij(k) of the k-th time separation (refer to

Definition 5.3.3).

Proof.- We have to show that every point in the region of the linearization belongs

to the region of the k-th time separation, and that there are no points belonging to the

region of the k-th time separation that do not belong to the region of the linearization.

Assume that there is a point (τ0, δ0) which is in the region of the linearization. Then

(τ0, δ0) is in the polyhedron of a linear sub-case, which corresponds to a specialization of

the constraint equation gcij(k, τ, δ) ∈ ∆ij in which exactly one term of each max/min term

has been chosen as a winner according to Definitions 5.3.10 and 5.3.11. Therefore

gcij(k, τ0, δ0) ∈ ∆ij must hold. Now suppose that there is a point (τ0, δ0) that is in the region

of the k-th time separation. Then gcij(k, τ0, δ0) ∈ ∆ij holds. Evaluate every max/min term

and identify a winner. Then (τ0, δ0) must belong to the polyhedron of the sub-case that

corresponds to the identified winner selection.

PAB
ij

i j,
∪ PAi PBj

PAi PBj∩

161

The total region RT(cij) of a constraint rule cij (refer to Definition 5.3.6) is the inter-

section of the regions of the constraint equations gcij(k, τ0, δ0) ∈ ∆ij for k > 0. The feasible

region of a complete graph (refer to Definition 5.3.8) is the intersection of all the total

regions of the constraint rules of the complete graph with the allowed region for (τ, δ)

Rτ+a. From Lemma 5.3.6, the feasible region can be described as the union of non-overlap-

ping polyhedra.

Theorem 5.3.9.- The feasible region of the linearization of a constraint equation

can be represented as the union of non-overlapping polyhedra.

Proof.- It follows from Definitions 5.3.6, 5.3.7, and 5.3.8, and Lemmas 5.3.6,

5.3.7, and 5.3.8.

Notice that from the previous discussion, the feasible region is not convex in gen-

eral.

The final step to find the solution of TAFS is to perform a δ-reduction of the feasi-

ble region (refer to Definition 5.3.9). That is the topic of Section 5.3.4. Before tackling the

reduction problem, we present a simple example in the following section to clarify the

ideas presented so far, and to motivate the basis of our δ-reduction procedure.

5.3.3 An illustrative example

In this section we use a cycle-invariant constraint to walk through the steps necessary to

solve a TAFS problem.

Consider for example the partial unfolding from the cycle-invariant fork transition

of transitions c and d shown in Figure 5.3.4. The constraint rule has associated interval

∆ = [0, 2]. There are three places (edges) labeled with random variables τ1, δ1 and δ2. The

pdf of random variable τ1 is known and its projection is the interval [0, 1]. TheRτ1

162

allowed region Ra of the unknown random variables δ1 and δ2 is the non-negative quad-

rant, i.e. Ra = {(δ1, δ2) ∈ R2 | δ1, δ2 ≥ 0}.

Assuming that the invariance of the constraint equation applies for all k > 0, the

region of the invariant constraint separation is also the total region of the constraint rule.

The feasible region is given by the intersection of the total regions of the constraints (in

our example, only one) with the allowed region Rτ+a = {(τ1, δ1, δ2) | τ1 ∈ [0,1],

δ1, δ2 ≥ 0}. The invariant constraint equation is:

δ1 + δ2 − τ1 ∈ [0, 2] (Eq. 5.3.3)

which does not contain non-linear terms. This fact simplifies the visualization of the prob-

lem by not having to draw a cluttered region. Recall that non-linear max/min terms can be

linearized so that the only difference is that we have to consider several linear sub-cases.

The constraint equation defines a region between the hyperplanes δ1 + δ2 − τ1 = 0 and

δ1 + δ2 − τ1 = 2. The feasible region is shown in Figure 5.3.5, which is a 3-D polyhedron

with its apex at the origin (the dashed lines are hidden lines).

We now introduce some important ideas informally that are the basis of our

δ-reduction procedure. As discussed in Section 5.3.1, the feasible region contains some

values of δ that, although they satisfy the constraints, they do only for certain values of τ.

Figure 5.3.4 Computing the projection of fδ1δ2(δ1, δ2).

a

δ1

δ2

τ1

b

c

d
∆

163

For example, δ1 = 0 and δ2 = 0 satisfy ∆ only for τ1 = 0. The solution region of δ must sat-

isfy the constraints for all possible values of τ.

In Section 5.3.1 we suggested a procedure that “cuts” the feasible region in infini-

tesimal “slices” of Ra, and orthogonal to Rδ. In our example, the slices would be planes

parallel to plane δ1-δ2. Then the region representing the δ-reduction is computed as the

intersection of all such slices. Such a procedure is not practical because it involves an infi-

nite number of slices. However if the feasible region is convex, then one needs only con-

sider a finite number of slices of Ra, namely the slices that intersect one or more of the

extreme points, or vertices, of the feasible region, as we shall prove in the following sec-

tion. For the moment notice that to find out the δ-reduction of the feasible region shown in

Figure 5.3.5, one has to consider only the two slices of Ra that intersect hyperplanes τ1 = 0

and τ1 = 1. The intersection of these two slices is the intersection of all the slices between

τ1 = 0 and τ1 = 1. The δ-reduction of the feasible region in Figure 5.3.5 is shown in

Figure 5.3.6.

The ideas discussed above can be applied only to convex regions. From the discus-

sion of the previous section, one knows that the feasible region is not necessarily convex,

Figure 5.3.5 The feasible region RT.

δ1

δ2

τ1

1

2 3

2

3

δ1 + δ2 − τ1 = 0

δ1 + δ2 − τ1 = 2

164

but it can be represented as the union of non-overlapping convex polyhedra. And because

the intersection of such non-convex regions can also be expressed as the union of non-

overlapping polyhedra, we shall apply those ideas to the convex components of the feasi-

ble region (i.e., the polyhedra that form the feasible region).

5.3.4 Reduction of the feasible region

In this section we present a procedure that obtains the δ-reduction of a feasible region.

From Section 5.3.1, the δ-reduction of the feasible region of an AOC cycle-invariant com-

plete graph is the solution of the corresponding TAFS problem. We first present some basic

definitions. We start with a standard definition of an extreme point of polyhedra (cf. [30]).

Definition 5.3.21.- Given a polyhedron P ⊆ Rk and two points y, z ∈ P, a point

x ∈ P is an extreme point of P if x = λy + (1 − λ)z for all λ such that 0< λ < 1 implies that

x = y = z.

The set of extreme points of a polyhedron are called vertices.

To describe our reduction procedure, we need to introduce the following defini-

tions:

Figure 5.3.6 Projection Rδ of fδ1δ2(δ1, δ2).

δ1

δ2

1 2 3

2

3

1

165

Definition 5.3.22.- Given a polyhedron P ⊆ Rm+n, and a point τ0 ∈ Rm, the slice of

P at τ0 is denoted by P(τ0) = { δ ∈ Rn | (τ0, δ) ∈ P}.

Definition 5.3.23.- Given a point x = (τ, δ) of a polyhedron P ⊆ Rm+n, where

τ ∈ Rm and δ ∈ Rn are x’s components, the τ-projection of x into Rm is x’s τ component.

Definition 5.3.24.- Given a polyhedron P ⊆ Rm+n, its τ-region is the region

Pτ = { τ ∈ Rm | δ ∈ Rn and (τ, δ) ∈ P}.

Notice that the region described by Pτ is the projection of region P in (m+n)-

dimensional space onto the m-dimensional space of τ. (In our application, τ represents the

set of known delays, and Pτ corresponds to the given projection of the joint pdf of fτ(τ).)

The following definition corresponds to Definition 5.3.9 for the case that the feasible

region is a convex region (i.e., for the case that the feasible region can be described by a

single convex polyhedron):

Definition 5.3.25.- The δ-reduction of a polyhedron P ⊆ Rm+n is the region

Pδ = { δ ∈ Rn | ∀τ ∈ Pτ, (τ, δ) ∈ P}, where Pτ is the τ-region of P.

Please refer to Figure 5.3.2. One can see that the δ-reduction is the set of δ values

that satisfy a given constraint ∆ for all values of τ. The following lemma gives a general,

although not practical, procedure to obtain the δ-reduction of a polyhedron.

Lemma 5.3.10.- Let P ⊆ Rm+n be a polyhedron, then the δ-reduction of P is given

by:

(Eq. 5.3.4)

where xi ∈ P, τi is the τ-projections of xi, P(τi) is the slice of P at τi, and the intersection is

carried out over all xi ∈ P.

