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Abstract
As wireless and ubiquitous computing become increasingly affordable and wide-

spread, traditional client-server models for distributing data fail to offer the flexibility

needed in mobile computing environments. Although systems have been proposed to

address these concerns, most rely on changes to existing infrastructures. This work

describes a server hierarchy that uses currently available resources which alleviates some

of the common problems associated with data mining from mobile hosts. Although

designed for retrieving stored status monitoring information and topology of cable televi-

sion amplifier networks, the proposed system is general enough to be used for disseminat-

ing arbitrary data across a computer network. Client mobility and fault tolerance, if

required, are handled through the use of object serialization and intermediate agents.
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DCE Distributed Computing Environment - a suite of technology services de
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FTP File Transfer Protocol - the protocol used on the Internet for sending fi

GUI Graphical User Interface - a program interface that takes advantage o
computer’s graphics capabilities to make the program easier to use.

GNU GNU’s Not Unix - a Unix compatible software system developed by t
Free Software Foundation (FSF).

HTML Hypertext Markup Language - the authoring language used to create d
ments on the World Wide Web.

HTTP Hypertext Transfer Protocol - the protocol for exchanging files (te
graphic images, sound, video, and other multimedia files) between a se
and web browsers on the World Wide Web.

IEEE Institute of Electrical and Electronics Engineers - an organization co
posed of engineers, scientists, and students best known for develo
computing and electronics standards. The IEEE describes itself as
world’s largest technical professional society - promoting the developm
and application of electrotechnology and allied sciences for the benefi
humanity, the advancement of the profession, and the well-being of
members.”

I/O Input / Output - describes any operation, program, or device that trans
data to or from a computer.

IP Internet Protocol - the inter-network data delivery protocol used on
Internet.

ISO International Organization for Standardization - an international organ
tion composed of national standards bodies from over 100 countries. IS
not an abbreviation - it is a word, derived from the Greekisos, meaning
“equal”.

JDK Java Development Kit - an SDK provided by Sun Microsystems for dev
oping programs written in Java.

JVM Java Virtual Machine - the term used by Sun Microsystems to describe
software that acts as an interface between compiled Java binary code
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LAN Local Area Network - a computer network that spans a relatively sm
area. Typically, a LAN is limited to a single building or a small group
buildings.
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MAC Media Access Control - the MAC address is a computer’s unique hardw
number.

NFS Network File System - a method designed by Sun Microsystems of sha
files between machines on a network by making them appear to be a
able on a local filesystem.

ONC Open Network Computing - a network architecture developed by S
Microsystems in the 1980s, including a specification for remote proced
calls (RPC).

OSI Open System Interconnection - an ISO standard for worldwide comm
cations that defines a networking framework for implementing protocol
seven layers.

POSIX Portable Operating System Interface - a set of IEEE and ISO standard
define an interface between programs and operating systems. Prog
conforming to the POSIX standard have reasonable assurance of succ
porting to other POSIX-compliant operating systems.

RMI Remote Method Invocation - a set of protocols developed by Sun Micro
systems which allows Java objects to communicate with other remote
objects.

RPC Remote Procedure Call - a high level primitive used to encapsulate cl
server interaction. RPC encapsulates the service provided by the serv
make it appear as a function call by the client.

SCADA System Control And Data Acquisition - a collection of computers, commu
nications equipment, sensors, and other devices that when put togethe
monitor and control an engineering system.

SDK Software Development Kit - a set of programs used by a computer
grammer to write software applications.

SMT Status Monitoring Transponder - the SMT module of a cable amplifie
responsible for sampling and quantization of analog sensor signals, as
as providing this information to a central monitoring system.

STL Standard Template Library - a C++ library of container classes, algorith
and iterators which provides many of the basic algorithms and data st
tures of computer science.
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layered on top of IP. TCP enables two hosts to establish a connection
exchange streams of data. TCP guarantees delivery of data and also gu
tees that packets will be delivered in the same order in which they w
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TCP/IP Transmission Control Protocol / Internet Protocol - the basic commun
tion language or protocol of the Internet.

TMR Triple-module redundancy - the basic concept of TMR is to triplicate
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fault-free modules mask the results of the faulty module when the majo
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UDP User Datagram Protocol - a connectionless network transport layere
top of IP, which uses datagram sockets. UDP offers a way to send
receive datagrams directly, but does not offer any guarantees on the d
ery or order of datagrams received.

UUID Universal Unique Identifier - an immutable, 128 bit number which is gu
anteed to be unique across time and space.

WAN Wide Area Network - a computer network that spans a relatively large g
graphical area. Typically, a WAN consists of two or more local-area n
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HTML documents and supporting files.
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Chapter 1

Introduction

1.1 Distributed Computing Paradigms

Several paradigms exist for distributed computing. Some client-server technolo

have remained virtually unchanged for decades, while more recent approaches s

COM and CORBA [8] continue to be actively developed. However, even the most sop

ticated of these technologies have roots in the fundamental techniques of messaging

ple datagrams, sockets, remote procedure calls, and conversations [18]. In general

methods can be split into two categories – synchronous and asynchronous protocols

chronous data communication requires that each end of an exchange of communi

respond in turn without initiating a new communication. Asynchronous communica

pertains to processes that proceed independently of each other until one process n

“interrupt” the other process with a request. An example of a synchronous protocol i

remote procedure call, while message passing is the classical asynchronous metho

Following the introduction of these basic client-server technologies, sev

approaches arose in attempts to improve upon performance and alleviate some of the

lems and limitations which were discovered. For example, the use of several remote p

dure calls to perform a client-server transaction may use more network bandwidth

sending a more complicated query to a server, performing necessary computati

accessing of databases locally, and returning the results to the client [18]. Initial atte

used the concept of process migration in an attempt to save bandwidth and increase

mance. However, movement of an entire address space from one machine to anot

utilized by this technique, makes it difficult to return the results to the client with

returning the entire process as well [64].
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The concept of remote evaluation programming [52] improves on process migra

by allowing a program to be sent within a request, having it executed on a remote s

and returning only the results to the client. However, lack of state information limits

usefulness of remote evaluation based systems. Mobile objects were subsequently

oped, in which object-oriented programming techniques are used to encapsulate s

well as code.

In recent years, the mobile agent [28] concept has arisen from these earlier c

server technologies. Mobile agents extend on the functionality of mobile objects by

ing autonomous and asynchronous execution capabilities. This allows mobile age

decide for themselves the most efficient means to obtain data, or route around ne

bottlenecks. Agents may also be able to perceive their environment and communicat

other agents, making previously difficult fault-tolerance and distribution heuristics po

ble.

In this section, a brief introduction of client-server and distributed computing is giv

Remote procedure calls are discussed as a representative for well known synchrono

ent-server transactions, while mobile agents represent current asynchronous techno

Some of the benefits and drawbacks of these methodologies are highlighted, as w

their relevance to the remainder of this work.

1.1.1 Client-Server Computing

Client-server computing describes the relationship between two computer progra

which one program, the client, makes a service request to another program, the s

which fulfills the request. Although the client-server model shown in Figure 1.1 can

used by programs executing at a stand-alone physical location, the underlying conc

more useful when applied in networks. In a network, the client-server model provid

convenient way to interconnect programs that are distributed efficiently across diffe

locations. In this model, one server, sometimes called a daemon, is activated and

client requests. Clients and servers can communicate with one another using many
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ent protocols, the simplest being the sending and receiving of datagrams. Typically, m

ple client programs share the services of a common server program. Both client prog

and server programs are often part of a larger program or application.