Pδ P τi()
i

∩=

166

Proof.- Let δ1 ∈ Pδ, then according to Definition 5.3.25 δ1 must belong to Pδ

because it must appear in every slice of P. Let δ2 ∈ Pδ. According to Definition 5.3.25

(τ, δ2) belongs to P for every τ-projection τ of P. Then δ2 must be a point of the intersec-

tion.

We will need the following lemma later on:

Lemma 5.3.11.- Given a polyhedron P ⊆ Rm+n and a point x0 ∈ P, the slice P(τ0),

where τ0 is the τ-projection of x0, is a polyhedron in Rn.

Proof.- P can be represented by a set of inequalities on variables (τ, δ), where

τ ∈ Rm and δ ∈ Rn. P(τ0) is represented by the same set of inequalities on variables δ by

substituting τ by τ0, which describes a polyhedron in Rn.

The following Lemma states that the polyhedron reduction can be computed by

considering only the extreme points of the polyhedron. Fortunately the number of extreme

points of a polyhedron described by a finite set of linear inequalities is finite [109].

Lemma 5.3.12.- Let P ⊆ Rm+n be a bounded polyhedron and let Ψ be the set

{ τi ∈ Rm| xi=(τi,δj) is an extreme point of P} with N elements, then the δ-reduction of P is
given by:

(Eq. 5.3.5)

where P(τi) is the slice of P at τi.

Proof.- Notice that Ψ is the set of τ-projections of the extreme points of P. We

want to show that the slice of P at the τ-projection of any point xo ∈ P contains . This is

clearly true if or if xo is an extreme point of P. We need to prove that this is also

the case when is not empty and xo is not an extreme point of P. For a τi ∈ Ψ, let us

Pδ Pδ
e P τi()

i

N

∩≡=

Pδ
e

Pδ
e φ=

Pδ
e

167

define the set of points ext(τi) = {(τi, δj) | δj is an extreme point of }. A point x ∈ ext(τi)

is in P because its τ component is an extreme point of P and its δ component belongs to

 which is included in P(τi). Let us construct P′ as the convex hull of the set of points

 over all τi ∈ Ψ. Notice that the τ-projection set {τ | (τ,δ) ∈ P′} is the

convex hull of Ψ because the τ-projection set of χ′ is Ψ. But {τ | (τ,δ) ∈ P} is also the con-

vex hull of Ψ. Thus for any xo = (τ0,δ0) ∈ P there exists at least one point x′o = (τ0,δ′0) ∈ P′,

therefore P′(τ0) ⊆ P(τ0). Since by contruction P′(τ0) = , then ⊆ P(τo).

To illustrate Lemma 5.3.12, consider the 2-dimensional polyhedron shown in

Figure 5.3.6. The polyhedron has five vertices v1, v2, v3, v4 and v5. The procedure stated in

the lemma finds the δ-reduction as the intersection of the slices at each of the vertices,

which are shown in the figure as vertical dashed lines. For this example the δ-reduction

consists of point δ0.

Thus far we have considered the case of a convex feasible region Rf. However Rf is

not convex in general, but by Theorem 5.3.9 it can be described as the union of non-over-

lapping convex polyhedra. Since we know how to obtain the δ-reduction of a polyhedron,

we now shall proceed to extend the δ-reduction procedure to handle the more general fea-

Figure 5.3.7 Projection Rδ of fδ1δ2(δ1, δ2).

Pδ
e

Pδ
e

χ' ext τi()i

N
∪=

Pδ
e Pδ

e

τ

δ

1 2 3

2

3

1

v5

v4

v3

v2

v1

δ0

168

sible region. In the sequel we consider the feasible region Rf of a TAFS problem for a cycle-

invariant AOC complete graph.

Definition 5.3.26.- Given the feasible region Rf ⊆ Rm+n of a TAFS problem, the

τ-projection of Rf is Rτ = { τ ∈ Rm | δ ∈ Rn, (τ, δ) ∈ Rf}.

Definition 5.3.27.- Given the feasible region Rf ⊆ Rm+n of a TAFS problem, the

δ-reduction of Rf is Rδ = { δ ∈ Rn | ∀τ ∈ Rτ, (τ, δ) ∈ Rf}.

Definition 5.3.28.- The slice of a feasible region Rf ⊆ Rm+n at τ0, where τi ∈ Rτ, is

Rf(τ0) = { δ ∈ Rn | (τ0, δ) ∈ Rf}.

Lemma 5.3.13.- The slice of Rf at τ0 is .

Proof.- From Lemma 5.3.9, Rf can be represented as the union of non-overlapping

polyhedra Pfi.

Lemma 5.3.14.- The δ-reduction of a feasible region Rf of a TAFS problem is

.

Proof.- If point δ0 belongs to the intersection, then it belongs to every slice of Rf.

Thus δ0 satisfies Definition 5.3.27. Conversely if δ0 belongs to the reduction of Rf, then it

must belong to every slice of Rf.

Definition 5.3.29.- Given a feasible region of a TAFS problem, the set

{ xj} of extreme points of Rf is the union of all extreme points of the non-overlapping poly-

hedra Pfi that form Rf.

Rf τ0() Pfi τ0()
i

∪=

Rδ Rf τ0()
τ0 Rτ∈∀
∩=

Rf Pfi
i

∪=

169

Definition 5.3.30.- Given a feasible region of a TAFS problem, and

the N τ-projections τj of the set of extreme points of Rf, a selection S(i1, … , ij, … , iN) of

Rf is a set of slices in which an arbitrary polyhedron

 is selected for each τj.

Thus in a selection of Rf, there is exactly one slice of Rf at each τ-projection τj of an

extreme point. Notice that the same polyhedron can be selected for different τj.

Lemma 5.3.15.- Given a feasible region of a TAFS problem represented by M non-

overlapping polyhedra Pfi which has N τ-projections τj of its set of extreme points, there

are MN different possible selections.

Proof.- For each τ-projection τj any non-overlapping polyhedra Pfi can be chosen

(i.e., the same Pfi can be chosen for different τj’s).

In the following definition, we use the shorthand Sl to denote a selection.

Definition 5.3.31.- The region of a selection Sl = S(i1, …, iN) of a feasible region is

.

Lemma 5.3.16.- Given the intersections of two different selections Sl1 and Sl2,

RSl1 ∩ RSl2 = ∅.

Proof.- Selections Sl1 and Sl2 contain at least one different Pfi for a given τj, say

 and , k ≠ l, which are non-overlapping.

Rf Pfi
i

∪=

Pfi1
τ1()… P, fi j

τj() … Pfin
τN(), ,{ }

Pfi j

Pfi j

RSl Pfi jj 1=

N

∩=

Pfi j
k

τj k
() Pfi j

l

τj l
()

170

Theorem 5.3.17.- Let Rf be the feasible region of a TAFS problem. The δ-reduction

of Rf is , where the union is over the MN selections of Rf.

Proof.- Each corresponds to the δ-reduction of the portion of Rf corresponding

to the selection of non-overlapping polyhedra Pfi of Rf, therefore each belongs to the

δ-reduction of Rf. Now we show that all the points of Rδ also belong to the union. Suppose

there is such a point δ0, that is in Rδ but not in the union. Then for all τ ∈ Rτ, (τ, δ0) ∈ Rf.

In particular, if τj is the τ-projection of an extreme point of Rf, (τj, δ0) ∈ Rf. But

δ0 ∈ . Because δ0 is not in the union (i.e., there is no region of a selection involving

 which contains δ0), then there must exist a τ0 ∈ Rτ such that (τ0, δ0) ∉ Rf, which is

a contradiction.

Theorem 5.3.17 suggests a procedure to obtain the reduction of the feasible region

of a TAFS problem, thus yielding the solution of TAFS.

Procedure 5.3.2.- Given the feasible region Rf of a TAFS problem for a cycle-

invariant AOC complete graph, to find the δ-reduction of Rf:

1. Find the set {xj} of extreme points of Rf.

2. Find the slices Rf(τj) of Rf at the τ-projections {τj} of the extreme points.

3. Obtain all the selections of Rf.

4. The δ-reduction Rδ of Rf is the union of the non-overlapping regions of the

selections of Rf.

Consider for example the feasible region shown in Figure 5.3.8, which consists of

two convex non-overlapping polygons Pf1 and Pf2. Polygon Pf1 has four extreme points

Rδ Sli

l i

∪=

Sli

Sl i

Pfi i
τj()

Pfi i
τj()

171

and Pf2 has five, while the feasible region has eight (one is common to both Pf1 and Pf2).

However there are only three τ-projections of the extreme points because some extreme

points have the same τ-component.