Client-server computing can also be thought of as an extension to modular prog

ming. The modular programming concept is based on the assumption that separat

software into smaller components, or modules, eases development and simplifies

tainability. The client-server model is formed upon realization that execution of th

modules need not necessarily occur in the same memory space. That is, modules co

ing an application may be physically separated over a network. Once separated, the

module is referred to as the client, while the called module performing the executio

referred to as the server. Using commonly defined interfaces and a platform neutra

work format, clients and servers may have heterogeneous operating systems and

ware. Typically, server processes are run on high-performance computers while

architectures may range from low-end portable computers to high-performance wor

tions in themselves.

Clients generally rely on servers for resources such as files, devices, or computa

abilities. Examples of client-server computing include servers which provide the cu

time of day, the weather, or retrieve your e-mail messages. Arbitrarily sophisticated

tems are possible, such as database management system servers running on platfor

cially designed and configured to perform queries, or file servers running on platfo

with special elements for managing files. With respect to the Internet, the best know

Client

. . .

Client

Server

Figure 1.1: Client-server model - one or more client programs communicate ove
network with a server which provides some resource.

Network

resource
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of the client-server model is the World Wide Web (WWW). A web browser is a client p

gram that requests services (the sending of web pages or files) from a web serve

known as a HTTP server), typically residing on another computer somewhere on the

net.

1.1.2 Remote Procedure Calls

The remote procedure call (RPC) is a high level primitive that directly supports cli

server communication. RPC encapsulates the service provided by the server to m

appear as a function call by the client. This capability may be implemented using the

dard client-server send and receive primitives, but these implementation details are h

from the programmer. RPC is synchronous in nature to maintain client call order bu

underlying implementation may use asynchronous messaging.

1.1.2.1 Programmer Interface

The result of RPC encapsulation is an interface which, from the programmer’s

spective, makes invoking a remote procedure appear similar to the traditional proc

call mechanism of pushing parameters, context, and a return address onto the stac

executing a jump to the procedure’s starting address. In an imperative programming

guage, this is typically done through an interface such as

In the case of a remote procedure call, the client opens a communications chan

the server to have it perform a procedure on its behalf. Parameters can be passed as

but are typically encoded into a platform neutral state, such as the external data repre

tion (XDR), before being sent across the network. The programmer interface, how

now appears as a call to a service similar to

return_value function(argument1, argument2, …, argumentN,

result1, result2, …, resultM)

call service(argument1, argument2, …, argumentN,

result1, result2, …, resultM)
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Certain RPC implementations may not support multiple results and arguments w

these services, but in these cases aggregate types can always be used. Both the cl

server communicate through stubs which encapsulate the underlying network protoc

make transactions appear as conventional procedure calls, as shown in Figure 1.2

the client and the server must use a common interface, although the two parties ma

necessarily have matching hardware or software.

While a local procedure can generally be invoked in a few microseconds (not inc

ing the execution time of the procedure itself), the RPC introduces overhead due to

shalling, transmission, and unpacking, and typically has a latency of a few millisec

[18]. This remote object invocation latency is typically 10,000 to 100,000 times la

than that of local objects, and given the relative rates at which processor speed an

work latency speeds are changing, the difference in the future promises to be at b

better, and will likely be worse [60]. Even so, the inherent distributed nature of avail

resources makes use of client-server primitives, such as RPC, unavoidable in modern

puting systems.

Client

calling
procedure

Client Stub

network
transport

arguments

results

Server Stub

network
transport

arguments

Server

called
procedure

request
messages

reply
messages

reply
messages

request
messages

Network

Figure 1.2:Remote procedure call communication [4].

results
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Unlike socket connections, which are assigned to a specific port number, RPC u

daemon called the portmapper which controls all RPC connections. To disting

between servers, the portmapper uses program and version numbers. The program n

must be unique to each server on a system, while the version number can be used to

different generations of clients and servers to co-exist [4]. Clients cannot query for t

values directly, but must know the program and version numbers of a specific servera pri-

ori. Servers typically register themselves in the portmap on creation.

For security, most remote procedure call implementations provide some form

authentication and encryption facility. For example, the Open Network Computing (O

RPC implementation [51] provides Data Encryption Standard (DES) public key enc

tion. However, these authentication and encryption techniques add significant ove

[57].

1.1.2.2 Fault Tolerance

With respect to fault tolerance, remote procedure calls raise previously unseen is

As opposed to local functions, where the caller of a function resides on the same ma

as the callee, remote procedure calls involve two processes (i.e., the client and the s

which typically reside on physically independent machines.

If a fault occurs on a system invoking a standard procedure call, both the caller an

callee are affected equally. However, in a remote procedure call, the client and s

nodes are independent, meaning that either or both machines may have independe

ures. Furthermore, the communications network may also fail - either losing messag

by re-ordering or otherwise corrupting messages - during execution of a remote proc

call.

Under failure conditions, the semantics of the RPC cannot be like that of a simple

cedure in a sequential program, in which the failure of a node means the failure o

caller as well as the callee, and the failure of the communication network has no e

[22]. This means that remote procedure calls are made in an environment in which fa
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are common. To enumerate the possible scenarios, the classification scheme f

semantics of remote procedure calls described in [37] and [42] is adopted. This is

by:

• At least once: The remote procedure has been executed one or more times i

invocation terminates normally. If it terminates abnormally, nothing can be s

about the number of times the remote procedure has executed. It may have

cuted partially, zero, one, or multiple times.

• Exactly once: The remote procedure has been executed exactly once if the inv

tion terminates normally. If it terminates abnormally, then it can be asserted

the remote procedure has not been executed more than once.

• At most once: This is the same as exactly-once semantics if the invocation ter

nates normally. If it terminates abnormally, then it is guaranteed that the rem

procedure has been executed completely once, or has not been executed at 

These failure cases of RPC give rise to many scenarios where the state of the s

cannot be guaranteed to be consistent. For example, consider a server whose enti

consists of a single number, which can be incremented using a remote procedure ca

client. Under failure conditions, if a client invokes this RPC, nothing can be said a

whether the server’s counter was actually incremented or not. There are mechanis

avoid these scenarios caused by network or processor failure - for example, the clien

retry the remote procedure call. However, this causes another problem - orphans

which are the unwanted execution of remote procedures. These can also arise bec

timing or synchronization problems.

The choice of the transport protocol also plays a role in the fault tolerance of an a

cation. Typical RPC implementations provide mechanisms for use of either UDP or

as transport protocols. UDP provides a simple mechanism for transmitting datag

directly - however, it does not guarantee delivery nor maintains order of these datagra

the receiver, meaning it is not completely reliable. Using UDP, even with additional u
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level code, if a datagram is lost, neither server nor client are aware of it [4]. On the o

hand, TCP is reliable and handles these issues internally. However, there is a small a

of overhead involved, particularly when the initial connection is established.

Although many of the failure cases of RPC can be handled transparently by the u

lying implementation, a server with internal state information may still be affected by

tain types of failure. For example, an orphan process could inadvertently modify a se

state, making it inconsistent with that of the corresponding client. For these reason

possibility of partial or total failure must still be accounted for in the implementation

systems which utilize remote procedure calls.

1.1.2.3 Deadlock

Since remote procedure calls are generally implemented as synchronous and blo

calls1, the possibility for deadlock exists. Specifically, this occurs when an individ

server cannot handle service requests because it is blocked making a request of its

a cycle in these client-server dependencies exists, then the system is said to have

locked. To see why this is the case, we have to consider the four necessary conditio

deadlock [53], [17], from operating system theory:

1. Mutual exclusion condition - Resources exist that are not sharable.

2. Non-preemption condition- Once a resource is given to a process, it cannot

revoked until the process voluntarily gives it up.

3. Hold and wait, or partial allocation condition- Processes currently holding

resources granted earlier can request new resources.

4. Cycles, or circular wait condition- There must be a circular chain of two or mor

processes, each of which is waiting for a resource held by the next member o

chain.

1. Asynchronous RPC with or without replies also exists, such as QRPC used in Rover [25]. Asyn
chronous RPC is useful in applications where precise synchronization is not required. In certai
cases, use of asynchronous messages may offer improved performance over synchronous me
ods [1]. However, due to lack of standards, documentation, and increased design complexity, i
use is much less common than synchronous RPC.
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Rewording this in terms of synchronous RPC systems, processes represent clien

resources represent access to particular servers. The first condition, mutual exclus

satisfied because traditional single threaded servers can only deal with one client at a

thus making access to a server itself a non-sharable resource. Similarly, the non-pr

tion condition is satisfied because once a server-side RPC begins executing, it does n

minate until completion. Partial allocation occurs because remote procedures them

may act as clients, and request more resources - which allows circular dependenc

exist, satisfying the remaining condition. All four conditions must be satisfied in orde

create a deadlock. In synchronous RPC, the first three conditions are generally un

able, but the fourth condition (cycles) can often be avoided.

There are several ways to deal with deadlock in distributed systems. The first me

deadlock recovery, takes no steps at preventing deadlock, but attempts to correct the

tion once it has occurred. In this technique, deadlock detection schemes are used

analyze the state of the system to check if the four necessary conditions for deadlo

satisfied - especially, if a cycle exists in the client-server dependencies. Once det

suitable recovery mechanisms are employed. In the worst case, the system may hav

restarted or rebooted. A less drastic approach is to take back a resource from a pro

break a cycle. However, if the resource is not preemptable, this may force terminati

the process. Slightly more sophisticated techniques to gracefully undo committed

changes include checkpointing [27] and rollback [12], which are common in database

tems. In terms of RPC, deadlock detection is usually implemented using time-outs fo

ent calls. However, even when deadlock is detected in an RPC system, recovery from

situations can still be a problem.

Alternatively, we can use deadlock prevention to eliminate the possibility of a de

lock occurring in the first place. Theoretically, we can prevent deadlock by removing

one of the four necessary conditions. The partial allocation condition may be avoide

forcing a process (or client) to allocate all the resources it will ever need at start-up

or by making it release all of its resources before allocating any more. However, pla
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either of these restrictions may not be practical, especially when a large numb

resources is involved. Therefore, as mentioned previously, in synchronous RPC syst

may only be possible to remove the possibility of cycles.

Typically, the circular wait condition is prevented through an algorithm known as h

archical allocation. In this algorithm, resources are first assigned numbers. Although

resource is generally given a unique number, this is not a strict requirement for the

rithm to work. Using these assignments, if processes (or clients) always request reso

(or servers) in increasing numerical order, then deadlock cannot occur [53].

The final approach for handling deadlock is called deadlock avoidance. In this t

nique, resources are not necessarily granted to a requesting process (or client) even

are currently available, if by granting the resource places the system in a possible u

state. Typically, this safety check is done in a worst case fashion, assuming that all ru

processes immediately request all the remaining resources available to them. The

well known technique is the “Banker’s Algorithm” by E. W. Dijkstra [9]. However, use

such an algorithm requires delaying client requests for resources until the system i

safe state, which may be unacceptable when communicating over a network. Further

since deadlock avoidance requires central knowledge and control, its usefulness is l

in distributed systems.

Remote-procedure call implementations generally provide an accompanying tim

for client requests, which can be used to detect deadlock. However, use of such tim

alone makes detection of faults of the network or remote node indistinguishable from

of deadlock conditions. As well, reliance on time-outs may introduce large latencies in

ent communications. Therefore, deadlock must be avoided since it can cause unre

service as well as leave the system in a possible inconsistent state. It is left to the pro

mer of a distributed RPC application to avoid deadlock, either by enforcing an orde

resource allocation, or by other means, such as the use of multiple threads or forke

cesses, to eliminate the possibility of cyclical dependencies.
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1.1.3 Software Agents

The software agent concept takes the idea of client-server computing a step furth

combining both client and server functionality into a single entity and allowing it to p

form actions independently. Although the theory behind agents has been around for

time, agents have become more prominent with the recent growth of the Internet.

Agents seem to offer benefits not possible in conventional programs - but what d

guishes an agent from a program? Several definitions provide insight into this que

Wooldridge and Jennings [66] provide the following definition of an agent - a hardware or

(more usually) software-based computer system that enjoys the following properties

conventional programs:

• autonomy -agents operate without the direct intervention of humans or others,

have some kind of control over their actions and internal state;

• social ability - agents interact with other agents (and possibly humans) via s

kind of agent-communication language;

• reactivity- agents perceive their environment, (which may be the physical worl

user via a graphical user interface, a collection of other agents, the Internet, o

haps all of these combined), and respond in a timely fashion to changes that

in it;

• pro-activeness- agents do not simply act in response to their environment, they

able to exhibit goal-directed behaviour by taking the initiative.

A more succinct definition is that an autonomous agent is a system situated within

a part of an environment that senses that environment and acts on it, over time, in p

of its own agenda and so as to affect what it senses in the future [13].

1.1.3.1 Stationary Agents

Mobility is not a necessary requirement for a program to be called an agent - ther

many applications that can still benefit from agents which do not move after their in

creation. These agents are termed stationary agents and can still provide many
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aforementioned properties of agents. In particular, features such as asynchronou

autonomous execution may still be useful properties even when execution is limited

single system. An example is the user, information, query, and support agents descri

the ISAME architecture [43]. Java applets could also be considered stationary a

because after they are initially sent to a target virtual machine to execute, they genera

not move to other hosts.

If a stationary agent needs information from another system, or wishes to comm

cate with another agent on a remote system, it cannot migrate to the other system

but must use some other means, such as remote procedure calls, in order to comm

with the remote system. Therefore, while stationary agents are still useful in some ap

tions, it is evident that allowing an agent to be mobile greatly increases its flexibility

mobile agent can either move data to itself, or move itself to the data - whichever me

is preferred.

1.1.3.2 Mobile Agents

A mobile agent is a software entity able to travel throughout a network, to nego

with other entities (agents or otherwise) so as to achieve a specific task and to reach

tives [6]. Mobile agents control where computation happens by moving programs as

as data. While there are no applications that cannot be solved without mobile agents

are many applications which can benefit from their use. The work in [30] describes s

main benefits to using mobile agents:

1. They reduce the network load- an agent may move to a destination host where

may perform computation locally, rather than having data transmitted acros

network.

2. They overcome network latency- in large systems, latency becomes a major pro

lem in maintaining control. An agent may be dispatched to perform some act

locally - for example, in a real-time system.

3. They encapsulate protocols- agents can communicate with servers or other age

using their own proprietary protocols, rather than relying on a host’s native me



13

it

eir

eir

ning

ts

lized

cor-

l-

nal

ieval

r soft-

[16],

ech-

of

ve for
of communication, which may be constrained by legacy software.

4. They execute asynchronously and autonomously- once an agent is dispatched,

becomes an independent entity.

5. They adapt dynamically- agents can perceive their environment and act on th

own to solve a problem.

6. They are naturally heterogeneous- agents are generally dependent only on th

execution environment, and not the specific hardware or software they are run

on.

7. They are robust and fault-tolerant- mobile agents’ ability to migrate between hos

makes them attractive for implementing fault-tolerant systems.

Examples of large-scale industrial efforts in which mobile agents have been uti

include General Magic’s Odyssey [40], ObjectSpace’s Voyager [59], Mitsubishi’s Con

dia [65], IBM’s Aglets Software Development Kit (ASDK) [31], and multi-agent data co

lection in Lycos [15]. Applications for mobile agents include e-commerce, perso

assistants to perform tasks on behalf of their creators, distributed information retr

such as WWW searches, and information dissemination such as electronic news o

ware updates. Mobile agents are well suited to electronic commerce applications

since transactions often require real-time access to remote resources.