Because there are three τ-projections of the extreme points and two polygons

forming Rf, the number of possible selection is 23 = 8. One selection is {Pf2(τ1), Pf2(τ2),

Pf1(τ3)} whose region is the shaded interval of δ values shown in Figure 5.3.8 (an interval

or line segment is a 1-dimensional polyhedron). The other selections whose regions are

non-empty are {Pf1(τ1), Pf1(τ2), Pf1(τ3)} and {Pf2(τ1), Pf2(τ2), Pf2(τ3)}.

Figure 5.3.8 A feasible region.

Figure 5.3.9 The δ-reduction of the feasible region shown in Figure 5.3.8.

τ

δ

τ1 τ2 τ3

Pf1

Pf2

τ

δ

τ1 τ2 τ3

Pf1

Pf2

Rδ

172

The δ-reduction of the feasible region, shown in Figure 5.3.9, is the union of the

regions of the three non-empty selections. It consists of two disconnected intervals of δ

values.

Procedure 5.3.2 is correct based upon the results of this section, particularly

Theorem 5.3.17. However the running complexity of Procedure 5.3.2 is proportional to the

number of selections of Rf, which can be worst-case exponential in the number of extreme

points of Rf, although in the examples that we have worked out most of the regions of

selections are empty. The number of extreme points of a polyhedron can also be exponen-

tial on the dimension of the polyhedron [89]. However the τ-projection reduces the num-

ber of slices that need be considered. At the moment we do not have empirical results to be

able to estimate the running time for the average case. Thus it is important for future work

to conduct analysis of the running complexity of our Procedure for average cases and also

to develop a more efficient δ-reduction algorithms.

Although different algorithms to find the extreme points of a polyhedron exist in

the literature [7, 27, 109, 40, 8, 5], we have used Prof. Fukuda’s cdd algorithm, which is

discussed in [55]. We are very grateful to Prof. Fukuda for making his code available to us

and for providing us with important pointers on this topic.

5.4 Bus arbitration interface example

In this section we apply the concepts developed in the previous sections of this chapter to

analyze the bus arbitration interface design described in Chapter 3. We show that TAFS can

be used to determine the feasibility of an interface design before the interface is even

implemented.

173

Let us consider again the bus arbitration interface design shown in Figure 5.2.3.

The complete graph contains some interface delays, labeled as δi, which are unknown

prior to the interface implementation. The purpose of TAFS is to determine in the first place

if there is a possible assignment of non-negative values for the interface delays, and if so,

to determine all possible assignments. All but two constraints (∆3 and ∆4) are labeled with

the interval [0,∞). Although for TAFS one would have to consider all the constraints, to be

able to visualize the solution we shall concentrate on studying the effect of constraints

labeled with intervals ∆3 and ∆4, which are the two critical timing constraints given in the

VMEbus specification.

First we write the constraint equations (refer to Section 3.3.4) corresponding to ∆3

and ∆4. The cycle-invariant fork transition, for k > 0, associated with both constraints is

signal transition GA+. The constraint equations are given by the following expressions:

{max (δ4 + δ5 + τa + τb, δ6 + τ2)} − {δ3} ⊆ ∆3
{max (δ4 + δ5 + τa + τb, δ6 + τ2)} ⊆ ∆4

We proceed to apply the TAFS procedure discussed in the previous section. We lin-

earize the max term (common to both equations) by considering two cases:

1. δ4 + δ5 + τa + τb ≥ δ6 + τ2

{δ4 + δ5 + τa + τb} − {δ3} ⊆ ∆3
{δ4 + δ5 + τa + τb} ⊆ ∆4

2. δ4 + δ5 + τa + τb ≤ δ6 + τ2

{ δ6 + τ2} − {δ3} ⊆ ∆3
{ δ6 + τ2} ⊆ ∆3

Using the following values for the projections of the known delays: τ2 ∈ [15, 30],

τa ∈ [20, 80], τb ∈ [40, 100], and the constraint windows ∆3 = [30, ∞), and ∆4 = [90, ∞),

one can write the following two sets of linear inequalities:

174

Case 1:

τ2 − τa − τb − δ4 − δ5 + δ6 ≤ 0
− τa − τb + δ3 − δ4 − δ5 ≤ -30
− τa − τb − δ4 − δ5 ≤ -90
15 ≤ τ2 ≤ 30
20 ≤ τa ≤ 80
40 ≤ τb ≤ 100
δi ≥ 0, for i = 3 to 6

Case 2:

− τ2 + τa + τb + δ4 + δ5 − δ6 ≤ 0
− τ2 + δ3 − δ6 ≤ -30
− τ2 − δ6 ≤ -90
15 ≤ τ2 ≤ 30
20 ≤ τa ≤ 80
40 ≤ τb ≤ 100
δi ≥ 0, for i = 3 to 6

Because the delays τa and τb are independent, it is possible to combine them into a

single delay τab, such that 60≤ τab ≤ 180, to simplify our analysis. One can obtain the

extreme points of the polyhedra described by the two set of inequalities using cdd[56].

The τ-projections (τ2, τab) of the extreme points are: (15, 60), (15, 90), (15, 180), (30, 60),

(30, 90), and (30, 180). Hence there are 26 selections, but only 7 are non-empty:

{ P1(15, 60), P1(15, 90), P1(15, 180), P1(30, 60), P1(30, 90), P1(30, 180)}
{ P1(15, 60), P1(15, 90), P1(15, 180), P2(30, 60), P1(30, 90), P1(30, 180)}
{ P2(15, 60), P1(15, 90), P1(15, 180), P2(30, 60), P1(30, 90), P1(30, 180)}
{ P2(15, 60), P1(15, 90), P1(15, 180), P2(30, 60), P2(30, 90), P1(30, 180)}
{ P2(15, 60), P2(15, 90), P1(15, 180), P2(30, 60), P2(30, 90), P1(30, 180)}
{ P2(15, 60), P2(15, 90), P1(15, 180), P2(30, 60), P2(30, 90), P2(30, 180)}
{ P2(15, 60), P2(15, 90), P2(15, 180), P2(30, 60), P2(30, 90), P2(30, 180)}

where P1 and P2 are the polyhedra described by cases 1 and 2 above respectively.

175

Figure 5.4.1 shows the union of the regions of the non-empty selections, which is a

(non-convex) region in the {δ3, δ4, δ5, δ6} space (one of the axis is labeled δ4 + δ5 to make

possible to display the solution in three dimensions), which is the solution of TAFS. The δ-

reduction is the volume bounded by planes that extend to infinity in the directions shown

by the five pointers, reflecting the fact that arbitrary large delays are accommodated by the

handshakes in the VMEbus and DMA bus arbitration protocols. Small values for the inter-

face delays however can cause violations of the timing constraints. The relation between

the δ’s is shown in the polytope. For instance, the plane below the pointer starting at (δ3,

δ4+δ5, δ6) = (30, 60, 0) is the region where the path through δ4 and δ5 is too fast with

respect to the δ3 path, which causes a violation of ∆3.

Informally a delay-insensitive circuit is defined as a circuit whose correct opera-

tion is independent of circuit delays. The bus arbitration interface is clearly not delay-

insensitive, otherwise its solution would consist of the whole positive octant.

If constraints ∆3 and ∆4 are narrowed to intervals [30, 100] and [90, 200], the solu-

tion is shown in Figure 5.4.2. In this case the δ-reduction is a convex region. One can see

that the solution region in Figure 5.4.2 is inside the solution region shown in Figure 5.4.1

as expected.

Figure 5.4.1 TAFS solution for ∆3 = [30, ∞) and ∆4 = [90, ∞).

δ3

60
75

δ4 + δ5

δ6
30

176

5.5 Summary

In this chapter we formulated the timing analysis for synthesis problem of an interface

design described by a complete graph. The underlying net of the complete graph is par-

tially specified: only the projection of the joint pdf of a sub-set of the delays is known, and

the task is to determine the maximal (i.e. largest) projection of a joint pdf that can charac-

terize the rest of the delays so that all the constraint rules of the complete graph are satis-

fied.

We have shown that TAFS problem is complex because it involves non-convex pro-

gramming due to the presence of non-linearities in the constraint equations that describe

the conditions that must hold for the constraints to be satisfied. Our main contribution is to

have developed a strategy that describes the non-convex regions by the union of non-over-

lapping convex regions, so that standard techniques from convex programming can be

applied.

We have also shown that for such a representation, the solution of TAFS, called

δ-reduction, for cycle-invariant AOC complete graphs amounts to finding the union of a

finite number of intersections of convex regions. Although our proposed procedure that

obtains the δ-reduction is not computationally efficient, we believe that the development

of more efficient algorithms is a promising area of future research.