1.1.3.3 Implementation Options

Most mobile agent implementations tend to be in Java2 - Concordia, Odyssey, Voy-

ager, and Aglets are all Java based. Multi-platform support, built-in serialization (a m

anism for reading and writing objects to and from I/O streams), dynamic loading

objects, and wide-spread adoption of the Java virtual machine make Java attracti

implementing mobile agent systems.

2. Some authors [64] quote Java as the “language of choice for mobile agent systems”.
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However, Java is not without its drawbacks. Since Java is generally interpreted a

byte code level on a general purpose microprocessor (e.g., the Intel Pentium), perform

can be a problem in both I/O bound and computationally bound applications, in com

son with natively compiled code. Furthermore, language constraints such as lack of m

ple inheritance support may make a particular design difficult to map into Java, alth

workarounds can be achieved using Java interfaces. The work in [44] describes add

limitations with Java in relation to mobility and persistence support:

1. lack of persistence support makes Java access to databases non-standard.

2. it is difficult to transfer complex data structures between Java programs.

Security problems in mobile agent implementations are also of concern. Denial o

vice attacks (DoS) [33] are common to all agent systems. DoS attacks are aimed a

pling a device or network so as to make it unusable by legitimate users, often by us

large number of normally legitimate operations in a technique known as “flooding”. T

type of attack must be dealt with in a mobile agent system regardless of the program

language used for implementation. However, more subtle vulnerabilities also exist i

Java virtual machine, such as placing a non-terminating loop in the body of a fina

[58]. This type of mobile code attack can tie up the Java garbage collector, preve

memory from being de-allocated.

Often, many of these implementation details are ignored in the design of a m

agent system until a prototype is being or has been developed. In the worst case, so

these pitfalls may not come to light until the application testing phase. To avoid these

takes, it is important to consider the available technologies, requirements, and d

options before implementing a mobile agent system. Therefore, although providing m

features for directly supporting mobile agents, Java may not always be the best lan

to use in all circumstances.
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1.1.4 Applications

Many applications exist for client-server and mobile agent data distribution syst

Examples include existing bank, commerce, and stock market applications, as w

development of electronic commerce architectures such as the one described in

Other well known examples include distributed filesystems such as NFS [61], [46

CODA [47]. Distributed computing techniques are particularly attractive in large-s

systems where vast amounts of data must be delivered over a wide geographical a

industry, this situation often arises whenever a signal is sampled at regular inte

archived, and used in subsequent control and analysis - for example, SCADA syste

engineering plants. One such application which benefits directly from distributed com

ing paradigms is the retrieval of stored status monitoring information and topolog

cable amplifier networks.

1.2 Cable Amplifier Networks

1.2.1 Structure

A cable amplifier network is a broad-band network used to distribute cable televi

signals from a central distribution site to subscribers. To accomplish this, the net

incorporates a number of high frequency “trunk” amplifiers in a tree type hierar

Smaller spans of “distribution” amplifiers exist at the leaf nodes of this tree, which pro

gate the cable signals from the main trunk network to subscribers. The most commo

for cable amplifier networks is the distribution of television signals.

Cable amplifier networks provide bidirectional communications. The forward p

from the head-end to subscribers is a high bandwidth path, which is primarily use

delivering cable television services. The reverse path has a relatively low bandwidth a

used to send information from the trunk amplifiers to the head-end. An example of th

of this reverse path is in providing Internet upload abilities for cable modems. Due to

wide-spread use of cable amplifier networks, as well as greater dependence on the

works in recent years, the requirement to provide high quality forward and reverse a

fier paths has become increasingly important.
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Certain types of amplifier networks, such as those owned by Rogers Communica

Inc., utilize the reverse path to also send status monitoring data from the trunk ampli3

to the head-end. Each amplifier in these status monitored networks has a name an

tion, as well as connectivity and functionality attributes. The majority of the main tru

amplifiers are equipped with a Status Monitoring Transponder (SMT), which reports

status of the amplifier to the head-end office. This status monitoring information is pr

rily used in efforts to detect faulty behaviour in amplifiers, in order to maintain netw

reliability to subscribers. Detection of such faults allows directed maintenance to

scheduled, and suitable repairs to be undertaken. A typical section of the main tru

depicted in Figure 1.3.

3. In Rogers networks, cable amplifiers are primarily manufactured by C-COR Electronics Inc.
and are specifically designed for use in broad-band networks.

Figure 1.3: Structure of cable amplifier networks. Signals propagate along the forw
path from the head-end through high-bandwidth trunk amplifiers, then through sm
networks of distribution amplifiers, before arriving at destination subscribers. There is
a lower bandwidth reverse path which flows in the opposite direction.
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In order to perform system monitoring, certain information about an amplifier netw

and its components must be obtained. This information is obtained by sensors whic

designed to measure specific parameters of interest. For practical and economical r

not all components within the amplifiers are monitored. Typically, only those which

critical to the plant’s operation and offer information about the amplifiers’ behaviour

chosen to be monitored [29].

1.2.2 Signals

In a status monitored cable plant, each status monitor has its own electronic ad

that is used by the head end to poll for status information. Each amplifier is polled at

intervals - typically every few minutes. In the Rogers cable plant in Newmarket, Onta

each SMT is polled once every 55 seconds. Variables that are monitored include [39

1. Forward pilot level (a measure of the forward signal strength)

2. Reverse pilot level (a measure of the reverse signal strength)

3. Amplifier enclosure temperature

4. Raw DC voltage into the amplifier

5. B+ voltage of amplifier power supply

6. DC current draw

7. Reverse switch status

8. Trunk lid status

Since the majority of the bandwidth in a cable amplifier network is allocated to the

ward path, and since all monitored signals are affected by temperature, two of the

important of these signals are the forward pilot level and amplifier enclosure tempera

An example of the forward pilot signal from the Rogers cable amplifier network

Oshawa, Ontario is given in Figure 1.4. The accompanying temperature signal fo

same time interval is given in Figure 1.5. As typical in industrial status monitoring s

tems, the coarse quantization and poor sampling of these signals is clearly evident.
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Oshawa: SMT_2208 [From 1999/03/04 10:16:17 to 1999/03/11 04:44:51]

Figure 1.4: Forward pilot signal over a one week interval for amplifier
SMT_2208 from the Oshawa cable amplifier network.

0 500 1000 1500 2000 2500 3000 3500 4000

34

36

38

40

42

44

46

48

Sample No.

T
em

pe
ra

tu
re

 [C
]
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Figure 1.5: Temperature signal over a one week interval for amplifier
SMT_2208 from the Oshawa cable amplifier network.
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1.2.3 Topology

Since cable amplifier networks are evolving structures that can grow, shrink, or be

erwise modified over time, topology data describing their layout is also recorded.

information includes amplifier names and type, as well as the names of their respe

parents and children in the hierarchy of the cable amplifier network. The fields use

store this information are shown in a portion of the sample topology given in Appendi

By recording the structure of the network as well as status data, archived signals c

traced back to the topology at the time they were sampled. This can be useful in pos

cessing - for example, in the fault detection techniques described in [39]. However, u

status monitoring signals, topology of cable amplifier networks is not polled at reg

intervals, but is instead updated on a demand-driven basis after a change in top

occurs.

1.2.4 Nature of Processing

In many industrial status monitoring systems, sampled data is used in real-time

detection techniques such as limit checking. Use of a real-time technique alleviate

need for sampled data to be stored, although a small buffer of recent data may be re

for applications which require previous input values, such as digital filters [2]. Thi

because after a suitable heuristic is performed, the data used is considered irreleva

only the output of the heuristic is stored. However, in slightly more sophisticated real-

systems, the original data may prove useful in manual or automatic analysis in ord

determine the cause of an event - for example, tracing the path of a transient in a p

quality classification system.