Figure 5.4.2 TAFS solution for ∆3 = [30, 100] and ∆4 = [90, 200].

d3

80
100

155

95 150 170

d4 + d5

d6
20

Chapter 6

Conclusions 6

6.1 Overview of the main contributions

In this dissertation we have presented some results on the topic of timing specification,

timing verification and timing analysis for synthesis of hardware interface circuits.

Firstly, we have proposed an interface specification graph suitable to specify inter-

face specifications. Our interface specification graphs include two types of timing rela-

tionships with different semantics: timing delays and timing constraints. The operational

aspect of an interface specification, timing delays, is captured using a timed signal transi-

tion graph (STG). Other timed STG’s have been proposed previously in the literature, how-

ever our STG model, which has an underlying probabilistic timed Petri net, is more general

in the sense that a delay is represented by a random variable while in previous efforts it is

characterized by an interval [dmin, dmax]. One important feature of our timed STG’s is that

they allow us to describe delay correlation. Moreover the probabilistic view of delays pro-

vides us with a statistical view of the timed behavior that proves essential for a reliability

analysis.

Secondly we have developed a formal timing verification technique that can check

if a system satisfies a set of given timing constraints. The technique is applicable to closed

systems, that is systems that are self-contained and do not require to interact with an envi-

ronment, represented by complete graphs. The type of closed systems that so far we are

178

able to verify are the sub-class of AOC complete graphs, in which only AND and OR causal-

ity are allowed, such that each pair of transitions associated with a timing constraint has a

cycle-invariant fork transition. This is not a very serious restriction. On the one hand the

presence of a cycle-invariant fork transition guarantees that the timed behavior of the cir-

cuit is repeatable and thus predictable which is a desirable property of a circuit (although

as was mentioned in this dissertation, the converse is not in general true; that is, the

absence of a cycle-invariant fork transition does not imply that the timed behavior is not

repeatable). On the other hand more complex behaviors, for instance behaviors with free

choice, can be transformed into a collection of simple behaviors with only AND and OR

causality by using the idea of processes (although there is potentially the problem of

obtaining a large number of such simple behaviors). This restriction has been met by the

components that we have modeled so far. Extending our timing verification technique is of

course a valuable direction to pursue in future work. It is important to note two major fea-

tures:

1. First, in contrast with previous interface timing verification techniques, for the

case that some of the timing constraints are not satisfied, our technique can

determine the probability that such constraints would be violated. This infor-

mation can be used to support a design for manufacturability methodology.

2. Second the probabilistic treatment admits taking timing correlation into con-

sideration, thus delivering a more accurate analysis as was illustrated in this

dissertation.

Finally, we developed a technique that we have called timing analysis for synthesis

(TAFS). With TAFS it is possible to investigate the feasibility of an interface design prior to

interface synthesis by finding the tightest bounds of the interface delays such that all the

timing constraints are satisfied. The solution (interface delay) space is not convex in gen-

eral which makes this problem very difficult. A key result of our work is that we express

the solution space as the union of non-overlapping convex regions thus allowing us to use

convex techniques. TAFS facilitates the exploration of interface designs without having to

179

go through the expensive process of producing a corresponding implementation to be able

to ascertain that the interface circuit will satisfy the given timing constraints.

6.2 Future work

In this section we present some directions that we consider worth pursuing as future

research. Some of our contributions, due to their novelty, are in an early stage of develop-

ment and therefore more work is needed to achieve maturity. Predicting the future is

always a risky business, and thus we do not claim to hold the truth and we encourage the

reader to explore the directions he or she considers important.

A first direction, as hinted in the previous section, is to extend our techniques so

that they can handle richer timed behaviors. A clear candidate is the class of AND/OR cau-

sality with free choice. Another interesting problem is to extend the techniques so they can

handle constrained transitions for which there is no cycle-invariant fork transition;

although we think that maintaining repeatibility of the behavior is highly desirable.

Improving the efficiency of our techniques is another important direction other-

wise our techniques cannot directly be applied to large-scale problems. The general prob-

lem is NP-complete. One can attack this difficulty using two different strategies:

1. By developing heuristics that although they may not guarantee an exact solu-

tion they should not find a wrong solution; in the probabilistic timing verifica-

tion, a wrong solution is to underestimate the probability that a timing

constraint would be violated; in the timing analysis for synthesis a wrong solu-

tion is to determine that there is a solution space for an infeasible interface

design.

2. By identifying special cases for which the time complexity of the techniques is

significantly reduced. As a simple example, if only single causality is allowed

180

TAFS can be solved by a linear program. Another example is to restrict the type

of probability density functions that characterize the circuit delays (e.g. Gauss-

ian pdf’s).

We also believe that our probabilistic timed Petri nets can be used in related areas

such as real-time systems, distributed systems, computer networks, etc. As an example, we

show in Appendix A the modelling and analysis of a Seitz arbiter using our probabilistic

timed STG’s.

A final direction we suggest is to investigate if our techniques can be used in a

hierarchical methodology. In such a methodology one can use the fact that a set of mod-

ules has been verified to work correctly to prove that a system composed of such modules

also works correctly. This is a powerful mechanism to contain the ever-increasing com-

plexity of hardware systems. An example is a delay-insensitive methodology that uses cir-

cuits which behave correctly in the presence of arbitrary delay variations. (Notice that

TAFS can determine if an interface design is delay-insensitive, namely when the solution

space does not restrict any of the interface delays.)

181

Bibliography 7

[1] M. Ajmone Marsan, G. Balbo, A. Bobbio, G. Chila, G. Conte and A. Cumani,
“On Petri nets with stochastic timing”, in Proceedings of the International
Workshop on Timed Petri nets, pp. 80–87, 1985.

[2] T. Amon and G. Borriello, “An approach to symbolic timing verification,” in
Proceedings of the 29th ACM/IEEE Design Automation Conference, pp. 410–
413, 1992.

[3] T. Amon, H. Hulgaard, S. M. Burns, and G. Borriello, “An algorithm for exact
bounds on the time separation of events in concurrent systems,” in Proceedings
of the International Conference on Computer Design, pp. 166–173, 1993.

[4] Analog Devices, ADSP-21060/62 SHARC data sheet, Norwood, MA,
November 1994.

[5] D. Avis, “A C implementation of the reverse search vertex enumeration
algorithm”, Technical report, School of Computer Science, McGill University,
Montreal, Canada, 1993.

[6] F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat. Synchronization and
Linearity. Wiley series in Probability and Mathematical Statistics. New
York:Wiley and Sons, 1992.

[7] M. L.Balinski, “An algorithm for finding all vertices of convex polyhedral
sets”, Journal of the Society of Industrial Applied Mathematics, Vol. 9, No. 1,
pp. 72–88, March 1961.

[8] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algorithm for
convex hulls”, Technical report GCC53, The Geometry Center, Minnesota,
U.S.A., 1993.

[9] M. Berkelaar, “Statistical delay calculation”, in Notes of the International
Workshop on Logic Synthesis”, Lake Tahoe, May 1997.

[10] M. Berkelaar, “Statistical delay calculation, a linear time method”, in Proc. of
the International Workshop on Timing Analysis TAU’97, pp 15–24, November
1997.

182

[11] B. Berthomieu and M. Diaz, “Modeling and verification of time dependent
systems using time petri nets,” IEEE Transactions on Software Engineering,
vol. 17, pp. 259–273, March 1991.

[12] E. Best and J. Desel, “Partial order behavior and structure of Petri nets”,
Formal Aspects of Computing, vol. 2, pp. 123–138, 1990.

[13] W. P. Birmingham and D. P. Siewiorek, “Single board computer synthesis,” in
Expert Systems for Engineering Design (M. D. Rychener, ed.), chapter 5,
pp. 113–139, Boston: Academic Press, 1988.

[14] W. P. Birmingham, A. P. Gupta, and D. P. Siewiorek, “The MICON system for
computer design,” IEEE Micro, vol. 9, pp. 61–67, October 1989.

[15] G. V. Bochmann, “Hardware specification with temporal logic: An example,”
IEEE Transactions on Computers, vol. C-31, pp. 223–231, Mar. 1982.

[16] G. Borriello and R. H. Katz, “Synthesis and optimization of interface
transducer logic,” in Proceedings of the International Conference on
Computer-Aided Design, pp. 274–277, 1987.

[17] J. A. Brzozowski, T. Gahlinger, and F. Mavaddat, “Consistency and
satisfiability of waveform timing specifications,” Networks, vol. 21, pp. 91–
107, Jan. 1991.

[18] B. Büeler, A. Enge, K. Fukuda and H.-J. Lüthi, “Exact Volume Computation
for Polytopes: A Practical Study,” Technical report, Institute for Operations
Research, Swiss Federal Institute of Technology, Zurich, Switzerland.