Currently, in the cable amplifier network application, all data manipulation is don

batch post-processing. These processing techniques include fault detection using re

neural networks [10] as well as statistics and feed-forward neural networks [49]. A

minimum, these methods require a week’s worth of archived data to achieve an affe

training set and to accommodate expected diurnal temperature variations [49]. How
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in most cases, several months worth of data is analyzed. This creates the need for s

cant on-line storage. In addition, dissemination of these large archives of SMT data t

ents is also of concern.

Alternatives to post-processing include real-time analysis of status monitoring sig

In these methods, data is continuously fed to process sites. These techniques ge

assume reliable network connections between collector sites and processing locatio

addition, the desired processing algorithms used may not necessarily perform in rea

in all cases. For example, although the recurrent neural network techniques descri

[10] can process data in real-time after some initial training, they must retrain to learn

behaviour following fault events. Such occurrences can introduce delays in process o

For these reasons, post-processing is currently used in the cable network applicat

data buffered at one or more storage locations. This also facilitates the tracing of

causes.

1.2.5 Storage and Dissemination Requirements

Status monitoring signals of cable amplifier networks, along with their nominal val

status flags, and information on the topology of the cable amplifier network, are do

loaded from their respective collector sites, tested for integrity, compressed, and arc

daily. Since both data and client demand are spread over a large geographical area,

ple data collectors and storage locations are required. Each data collector correspon

specific cable amplifier network, and uses the reverse path of the coaxial cable to re

and subsequently store incoming status monitoring signals.

Hosts acting as storage locations download information from one or more of these

collectors at regular intervals (typically once a day). These file transfers from data co

tors to their respective storage locations are generally programmed to occur automat

A reasonable policy is to schedule these occurrences at night, during periods when

puter activity and network traffic are typically at their lowest levels. The resulting flow

status monitoring data as it is sampled, collected, and archived is shown in Figure 1
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In a typical cable amplifier plant consisting of several hundred amplifiers polled e

few minutes, each data collector produces on the order of eight to ten megabytes of

pressed data per day. With even a limited number of these sites being archived at a

location, the storage requirements necessary to buffer this data become significa

order to maintain an on-line repository for a reasonable period (at least a few months

quickly turns into gigabytes of required storage.

Clients request this archived data in order to perform large-scale fault dete

sweeps such as those described in [49]. In this access pattern, a client typically reque

data from a given cable amplifier network for a specific period, in order to perform b

post-processing. Such requests typically come from sites specifically tailored for han

these high bandwidth requirements and for using the incoming data in performing c

network diagnostics. Since the number of these sites is generally limited, special ac

modations can be made to ensure a storage location is at the same site, or within clo

work proximity.

However, sporadic requests for data are also expected to come from clients a

time, anywhere on the network. An example is the retrieval of status monitoring sig

from a notebook computer during on-site directed maintenance. In such environm

Storage Location

Storage Location. .
 .

Data Collector
Cable Amplifier

reverse path FTP

Figure 1.6: Data flow of cable amplifier network status monitoring signals and topol
information. Data collectors receive status monitoring signals from the reverse path
cable amplifier network; the resulting databases are sent to one or more storage loc
using the file transfer protocol (FTP) at regular intervals.

. .
 .

Network

Data Collector
Cable Amplifier

Network

Data Collector
Cable Amplifier

Network
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computing resources are naturally heterogeneous. In addition, bandwidth is often lim

and network connections are intermittent and prone to failure. For these reasons, d

made available to clients using a distributed network data system, which combines

tures of traditional client-server computing as well as more recent mobile agent p

digms. This system is designed to accommodate both large-scale batch requests from

clients as well as sporadic fine-grained requests from mobile clients.

1.3 Summary

Reliability of cable amplifier networks has become increasingly important in rec

years as additional consumer applications are being found for these networks’ ava

bandwidth. In order to maintain reliability of these networks, amplifiers can be monito

and the resulting status monitoring data collected, stored, and delivered to clients. D

the geographically distributed nature of its sources as well as the significant sto

requirements involved, data retrieved in this manner is typically archived and possibly

licated at multiple storage locations. The resulting status data can be used in post-pr

ing techniques for fault detection purposes, so that suitable recovery measures c

undertaken. Topology information describing the structure of these networks can al

useful. It is evident that data collection, storage, retrieval, and processing of cable a

fier data in such a system may all occur in independent locations, emphasizing the

for a network infrastructure for coordinating transfers between these sites.

In the remainder of this work, we shall present a system to achieve the storage an

semination requirements of the cable amplifier network application described in Se

1.2. The proposed system is a distributed client-server architecture in which both dat

processing are expected to occur in different locations. A hierarchy of servers is us

order to provide country-wide scalability and fault tolerance. In addition, mobile ag

are used to support client mobility and improve overall reliability of the system. Chapt

begins by presenting the design of the distributed network data system used as the

for these techniques. Chapter 3 introduces intermediate software agents to this s
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while Chapter 4 discusses implementation and gives initial results achieved using a p

type implementation. Finally, Chapter 5 concludes and gives recommendations on p

ble future work.
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Chapter 2

Distributed Network Data System

Large-scale data archival is a common requirement in modern computing sys

Whether the archived data is sets of files, electronic mail, satellite telemetry ima

polled status signals, or any other form of data, systems designed to extract inform

from these databases tend to have common characteristics. These include consiste

well as correctness, efficiency, robustness, adaptability, and reusability [14].

However, a distributed network data system must also take into account addit

possibilities such as network and server failures in order to be useful on a wide scal

example, on a country wide basis. To achieve this level of scalability, a hierarchy of s

types can be used which provides levels of redundant state information to improve o

network consistency. In this manner, multiple servers can be assigned to the same d

backup or locality purposes, or data can be distributed across servers. In addition, us

hierarchy allows authentication and control to be handled by high level servers while

manipulation can be delegated to lower level servers. This means distributed data c

treated as a unit, simplifying maintenance. This location transparency is similar to

niques utilized by network filesystems such as NFS [61].

In this chapter, we present a system designed for storing and retrieving data gen

by the cable amplifier networks described in Section 1.2. Data sources in this sy

reside on hosts which are physically distributed over the Internet, with storage loca

which may be further distributed. Data may be transported on an infrequent bas

backup servers in order to provide replication at different localities. These geograp

differences can introduce large latencies in data transfers, making use of a centralize

trol impractical.
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To accommodate these latencies, and to achieve a level of fault tolerance, the pro

solution is structured as a distributed client-server problem. Access to archived d

enabled for a certain number of clients which do not know the specifics of where this

is physically located. Supporting client mobility is also an issue. Furthermore, for the

tus monitoring problem, many servers of varying types are required. This gives rise t

need for a form of control and organization amongst these servers. Starting with Se

2.1, the design of the system is described.

2.1 Server Hierarchy

To provide authentication, consistency across the network, and redundancy in the

of server failure, four server types are arranged in the hierarchy shown in Figure 2.1.

arrangement is based on the hierarchy first proposed in [62], and subsequently pub

in [48]. There is a single directory master for the entire system, while there can be

number of lower level servers, creating a tree type hierarchy.

This server hierarchy is designed to achieve the specific storage and dissemin

requirements for the cable amplifier network application described in Section 1

Although this gives a particular solution for a certain class of distributed computing p

Data
Data

Figure 2.1:Server hierarchy.

Network Server

Data

Data

Directory Server

Directory Master

Directory Server

Data
Data

Network Server

Data

Data

get data

Client
get data

request
network server

register &

request service

Data Servers
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lems, the nature of the archived data is left completely general. This means the syste

be used for similar problems in which large amounts of distributed data need to be

lected, stored, and retrieved. This may include data that is distributed physically, env

mentally, and logically, but these details are hidden from the user. To maintain ease o

users are only required to know the logical grouping of data.