[19] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang,

“Symbolic model checking: 1020 states and beyond,” in Proceedings of the
Fifth Annual Symposium on Logic in Computer Science, June 1990.

[20] T. M. Burks and K. A. Sakallah, “Min-max linear programming and the timing
analysis of digital circuits”, in Proceedings of the International Conference on
Computer Design, pp. 152–155, 1993.

[21] S. M. Burns and A. J. Martin, “Syntax-directed translation of concurrent
programs into self-timed circuits,” in Proceedings of the Fifth MIT Conference
on Advanced Research in VLSI (J. Allen and F. Leighton, eds.), pp. 35–50,
Cambridge, Massachussetts: MIT Press, 1988.

[22] S. M. Burns, “Performance analysis and optimization of asynchronous
circuits,” PhD dissertation, Tech. Rep. Caltech-CS-TR-91-01, December 1990.

183

[23] S. M. Burns, Personal communication, Intel Corp., January 1997.

[24] R. Camposano, L. F. Saunders, and R. M. Tabet, “VHDL as input for High-
level synthesis,” IEEE Design & Test of Computers, pp. 43–49, Mar. 1991.

[25] E. Cerny and K. Khordoc, “Interface Specifications with conjunctive timing
constraints: realizability and compatibility”, in Proceedings of the 2nd AMAST
Workshop on Real-Time Systems, 1995.

[26] B. Chandrasekaran and S. Mittal, “Deep versus compiled knowledge
approaches to diagnostic problem-solving,” in Development in Expert Systems,
London: Academic Press, 1984.

[27] N. V. Chernikova, “An algorithm for finding a general formula for non-
negative solutions of systems of linear inequalities”, U.S.S.R. Computational
Mathematics and Mathematical Physics, No. 5, pp. 228–233, 1965.

[28] Chronology. Timing Designer user’s manual. Beaverton, Oregon, 1993.

[29] T.-A. Chu, “On the models for designing VLSI asynchronous digital systems,”
INTEGRATION, the VLSI journal, no. 4, pp. 99–113, 1986.

[30] V. Chvátal. Linear Programming. New York:Freeman, 1983.

[31] E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E. Long, K. L. McMillan,
and L. A. Ness, “Verification of the Futurebus+ cache coherence protocol,” In
L. Claesen, editor, Proceedings of the Eleventh Symposium on Computer
Hardware Description Languages and their Applications. North-Holland,
April 1993.

[32] J. Cohen and T. Hickey, “Two algorithms for determining volumes of convex
polyhedra.” Journal of the ACM, vol. 26, No. 3, pp. 401–414, July 1979.

[33] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to algorithms.
Cambridge,MA: The MIT Press & McGraw-Hill, 1990.

[34] D. del Corso, H. Kirmann, and J. D. Nicoud, Microcomputer buses and links.
London: Academic Press, 1986.

[35] D. L. Dill and E. M. Clarke, “Automatic verification of asynchronous circuits
using temporal logic,” in Proceedings of the Chapell Hill Conference on VLSI
(H. Fuchs, ed.), pp. 127–143, Computer Science Press, 1985.

184

[36] D. L. Dill, S. M. Novick, and R. F. Sproull, “Automatic verification of speed-
independent circuits with petri net specifications,” in Proceedings of the
International Conference on Computer Design, pp. 212–216, 1989.

[37] N. J. Dimopoulos, “On the structure of the Homogeneous Multiprocessor,”
IEEE Transactions on Computers, vol. C-34, pp. 141–150, February 1985.

[38] N. J. Dimopoulos, K. F. Li, and E. G. Manning, “DAME: A rule based
designer of microprocessor based systems,” in Proceedings of the 2nd
International Conference on Industrial & Computer Engineering Applications
of Artificial Intelligence and Expert Systems, pp. 486–492, June 1989.

[39] N. J. Dimopoulos, B. Huber, K. F. Li, D. Caughey, M. Escalante, D. Li,
R. Burnett, and E. G. Manning, “Modelling components in DAME,” in
Proceedings of the 3rd International Conference on Industrial & Computer
Engineering Applications of Artificial Intelligence and Expert Systems,
pp. 716–725, July 1990.

[40] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag,
1987.

[41] M. Escalante, N. J. Dimopoulos, B. Huber, K. F. Li, D. Li, and E. G. Manning,
“Generic design rules for the design of microprocessor based systems in
DAME: Bus arbitration subsystem,” in Proceedings of the International
Symposium on Circuits and Systems, pp. 3166–3169, June 1991.

[42] M. A. Escalante, “Bus arbitration modelling and design in DAME: An expert
microprocessor-based-systems designer,” M. A. Sc. thesis, University of
Victoria, Department of Electrical and Computer Engineering, 1991.

[43] M. A. Escalante, B. Huber, N. J. Dimopoulos, K. F. Li, D. Li, and E. G.
Manning, “Bus arbitration modelling and design in DAME: An expert
microprocessor-based-systems-designer,” in Proceedings of the International
Symposium on Artificial Intelligence, pp. 238–244, Nov. 1991.

[44] M. A. Escalante, N. J. Dimopoulos, D. M. Miller, K. F. Li, and E. G. Manning,
“The implementor subsystem in DAME: Using OASIS to complete the design
automation of microprocessor-based systems,” in Proceedings of the Canadian
Conference on VLSI, pp. 139–146, October 1992.

[45] M. A. Escalante and M. H. M. Cheng, “Decomposing signal transition
graphs,” in Proceedings of the Canadian Conference on VLSI, pp. 3B-19–3B-
24, Nov. 1993.

185

[46] M. A. Escalante and N. J. Dimopoulos, “Timed asynchronous interface design
in microprocessor-based systems,” in Proceedings of the Canadian Conference
on VLSI, pp. 7-1–7-6, Nov. 1993.

[47] M. A. Escalante and N. J. Dimopoulos, “Timing analysis for synthesis in
microprocessor interface design,” in Proceedings of the Seventh High-Level
Synthesis Symposium, pp. 23–28, May. 1994.

[48] M. A. Escalante, “A probabilistic approach to timing analysis for synthesis and
its application to microprocessor interface design”, Technical Report
ECE 94-6, Dept. of Electrical and Computer Engineering, University of
Victoria, June 1994.

[49] M. A. Escalante, “A probabilistic timing analysis in microprocessor interface
design”, in Proceedings of the IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing, pp. 277–280, 1995.

[50] M. A. Escalante and N. J. Dimopoulos, “Assessing the Feasibility of Hardware
Interface Designs before their Implementation”, In Proceedings of the Asian
South-Pacific Design Automation Conference (ASP-DAC’95), Chiba, Japan,
August 1995.

[51] M. A. Escalante, N. Dimopoulos, D. Gyuroff, and H. Müller, “Timing analysis
for synthesis of hardware interface controllers using timed signal transition
graphs”, in Proceedings of the 8th International Workshop on Petri nets and
Performance Models, pp. 232–240, 1995.

[52] M. A. Escalante and N. J. Dimopoulos, “Modeling Timing Correlation and the
Accurate Timing Verification of Digital Interface Circuits”, In Proceedings of
the Mid-West Symposium on Circuits and Systems, Des Moines, Iowa, August
1996.

[53] M. A. Escalante, L. Lavagno, and N. J. Dimopoulos, “Performance Analysis of
an Arbiter using Probabilistic Timed Petri Nets”, In Proceedings of the
International Workshop on Logic Synthesis, Lake Tahoe, May 1997.

[54] J. Esparza, “A partial order approach to model checking”, Manuscript, Institut
für Informatik, Universität Hildesheim, Germany, February 1993.

[55] K. Fukuda, “cdd.c: A C-implementation of the double description method for
computing all vertices and extremal rays of a convex polyhedron given by a
system of linear inequalities”, Technical report, Department of Mathematics,
Swiss Federal Institute of Technology, Zurich, Switzerland, 1993.

186

[56] K. Fukuda, “Cdd user’s manual,” Institute for Operations Research, Swiss
Federal Institute of Technology, Zurich, Switzerland, 1996.

[57] M. R. Garey and D. S. Johnshon. Computers and Intractability: A guide to the
theory of NP-Completeness. W. H. Freeman and Company. 1979.

[58] A. Gibbons. Algorithmic Graph Theory. Cambridge:Cambridge University
Press, 1989.

[59] P. Gritzmann and V. Klee, “On the complexity of some basic problems in
computational convexity: Volume and mixed volumes,” Technical Report 94-
07, Universität Trier, 1994.

[60] B. Grünbaum. Convex Polytopes. London:John Wiley and Sons, 1967.