Each server uses information provided in lower layers and makes its presence k

to higher layers through a registration/de-registration process1. The directory master at the

root of the hierarchy is responsible for maintaining consistency among all of the direc

servers. The directory master also acts with the directory and network servers to pr

system security. Directory servers contain a global image of all network servers for w

data is available. Network servers keep track of the actual data server locations for a

number of data servers, typically in a common geographical area.

Clients retrieve data by first contacting directory and network servers before obta

data from individual data servers. Clients use directory servers to determine which

work servers are available and how to contact them. From a network server the clien

obtains a set of queries which it can use to obtain data from specific data servers

number of data server types are possible. Each data server is capable of providin

number of data types, though server and data types are typically mapped togethe

cally. For example, a web server typically only provides HTML pages and supporting

(e.g., Java applets), and not other forms of data. In addition, particular records may

several data servers. Network servers are able to provide specific queries to clients o

to retrieve this distributed data.

Although security in the illustrated system is considered, the environment for w

the distributed network data system is designed is expected to be somewhat secu

example, deployment within the wide-area network (WAN) of a large corporation. If u

1. There are a number of remote procedure calls to facilitate this communication between layers.
default null procedure is also provided which can be used by clients (or other servers) to chec
whether a particular server is running or not. This function can also be used for latency timing
In the initial approach, both clients and servers are expected to be static - that is, to not mov
during an information transaction. However, these restrictions are addressed in subsequent s
tions for the client side of the communications.
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in a less secure environment, such as the Internet, then it is assumed that the nature

data being transmitted is not sensitive to eavesdropping. To provide some security,

authentication is done at the network server level using usernames and encrypted

words. When a user logs in at the client, he/she must enter a valid username and pa

in order to be considered for any future transactions. For each authenticated conne

the client is returned a connection handle for subsequent server calls. Since RPC i

for all client-server communication, additional security, if required, can be provided u

Data Encryption Standard (DES) encryption.

2.2 Server Types

2.2.1 Directory Master

The directory master is at the top of the server hierarchy and is responsible for m

taining consistency of directory information amongst the directory servers. It also m

tains a global password list which is manually updated by the system administr

Changes to user information and passwords at this level are in turn propagated down

rest of the servers. The directory master is the only server type which does not allow

munication directly from clients.

Only a single directory master may be active at any given time in a distributed netw

data system. This is because it is difficult to perform consistency operations from mu

independent locations - namely, from multiple directory masters. Also, the passwor

capabilities of the directory master lend themselves to the use of a centralized contro

providing a single location where the system administrator can maintain access privil

Although only one directory master may be active at any given time, it is possibl

introduce redundancy using inactive servers in a standby-sparing fashion. That is, o

more backup directory masters may exist to assume control in the event of failure o

primary directory master. These backup servers may periodically mirror the state o

primary server while it is operational. Currently, redundancy of directory masters ha

been implemented. Even so, during periods when no directory master is available
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underlying directory servers have the ability to continue operation using the most re

local copy of the network structure and password list sent to them by the previously a

directory master.

2.2.2 Directory Server

The directory server is at the second level in the server hierarchy, just below the d

tory master. Its purpose is to maintain consistency between the network servers. I

provides a copy of the password list, as well as servicing high level client requests.

number of directory servers are allowed below the directory master, but typically on

few are necessary.

Each directory server maintains a list of all known networks in the entire system. S

each network server only reports to one directory server, each directory server will h

different list of which networks are available below it. It is the responsibility of the dir

tory master to query each directory server and distribute any unique network inform

to all other directory servers. In this manner, even though each network server only re

to a single directory server, all directory servers can still have a global view of the sys

Clients communicate with directory servers to determine which network servers are a

able.

2.2.3 Network Server

The network server’s main responsibility is to provide clients with a set of orde

queries which they can use to obtain data from data servers. It also forms part of the

rity of the system by authenticating client validity against usernames and encrypted

words propagated down by its parent directory server. Local passwords can also be

to individual network servers by site system administrators, but these do not propag

other servers. As in the case of the directory server, any number of network servers

exist within the server hierarchy.

The main advantage of providing a set of ordered queries to the client rather than

ally retrieving data and forwarding is efficiency. It prevents the network server from h

ing to temporarily buffer data on behalf of a client - a job better suited for an intermediat
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entity, as discussed in Section 3.2. In addition, the network server would have to ma

several of these client requests at the same time. For these reasons, only a set of o

queries is returned to the client so it can obtain data by itself. This also facilitates the

where the data set is distributed across several data servers.

Many different options may be specified by a client when it initially makes its requ

to the network server. A client uses these options to specify information about itse

well as perform high level control operations. For example, reconnection from a br

connection. The network server contains a manually updated list of directory ser

When a network server starts, it attempts to register itself with its preferred direc

server. If this fails, it tries the next server on the list, and so on.

2.2.4 Data Servers

2.2.4.1 Client Interface

The data server defines a generic interface which can be implemented by any nu

of specific data servers. The purpose of a data server is to provide a specific form of d

clients - for example, a file transfer server. This architecture relies on the fact that all f

of information served by data servers can be encoded in a serial fashion. For bas

transfers this serialization requirement is trivial, since files are already stored on disk

serial fashion.

Transfer of arbitrary data structures can be slightly more complicated. Due to di

ences in endian convention, word size, and byte alignment between various architec

transfer of direct memory contents is not possible. However, using the external data r

sentation (XDR) for basic types described in [4] to encode on the server side and c

spondingly decode on the client side, serialization and de-serialization can

accomplished on arbitrary data sets in a platform independent manner.

2.2.4.2 Data Segmentation

The information transaction portion of the data server interface relies on the con

of sessions, byte streams, and blocks. In this context, a session refers to the set of

procedure calls needed to service some specific data requested by the client. A byte
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refers to the stream of bytes representing the data for a given session. For network

mission, memory allocation, and caching reasons, byte streams are generally spl

manageable size blocks - typically between 32K and 1024K. This is similar to the con

of packets or datagrams but is done at the application layer rather than at lower lay

the OSI model, such as the transport or network layers, and hence given a different

Use of blocks at the application layer provides convenient boundaries for caching, c

pointing, and recovery mechanisms. Each block must be requested individually and i

separately to the client.

Although transport and lower layer protocols (e.g., TCP/IP) partition data into pac

themselves, this information is typically hidden from applications. Although moveme

are being made to application-aware switch routers [5], these techniques are still evo

and are not available in current infrastructures. For this reason, data segmentation

rently done at the application layer using blocks, although more efficient means of co

nating with lower OSI layers may become available in the future.

Smaller block sizes provide more fault tolerance in the sense that a client can re

from a broken data transfer closer to the point it left off. However, the drawback is a hi

overhead incurred than transfers using larger blocks. If this is an issue, in the limiting

an entire data transfer can be accomplished in a single block. The block size used is

fore not hard coded, but is left variable to best suit the application. If necessary, the

size can be negotiated during a data transfer.

2.2.4.3 Recovery Support

If a specific data server supports recovery directly, a client can recover from a br

connection by indicating at which offset to re-initiate a data transfer when it issues

open command. This offset is implemented as a byte count relative to the start of the

stream representing the data for the current session. The resulting functionality of

through the use of this technique is similar to theRESTcommand in FTP, which can be

used to resume an aborted transfer. To perform this for file transfers, the data serv

simply seek to a given offset in a file. However, for other data server applications, this

be difficult or even impossible to implement.
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For example, a data server which outputs prime numbers in increasing order m

unable to generate primes from an arbitrary starting point, and may be forced to rest

internal algorithm, particularly if it has lost any critical state information. Although this

a contrived example, the possibility applies equally well to many other applications

these cases, the caching functionality of the intermediate agents described in Secti

may be more suitable for supporting client recovery from interrupted data transfers.

2.2.4.4 Client Call Order

An example of the function call order made by a client when communicating wi

data server is given in Figure 2.2. In this example, two separate sessions are shown.

case of a file transfer, these sessions may correspond to separate files. For other dat

types, they could represent some other logical grouping of data. Initially the c

requests a connection and opens a session. Assuming access is granted, the client t

ries on to download its data. The first session demonstrates a normal transaction - t

ent callsget_data repeatedly to obtain the series of blocks needed to reproduce

incoming byte stream. Acknowledgement for previous blocks can be made individual

can be piggy-backed on top of subsequentget_data calls, except for the last block,

which requires a separateacknowledge  call.

The second session is started by anotheropen call with a different query from the first

session. In this example, the client makes severalget_data calls before it is forced to go

off-line. This could occur in practice due to mobility requirements, power failure, or s

tem shutdown. In the case of graceful degradation, the client has time to inform the s

it is going down by making thehangup call. This gives the data server a chance to p

form any internal cleanup routines, such as the closing of open resources. When the

comes back on-line, it must re-authenticate itself and re-issue theopen request - after

which it can continue receiving the remainder of the byte stream using the same pol

before.
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Non-graceful degradation, such as unexpected termination, loss of power, or sud

changing IP addresses, is handled similarly, but the data server is not given the libe

receiving thehangup call. Data server detection of non-graceful degradation by a clien

application specific. For example, a file transfer server could use a time-out between

calls, which, if exceeded, would force closure of any open files. Assuming no failure

ditions in the underlying remote procedure calls, the scenarios possible between a

and data server using this API can generally be represented as a number of states.

request

open

get_data

hangup

complete

get_data

get_data

...

open

get_data
...

request

open

acknowledge

get_data

get_data

...

Establish initial connection

Open first session

Get first block of data

Get next block, acknowledge previous

Get last block, acknowledge previous

Open second session

Get first block of data

Graceful degradation of client

Re-establish connection

Re-open second session

Get next block, acknowledge previous

Get last block, acknowledge previous

Acknowledge last block

Close connection

acknowledge Acknowledge last block

Client Control Flow

T
im

e

Session 2

Session 1

Description

Figure 2.2: Example of client control flow during a multiple session connection includ
an off-line period and subsequent reconnection.
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2.2.4.5 Internal States

The four data server states and corresponding transition rules resulting from

method of information transfer are shown in Figure 2.3. The boolean in

cates whether the next block is the last block in the currently open session. The syste

tially starts in state , and does not move to the connection state until it receiv

request call from the client. At this point, the client can either callcomplete or

hangup to return back to the initial state, or it can issue anopen request to open a new

session and move the data server to the data transfer state .

Once a connection has been established, the client can callget_data to receive

blocks for the current session until the last block, which moves the data server ba

state . Alternatively, the client can discard the current session, open another sess

temporarily moving to the state , then follow an unconditional link back to the d

transfer state. Finally, as before, the client may also complete the connection or ha

while in state  at any time.

LASTBLOCK

S1 S2

S3

Figure 2.3: Data server state transitions during information transaction with client.
simplicity, the majority of self-loops are not shown.

complete hangup∨

request

getdata LASTBLOCK∧
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2.3 Client-Server Interaction

2.3.1 Directory Server - Directory Master

Directory servers each maintain a list of networks served by all network servers i

system. This list is built up by network servers registering themselves and propag

information on their sub-networks to their parent directory server. However, since

network server only registers with one directory server, each directory server has a d

ent view of which network servers are available.

Creating an identical list on each directory server is the job of the directory ma

The directory master analyzes the information sent to it by each directory server and

agates it as needed to other directory servers. Directory servers inform the directory

ter when their status has changed by sending it a ‘my network list has been upd

message. The directory master notes this and propagates any changes to directory

using commands synonymous with the ‘upload your network information’ and ‘acc

new network information’ messages.

The second job of the directory master is to maintain a global password list. When

this list is updated, it is copied to each of the directory servers and from there to ea

the network servers. However, a directory server will not pass on the list until it is sure

its copy is consistent with all other servers.

2.3.2 Directory Server - Network Server

There is minimal interaction between the directory and network servers. When a

work server initializes, it registers itself with a directory server. The network server kn

the name of this directory server because it has access to a partial list of all directory

ers. This partial list is manually updated by a local system administrator. If the netw

server cannot register itself with its preferred directory server, it tries the next one o

list. From this point on, it does not contact the directory server until one of the networ

serves changes, in which case it issues an ‘update my registration’ message. On shu

the network server de-registers itself with its directory server.
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The directory server contacts a network server after a requesting server has regis

or updated its registration, in order to determine which networks it serves. The dire

server then sends the global password information to the network server. From this

on, the only interaction occurs when the global password file is updated or when the

work server notifies the directory server that it has somehow changed its state.

2.3.3 Network Server - Data Server

Communication between these two layers consists primarily of calls to keep trac

individual client connections. However, as with other adjacent server types in the hi

chy, when data servers initialize, they register themselves with their parent network s

and correspondingly de-register themselves on shutdown.

When a client makes a request, the network server may contact data servers of a

mon type to determine what information they have available, as shown in Figure 2.4.

is useful if the client request is ambiguous, the location of the data is unknown, or the

is spread across several data servers. Using this information, the network serve

returns a set of suitable queries to the client on where and how to obtain the requ

data, using up-to-date availability information. This linear search is only necessa

instances where multiple data servers are defined to service the same data - for ex

redundant copies of an FTP server using the same name. In most cases, there may

a single data server defined for a specific set of data, in which case this search

needed.

Data

Network Server

Data

Figure 2.4: Querying by network server amongst data servers to determine locatio
unknown data, or to determine how data is spread across servers.

query_avail_data

. . . Data

n1 2
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2.3.4 Client

Data retrieval by clients is done through a top-down communications process in

server hierarchy. Clients communicate with all server types in the hierarchy, with

exception of the directory master. A client first contacts high level servers in orde

authenticate itself and determine where to obtain the data it is looking for, before mo

to lower level servers to actually obtain the data.

Specifically, a client communicates with a directory server in order to determine w

network to use, then authenticates itself with a network server to obtain a set of qu

and finally presents these queries to one or more data servers in order to actually obt

requested data. A client can repeat this process as desired to obtain additional dat

technique is valid if the data retrieved is much larger than the size of the queries us

obtain the data. Although expected to be unlikely, if contention at higher levels of

server hierarchy becomes an issue during wide-scale testing, the client retrieval pr

can be modified slightly. For example, additional functionality could be programmed

a client to cache directory server and network server information and make subse

requests directly to the low level servers it has found. This would help to reduce traffi

servers at the upper layers of the server hierarchy, avoiding possible contention with

clients. However, this technique implies that clients remain authenticated between

sions, which may introduce security concerns.

Each client contains, or has access to, a partial list of directory servers. When a

initializes, it attempts to connect to the preferred directory server on this list. If succes

the client then downloads a list of networks for which data is available. The client app

tion uses this list to make a decision on which network to use - either by using a sui

heuristic, or by prompting the user - and sends this choice back to the directory serv

response, the directory server returns the name and address of a network server t

client should contact. A client caches this association between network server and ne

data, and may use the same mapping for subsequent transactions without referenc

directory server. This is the extent of client - directory server interaction unless one o
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things happens - a client will request a different network server if it wants to obta

another network’s data, or if the network server that the client has been communic

with becomes unreachable. There is no client authentication done by the directory s

Once a client knows which network server to establish a connection with, it con

that server in order to determine how to obtain data. At this point, the network se

authenticates the client against its copy of the username and encrypted passwo

before handling the request. If access is granted, an ordered set of ‘queries to ma

returned to the client. Sometimes, a client’s request for a given series of data may b

ken up into several ‘queries to make’. This is because data may be spread over sever

servers.