[61] J. Gunawardena, “Causal automata,” Theoretical Computer Science, vol. 101,
no. 2, pp. 265–288, 1992.

[62] B. T. Hailpern, “Verifying concurrent processes using temporal logic,” Tech.
Rep. 195, Computer Systems Laboratory, Stanford Univ., Stanford, CA, 1980.

[63] C. A. R. Hoare, “Communicating sequential processes,” Communications of
the ACM, vol. 21, pp. 666–677, Aug. 1978.

[64] L.A. Hollaar, “Direct implementation of asynchronous control units,” IEEE
Transactions on Computers, vol. C-31, pp. 1133–1141, December 1982.

[65] B. Huber, M. Escalante, D. Caughey, N. J. Dimopoulos, K. F. Li, D. Li, and
E. G. Manning, “Microprocessor components and signal behavior modelling in
DAME,” in Proceedings of the Canadian Conference on Electrical and
Computer Engineering, vol. 1, pp. 19.4.1–19.4.4, September 1990.

[66] H. Hulgaard, S. M. Burns, T. Amon, and G. Borriello, “Practical applications
of an efficient time separation of events algorithm,” in Proceedings of the
International Conference on Computer-Aided Design, pp. 146–151, IEEE,
1993.

[67] H. Hulgaard, Timing analysis and verification of timed asynchronous circuits.
PhD dissertation, University of Washington, 1995.

[68] E. Hyvönen, “Constraint reasoning based on interval arithmetic: the tolerance
propagation approach,” Artificial Intelligence, vol. 58, pp. 71–112, 1992.

187

[69] IEEE. IEEE Standard for a Versatile Backplane Bus: VMEBus. New York:
IEEE Press, 1988.

[70] H. Jyu, S. Malik, S. Devadas, and K. Keutzer, “Statistical timing analysis of
combinational circuits”, IEEE Trans. on VLSI Systems, vol. 1, No. 2, pp. 126–
137, Jun. 1993.

[71] G. Juanole and Y. Atamna, “Dealing with arbitrary time distributions with the
stochastic timed Petri net model - Applications to queueing systems”, in
Proceedings of the Fourth International Workshop on Petri Nets and
Performance Models, pp. 166–173, December 1991.

[72] K. Khordoc and E. Cerny, “Modeling Cell-processing hardware with action
diagrams”, in Proceedings of the International Symposium on Circuits and
Systems, June 1994.

[73] L. Kucera, Combinatorial Algorithms, Bristol:Adam Hilger, 1990.

[74] Y.-H. Kuo, L. Kung, C.-C. Tzeng, G.-H. Jeng, and W.-K. Chia, “KMDS: An
expert system for integrated hardware/software design of microprocessor-
based digital systems,” IEEE Micro, vol. 11, pp. 32–92, August 1991.

[75] J.B. Lasserre, “An analytical expression and an algorithm for the volume of a

convex polyhedron in Rn,” J. of Optimization Theory and Applications,
vol. 39, No. 3, pp. 363–377, 1983.

[76] L. Lavagno, K. Keutzer, and A. Sangiovanni-Vincentelli, “Algorithms for
synthesis of hazard-free asynchronous circuits,” in Proceedings of the 28th
ACM/IEEE Design Automation Conference, pp. 302–308, June 1991.

[77] L. Lavagno, C. W. Moon, R. K. Brayton, and A. Sangiovannin-Vincentelli,
“Solving the state assignment problem for signal transition graphs,” in
Proceedings of the 29th ACM/IEEE Design Automation Conference, pp. 568–
572, 1992.

[78] L. Lavagno and A. Sangiovanni-Vincentelli, “Linear programming for
optimum hazard elimination in asynchronous circuits,” in Proceedings of the
International Conference on Computer Design, pp. 275–278, 1992.

[79] L. Lavagno, “Synthesis and testing of bounded wire delay asynchronous
circuits from signal transition graphs,” Tech. Rep. UCB/ERL M92/140, U.C.
Berkeley, November 1992.

188

[80] J. Lawrence, “Polytope volume computation,” Mathematics of Computation,
vol. 57, No. 195, pp. 259–271, 1991.

[81] Y. Liu, “Reasoning about asynchronous designs in CCS,” Tech. Rep. No. 92-
492-30, University of Calgary, Department of Electrical and Computer
Engineering, Calgary, Alberta, 1992.

[82] K. L. McMillan and D. L. Dill, “Algorithms for interface timing verification,”
in Proceedings of the International Conference on Computer Design, pp. 48–
51, 1992.

[83] K. L. McMillan and J. Schwalbe, “Formal verification of the Encore Gigamax
cache consistency protocols,” in the Proceedings of the International
Symposium on Shared Memory Multiprocessors, April 1991.

[84] M. A. Marsan, G. Balbo, and G. Conte, “A class of Generalized Stochastic
Petri nets for the performance evaluation of multiprocessor systems”, ACM
Transactions on Computer Systems, Vol. 2, 1984.

[85] A. J. Martin, S. M. Burns, T. K. Lee, D. Borkovic, and P. J. Hazenwindus,
“The design of an asynchronous microprocessor,” in Proceedings of the
Decennial Caltech Conference on VLSI (C. L. Seitz, ed.), pp. 351–373,
Cambridge, Massachussetts: MIT Press, 1989.

[86] A. J. Martin, “Programming in VLSI: From communicating processes to
delay-insensitive circuits,” in UT Year of Programming Institute on Concurrent
Programming (C. A. H. Hoare, ed.), pp. 1–64, Reading, Massachussetts:
Addison-Wesley, 1990.

[87] A. J. Martin, “Synthesis of asynchronous VLSI circuits,” in Formal methods
for VLSI design (J. Staunstrup, ed.), ch. 5, pp. 237–283, North-Holland, 1990.

[88] F. Maruyama and M. Fujita, “Hardware verification,” IEEE Computer, pp. 22–
32, Feb. 1985.

[89] T. H. Mattheis and D. S. Rubin, “A survey and comparison of methods for
finding all vertices of convex polyhedral sets”, Journal of Mathematics of
Operation Research, Vol. 5, No. 2, pp. 167–185, May 1980.

[90] Philip M. Merlin and David J. Farber, “Recoverability of communication
protocols - Implications of a theoretical study”, IEEE Transactions on
Communications, pp. 1036–1043, September 1976.

189

[91] Philip M. Merlin, “Specification and validation of protocols”, IEEE
Transactions on Communications, vol. COM-27, No. 11, pp. 1671–1680,
November 1979.

[92] R. Milner, Communication and Concurrency, Series in Computer Science,
Hertfordshire: Prentice Hall, 1989.

[93] C. E. Molnar, T.-P. Fang, and F. U. Rosenberger, “Synthesis of delay-
insensitive modules,” in Proceedings of the Chapell Hill Conference on VLSI
(H. Fuchs, ed.), pp. 67–86, Computer Science Press, 1985.

[94] B. Moszkowski, “A temporal logic for multilevel reasoning about hardware,”
IEEE Computer, pp. 10–21, Feb. 1985.

[95] Motorola, MC68010 microprocessor user’s manual, Austin, Texas, August
1983.

[96] T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings of
the IEEE, vol. 77, pp. 541–580, Apr. 1989.

[97] C. Myers and T. H.-Y. Meng, “Synthesis of timed asynchronous circuits,” in
Proceedings of the International Conference on Computer Design, pp. 279–
284, 1992.

[98] C. J. Myers and T. H.-Y. Meng, “Synthesis of timed asynchronous circuits,”
IEEE Transactions on VLSI Systems, vol. 1, no. 2, pp. 106–119, June 1993.

[99] F. N. Najm, R. Burch, P. Yang, and I. N. Hajj, “Probabilistic simulation for
reliability of CMOS VLSI circuits”, IEEE Transactions on CAD, Vol. 9, No. 4,
pp. 439–450, April 1990.

[100] F. N. Najm, “Feedback, correlation, and delay concerns in the power
estimation of VLSI circuits,” in Proceedings of the 32th ACM/IEEE Design
Automation Conference, pp. 612–617, June 1995.

[101] J. A. Nestor and D. E. Thomas, “Behavioral synthesis with interfaces,” in
Proceedings of the International Conference on Computer-Aided Design,
pp. 112–115, 1986.

[102] K. Okumura, “A formal protocol conversion method,” in Proceedings ACM
SIGCOMM, pp. 30–37, 1986.

190

[103] E.-R. Olderog, “Nets, terms and formulas: Three views of concurrent
processes and their relationship,” Tech. Report, Universität Oldenburg, FB
Informatik, 1989.

[104] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms
and Complexity. Englewood Cliffs, NJ: Prentice-Hall, 1982.

[105] A. Papoulis, Probability, Random Variables, and Stochastic Processes, 2nd.
edition. New York: McGraw-Hill, 1984.

[106] P. Z. Peebles. Probability, random variables, and random signal principles,
3rd ed. New York:McGraw-Hill, 1993.

[107] J. L. Peterson, Petri Net Theory and the Modeling of Systems, Englewoods
Cliffs, NJ: Prentice Hall, 1981.

[108] C. A. Petri, “Non-sequential Processes”, Internal Report GMD-ISF-77-5,
Gesellschaft für Informatik and Datenver-arbeitung, Bonn, Germany, 1977.

[109] F. P. Preparata and M. I. Shamos, Computational Geometry: An introduction.
New York: Springer-Verlag, 1985.

[110] C. V. Ramamoorthy and Gary S. Ho, “Performance Evaluation of
Asynchronous concurrent systems using Petri nets”, IEEE Transactions on
Software Engineering, vol. SE-6, No. 5, pp. 440–449, September 1980.

[111] C. Ramchandani, “Analysis of asynchronous concurrent systems by Petri
nets”, Project MAC, TR-120, MIT, Cambridge, MA, 1974.

[112] H. Ratschek and J. Rokne, Computer Methods for the Range of Functions.
Chichester, England: Ellis Horwood, 1984.

[113] W. Reisig, Petri nets: An Introduction, Springer-Verlag, Berlin, 1985.

[114] T. G. Rokicki, Representing and Modeling Digital Circuits. PhD dissertation,
Stanford University, Dec. 1993.

[115] L. Y. Rosenblum and A. V. Yakovlev, “Signal graphs: From self-timed to timed
ones,” in Proceedings of the International Workshop on Timed Petri Nets,
pp. 199–207, IEEE Computer Society Press, July 1985.

[116] C. L. Seitz, System Timing, chapter 7, pp. 218–262, Reading, Massachusetts:
Addison-Wesley, 1980.

191

[117] J. Sifakis, “Performance evaluation of systems using nets”, in Net Theory and
Applications, Lecture Notes in Computer Science, Springer-Verlag, pp. 307–
319, 1980.

[118] J. L. A. van de Snepscheut, Trace theory and VLSI design. No. 200 in Lecture
Notes in Computer Science, Berlin: Springer-Verlag, 1985.

[119] H. S. Stone, Microcomputer Interfacing. Reading, Massachussetts: Addison-
Wesley, 1982.

[120] Texas Instruments, MOS memory data book, Dallas, Texas, 1988.

[121] J. T. Udding, “A formal model for defining and classifying delay-insensitive
circuits and systems,” Distributed Computing, vol. 1, pp. 197–204, 1986.

[122] P. Van Beek, “Reasoning about qualitative temporal information,” Artificial
Intelligence, vol. 58, pp. 297–326, 1992.

[123] P. Vanbekbergen, F. Catthoor, G. Goosens, and H. de Man, “Optimized
synthesis of asynchronous control circuits from graph-theoretic
specifications,” in Proceedings of the International Conference on Computer-
Aided Design, pp. 184–187, 1990.

[124] P. Vanbekbergen, Synthesis of Asynchronous Controllers from Graph-theoretic
Specifications. PhD dissertation, Katholieke Universiteit Leuven, Sept. 1993.

[125] P. Vanbekbergen, G. Goosens, and B. Lin, “Modeling and synthesis of timed
asynchronous circuits”, in Proceedings of the European Design Automation
Conference, pp. 460–465, 1994.

[126] W. M. P. Van Der Aalst, “Interval timed coloured Petri nets and their analysis”,
in 14th. International Conferenco on the Application and Theory of Petri Nets,
No. 691 in Lecture Notes in Computer Science, Berlin: Springer-Verlag, 1993.

[127] P. Van Hentenryck, H. Simonis, and M. Dincbas, “Constraint satisfaction using
constraint logic programming,” Artificial Intelligence, vol. 58, pp. 113–159,
1992.

[128] E. Walkup and G. Borriello, “Interface timing verification with application to
synthesis,” in Proceedings of the Design Automation Conference, pp. 106–112,
1994.

[129] P. H. Winston. Artificial Intelligence, second edition. Reading, MA:Addisson-
Wesley, 1984.

192

[130] W. Wolf, Modern VLSI design: A systems approach. Englewoods Cliffs, NJ:
Prentice Hall, 1994.

[131] A. V. Yakovlev, “On limitations and extensions of STG model for designing
asynchronous control circuits,” in Proceedings of the International Conference
on Computer Design, pp. 396–400, 1992.

[132] T.-Y. Yen, A. Ishii, A. Casavant, and W. Wolf, “Efficient algorithms for
interface timing verification”, in Proceedings of the European Design
Automation Conference, pp. 34–39, 1994.

[133] J. Zejda and E. Cerny, “Gate-level timing verification using window
narrowing”, in Proceedings of the European Design Automation Conference,
pp. 374–379, 1994.

[134] J. J. Zhu and R. T. Denton, “Timed Petri nets and their application,” in
Proceedings of the Military Communications Conference MILCOM, pp. 195–
199, Oct. 1988.

Appendix A

Performance analysis of an arbiter A

A.1 Introduction

Interval timing analysis has been used to determine the worst-case scenario of the perfor-

mance of asynchronous circuits modeled by timed signal transition graphs [3]. There are

some situations in which a worst-case analysis is not very appropriate. For instance if

some of the involved delays are unbounded.

In this appendix we consider the problem of modeling the performance of an arbi-

ter. An ideal 2-way arbiter controls access to a shared resource that can only service one

client at a time. Such an arbiter can accept up to two requests at any time, but it will pro-

duce at most one grant even if the requests arrive simultaneously.

A typical circuit that implements an arbiter is the Seitz arbiter shown in

Figure A.1.1. If only one of the requests is generated, the corresponding grant is produced

after some delay. However if both requests arrive at (about) the same time, the NAND

latch may enter a metastable state, and the resolution time τm, after which only one of the

grants is generated, can be arbitrarily long. The probability density function that describes

the time τm when a circuit that has entered a metastable behavior leaves such state is given

by (cf. [116]):

fτm(τm) = C e−Kτm (Eq. A.1.1)

194

where C and K are constants that depend on properties of the circuit elements. Notice

that in the Seitz’ arbiter, the differential detection circuit after the NAND latch always

exhibits a well defined binary output, not being affected by the metastable behavior

that may take place in the SR latch.

If one wants to determine the worst delay of a grant from a request for the

Seitz’ arbiter, the answer would be “arbitrarily long”, which lacks a quantitative

notion. Instead of using a timed Petri net with intervals associated with its places

which has the limitation that can only characterize a worst-case scenario, we propose

to model the metastable behavior using a probabilistic Petri net in which random vari-

ables are associated with its places [48, 49] because it allows us to quantify a possibly

unbounded delay by obtaining its probability density function (pdf).

 Figure A.1.2 shows a partial timed Petri net [117, 51] that represents the timed

behavior of an ideal arbiter. In interval timed Petri nets, a compact non-empty time

interval is associated with each place [51]. A transition fires immediately when all its

input places have a visible token. When a transition fires, it consumes the tokens on its

input places, and sends tokens to its output places. A place labeled with interval ∆i that

receives a token at time τ, will make the token visible at time τ + τi, where τi ∈ ∆i.

Figure A.1.1 Seitz’ arbiter.

g1

g2r1

r2

195

To understand the net shown in Figure A.1.2, let us assume that the token

shown in the common input place to transitions g1 and g2 is already visible. Suppose

that a token is made visible at the input place of r1. Then transition r1 fires and sends a

token to place p1 labeled with interval ∆1. When the token matures (i.e., becomes visi-

ble) in place p1, and if there is no visible token at place p2 (labeled with interval ∆2),

then transition g1 fires. Thus the grant enabled by the the first visible token (at place p1

or place p2) is the only one that fires. If tokens at both places p1 and p2 mature exactly

at the same time, one of the grant transitions g1 or g2 is chosen to fire non-deterministi-

cally.

Clearly this Petri net cannot model the richer behavior of the Seitz’ arbiter,

since it does not distinguish between meta-stability and normal (digital) behavior. In

the next section we will propose a more accurate model that takes meta-stability into

account. In order to do so, we have to consider probabilistic Petri nets [49]. In such

nets, each place is associated with a random variable which is characterized by a prob-

ability density function. This variable represents the random maturing time of the

token, relative to the time when the token arrives in the place.

Figure A.1.2 Arbiter.

r1 r2

g1 g2

∆1 ∆2p1 p2

196

A.2 Model of the Seitz’ arbiter

In this section we introduce our probabilistic approach to the timing analysis of asyn-

chronous circuits by working out a case example: the Seitz’ arbiter.

Throughout this appendix we will make the following assumptions: (i) the cir-

cuit responds with a fixed delay if the separation between the requests is greater than

Tw; (ii) if the requests arrive within Tw of each other, the probability that a grant is gen-

erated after delay τm is given by Eq. A.1.1; (iii) strictly speaking K depends on the time

of arrival of the requests but in this appendix we assume that K is invariant.

We propose to model the Seitz’ arbiter with the Petri net shown in

Figure A.2.1. This Petri net models only the grant phase of the arbiter in which only

one grant is generated to a given request or requests. To understand the behavior of the

Petri net shown in Figure A.2.1, consider first the case in which a request arrives and

the other request is not issued during the window Tw.

Due to symmetry, it suffices to consider only request r1. When transition r1

fires after a token matures at its input place, it puts tokens into places p1 and p2. Unla-

beled places such as p1 make tokens visible immediately (i.e., the pdf fx(x) of the corre-

sponding associated random variable x is the Dirac’s impulse function δ(x)). Place p2 is

labeled with random variable τw with pdf shown in Figure A.3.1. Thus transition pro-

ceed will fire after Tw, and transition g1 will fire after D1. The total delay from the

occurrence of r1 to the issuance of the respective grant is Tw + D1.

However if request r2 fires within window Tw after r1 has fired, then transition

meta will fire and either g1 or g2 (as selected by the free choice place p4) will be gener-

ated after a delay τm. Random variable τm obeys an exponential pdf as given by

Eq. A.1.1.

197

Figure A.2.1 Modeling metastability.

Figure A.2.2 Probability distributions of the random variables

associated with labeled places of the Petri net shown in Figure A.2.1.

r1 r2

g1 g2

proceed

meta

g1 g2

τw

τ1 τ2

τm

p1

p2

p3

p4

p5

fτw fτ1

τw

Tw

τ1

D1

198

A.3 Analysis

In this section we discuss how to analyze the Petri net shown in Figure A.2.1. We

assume that the pdf’s of the time of occurrence for requests r1 and r2, τr1 and τr2, are

known and given by fτr1(τr1) and fτr2(τr2) (refer to Figure A.3.2). (In [49] we show how

to find the pdf of a given transition for a sub-class of probabilistic timed Petri nets.)

Our goal is to determine the probabilistic profile (i.e., pdf) of the grant transitions g1

and g2.

In this section we discuss how to analyze the Petri net shown in Figure A.2.1. We

assume that the pdf’s of the time of occurrence for requests r1 and r2 are known (refer

to Figure A.3.2). (In [49] we show how to find the pdf of a given transition for a sub-

class of probabilistic timed Petri nets.) Our goal is to determine the probabilistic pro-

file (i.e., pdf) of the grant transitions g1 and g2.

From the previous analysis it is clear that the firing of transitions meta and pro-

ceed are mutually exclusive (i.e. there is a single token in place p5).

Let us find the time of occurrence of transition g1. First we introduce some

basic concepts from [105]. Let x be a random variable with probability density func-

tion (pdf) fx(x). The probability that variable x takes a value in range [x1,x2) is given by:

Figure A.3.1 Probability distributions of the random variables

associated with labeled places of the Petri net shown in Figure A.2.1.

fτw fτ1

τw

Tw

τ1

D1

199

Prob{x1 ≤ x < x2} = Fx(x2) − Fx(x1) (Eq. A.3.1)

where Fx(x) is the accumulative distribution function of random variable x, related to

fx(x) by the following equation:

(Eq. A.3.2)

Using Eqs. A.3.1 and A.3.2, it can be shown that:

Prob{x0 ≤ x < x0 + dx} = fx(x) dx (Eq. A.3.3)

The random variable τm associated with place p4 represents a metastable state

and thus it is described by the exponential pdf fτm(τm) given by Eq. A.1.1. The probabil-

ity density functions fτri(τri) describe the firing of transitions ri at time τri, for i = 1, 2.

From the discussion in Section A.2, the probability that transition meta will

fire at time α (blocking the firing of proceed) is:

Prob{α ≤ τmeta < α+dα} =

Prob{α ≤ τr1 < α+dα} ⋅ Prob{α−Tw ≤ τr2 < α} +

Prob{α−Tw ≤ τr1 < α} ⋅ Prob{α ≤ τr2 < α+dα} +

Prob{α ≤ τr1 < α+dα} ⋅ Prob{α ≤ τr2 < α+dα} (Eq. A.3.4)

Figure A.3.2 Probability of the time occurrence of requests r1 and r2.

fr1 fr2

τr1

d1

τr2

D1 d2 D2

Fx x() fx t() td
∞–

x

∫=

200

Similarly the probability that transition proceed fires at time α given that tran-

sition r1 has occurred is given by:

Prob{α ≤ τproceedr1 < α+dα} =

Prob{α−Tw ≤ τr1 < α−Tw+dα} ⋅ [1 - Prob{τr2 ≤ α} (Eq. A.3.5)

Thus the pdf’s of the occurrence time for transitions meta and proceed are

given by:

fmeta(α) =

[Fτr2(α) − Fτr2(α−Tw)] ⋅ fτr1(α) + [Fτr1(α) − Fτr1(α−Tw)] ⋅ fτr2(α) (Eq. A.3.6)

fproceedr1(α) = [1 − Fτr2(α)] ⋅ fτr1(α−Tw) (Eq. A.3.7)

Let us assume for the sake of illustration that both fτr1 and fτr2 are uniform in the

interval [0,D] and that D = 20Tw. Substituting the parameters of the pdf’s into

Eqs. A.3.6 and A.3.7, one can obtain the following expressions:

If proceed has occurred due to r1, the grant g1 will be issued at time τproceed+ τ1,

where τ1 is the random variable associated with place p3. To compute the firing time of

fproceedr1(α) =

, if Tw ≤ α < D

0, otherwise

, if 0 ≤ α < Tw

fmeta(α) =
, if Tw < α ≤ D

0, otherwise

D α–
D2

2α
D2

2Tw

D2

201

g1 we shall use the fact that the pdf of random variable x = y + z is fx = fy ∗ fz if y and z

are independent random variables, where the ∗ operator denotes convolution [105].

If meta has occurred, place p4 selects either g1 or g2, with a 50% chance. (Note:

in a first approximation, a non-deterministic choice event can be considered a ran-

domly selected event; an extension of the model could assign a probability to each of

the choices of a free choice place). The pdf of random variable τm associated with p4 is

fτm = C e-Kτm, for τm≥0, and g1, if selected, will fire at time τmeta+ τm.

Thus the probability that g1 will be issued at time α is given by:

fg1(α) = fproceedr1(α) ∗ fτ1(α) + 0.5 fmeta(α) ∗ fτm(α) (Eq. A.3.8)

The first term corresponds to the generation of g1 via proceed (which is fpro-

ceedr1(α−D1), a transport delay) and the second term corresponds to the generation of

g1 via meta. Figure A.3.3 shows the pdf of the occurrence of grant g1 for the uniform

case. One can observe a “triangular” shape that corresponds to g1 generated via pro-

ceed, and a tail that corresponds to g1 generated via meta. The area under the curve is

0.5 which represents the 50% probability of occurrence of g1 (g1 and g2 being equally

likely to occur). The probability that g1 is generated after a delay> 15 diminishes

exponentially. For example the probability that g1 will be generated after 15time units

is approximately 1.9%. Moreover, the probability that g1 will be generated after 40

time units is under 0.15%.

A.4 Summary

We have introduced a probabilistic model capable of representing with more accuracy

the complex behavior of the Seitz’ arbiter, including metastability. The advantage of

our approach is twofold: first our analysis procedure relies upon a formal model for

202

circuit specification (a probabilistic timed Petri net), and secondly our model is an

extension of signal transition graphs (STG’s) [29, 79] which are widely used to

describe asynchronous circuits.

We believe that a probabilistic analysis is essential in the qualitative study of

the impact of metastable behavior in the timing performance of asynchronous circuits

which can exhibit this phenomenon.

Figure A.3.3 Probability density function of the occurrence time of g1
for D=10, D1=5, and K=0.1.

0 10 20 30 40 50 60
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

	Title
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Notation
	Chapter 1: Introduction
	Chapter 2: Representation of Interface Specifications
	Chapter 3: Timing and the Interface Design
	Chapter 4: Probabilistic Interface Timing Verification
	Chapter 5: Timing Analysis for Synthesis
	Chapter 6: Conclusions
	Bibliography
	Appendix A: Performance Analysis of an Arbiter