When the client receives the list of ‘queries to make’, it executes these queries se

tially. The format of the list of queries returned by the network server is dependent o

requested data server type, and for generalization purposes is therefore encap

within a byte stream. In the case of an FTP server, this byte stream may contain a s

ized representation of one or more filenames. A generic query format for this purpo

given in Section 2.4.2. The client decodes these requests and issues them to their r

tive data servers, concatenating the results into one data set. In some applications, m

requests may not map well onto the logical mapping of the data. However, in these c

individual requests can still be used. Authentication at the data server level is ac

plished through consistent use of the connection handles described in Section 2.4.1

2.4 Implementation Considerations

2.4.1 Connection Handles

In the distributed network data system shown in Figure 2.1, an arbitrary numbe

connections can occur simultaneously. In order to keep track of and distinguish bet

these connections, each connection is assigned a unique handle. The Universal U

Identifier (UUID), established for the Distributed Computing Environment (DCE), is u

for this purpose.
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Universal Unique Identifiers are immutable, 128 bit numbers which are guarante

be unique across time and space. The mechanism used to guarantee that UUIDs are

is a combination of hardware addresses, time stamps and random seeds. The st

used for UUIDs is given in Figure 2.5.

The node ID represents the 48-bit MAC address of the first network adapter - typi

an Ethernet card. Since Ethernet addresses are assigned by a single global author

guarantees uniqueness in space. Other components of the UUID contain times

which guarantee uniqueness in time. Anomalies such as time moving backwards or U

generation faster than the system’s clock resolution are also accounted for. Remainin

in the UUID are used for reserved and version fields. Due to their guaranteed unique

UUIDs are ideal for use as connection handles. They are also useful as node identifi

a network, such as the clients and servers used in the DNDS.

2.4.2 Query Format

A generic query format is proposed for client and data server interaction, as show

Figure 2.6. The tree structure used represents a dynamic hierarchical organizational

anism which is designed to encapsulate arbitrary queries within a byte stream. In fact

tions of the tree may represent entirely different logical groups of data, or varying

types. In the illustrated example, status monitoring and topology signals from a c

amplifier network are shown, in addition to basic file transfer functionality. Althou

slightly more complicated to implement initially, this query system allows for dynam

insertion of new data types without modifying and recompiling code.

Time low [32]

Res [3] clkSeqHi [5]

clkSeqLow [8]

Node ID [48]

Time mid [16]

Vers [4] Time high [12]

...

...

Figure 2.5: Structure of Universal Unique Identifier (UUID). Values in square brack
indicate the number of bits allocated for each field.
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A complete path from the root node to a leaf node fully specifies a set of data. The

stream resulting from serialization of this path can be used as a query to obtain th

from a data server. Partial paths can also be used to determine what data is availab

example, in order to traverse the DNDS tree. An application could potentially start wit

information on the layout of the tree, start at the root node (the query for which is alw

known), and query repeatedly for children in order to determine the structure of the

In the cable amplifier network case, the necessary sub-tree is deeper than with file tr

because an extra parameter must be specified - namely, whether status or topology

mation is requested. Additional arbitrarily deep sub-trees may be added for other typ

data as necessary.

Figure 2.6: Example of the tree structure used to represent a generic format for D
queries. From the root of the tree, several high-level data groups are defined - in this
cable amplifier network data and file transfer requests. Further information is simi
specified in sub-trees, with the lowest level details occupying the leaf nodes of the
The highlighted path represents a sample of the stream necessary to specify a pa
file.

...

file1 fileN

...

interval1 intervalN

FTPCable Net

TopologyStatus

SiteA

ftpservA ftpservB

SiteB SiteA



40

ID to

dual

for pre-

rnally.

r more

. For

y their

ay-

and

umera-

can

in

from

ning

deter-

query

tents

queries,

also

hash

IDs
onal
d end
Each node in the tree, with the exception of some leaf nodes, is assigned a UU

uniquely identify it. This includes both logical data types as well as instances of indivi

data servers. Inner nodes of the tree are also assigned a string which acts as a name

sentation to the user. These names and UUIDs can be mapped to one another inte

Since names are not necessarily unique, each name may correspond to one o

UUIDs.

Use of UUIDs to distinguish nodes allows for redundant copies of data servers

example, two FTP servers may have the same name, but can still be differentiated b

UUID. Leaf nodes that cannot be uniquely identified by a UUID are specified in the p

load field of the byte stream shown in Figure 2.7. This payload field is variable length

can be used to accommodate any information that cannot be represented by an en

tion alone (e.g., a filename to download from a specific FTP server). Although a path

be fully specified by the lowest level UUID in the tree, the full path of UUIDs is used

this data structure for redundancy, detection of invalid queries, and possible recovery

these errors.

In the server hierarchy of the DNDS, the network server is responsible for maintai

the tree data structure shown in Figure 2.6. The network server uses the UUIDs to

mine the type of data requested as well as specifics on the data server to redirect the

to. Network servers are not responsible for decoding the payload field, since its con

are data server specific. Therefore, data servers are also required to accept these

but are only required to decode their own specific payload formats. Network servers

keep track of the mapping between names and UUIDs, typically by storing them in a

table.

UUID1N . . . UUIDN payload

Figure 2.7: Proposed encapsulation of query within a byte stream. A number of UU
are included which define the path taken in the DNDS tree. In addition, an opti
payload field can be specified for further parameters - for example, the start time an
time defining an interval of data to be obtained.
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Use of the query data structure provides several benefits to the programmer, s

administrator, and end users:

• The programmer can treat all data types equally at the network server level

only deal with specifics at the data server level.

• Maintenance by the system administrator can be done dynamically at run-tim

some external interface, such as configuration files. Timestamps on these file

be polled or inter-process signals can be used by the system administrat

inform DNDS servers a configuration change has occurred. This ability gre

simplifies maintenance.

• Since no code needs to be altered to modify the tree, this eliminates the down

necessary for upgrading binaries when adding new server types, or modi

existing entries.

• Users can traverse the tree using a suitable interface (e.g., a specifically des

GUI, or web browser and accompanying data source such as a Java applet o

binary) and use it interactively determine what data is available and submit qu

to retrieve designated portions.

An example of the flexibility of this technique is the on-line addition of information

that is, modification of the tree while the system is running. In the cable amplifier netw

portion of the tree shown in Figure 2.6, a new data collector site (SiteC) can be add

addition to the two existing sites, as shown in Figure 2.8. Both status and topology

trees are affected by this change. Once this change has been committed to the tree,

will become available and users will be able to access data from it. In a similar ma

other portions of the tree can be added to, modified, or removed entirely.
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2.4.3 Deadlock Avoidance

Deadlock can occur in the distributed network data system shown in Figure 2.1 wh

server refuses to handle requests because it is blocked trying to make a call of its

typically, a remote-procedure call to a higher level server. This is because each RPC

process used is generally single threaded, and can therefore only service one clie

time. This makes access to each server a non-sharable resource. If a particular serve

vice routines make client calls to similar servers, which also make client calls, then

possibility for cyclical dependencies exists. If this is the case, then all four necessary

ditions for deadlock are satisfied, as described in Section 1.1.2.3. An example of a po

deadlock scenario in the DNDS is given in Figure 2.9.

Figure 2.8:Modified portion of tree structure after dynamic insertion of new site, Site

...

interval1 intervalN

Cable Net

Status

SiteA SiteB SiteC

...

interval1 intervalN

Topology

SiteA SiteB SiteC
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Deadlock in this system is avoided by forking separate child processes to make

level calls, therefore ensuring each server is always able to deal with incoming req

and eliminating the possibility of a cycle occurring in the client-server dependency gr

When a process is forked, it obtains a complete copy of its parent process’ memory,

executed in its own protected address space. After completion of the high-level req

and following any necessary state changes back to its parent, the child process is

nated. This deadlock avoidance technique is illustrated in Figure 2.10. To avoid c

using this technique, forked processes created in this manner are only allowed to

requests to higher-level servers. In addition, the only parent-child interaction allowe

the propagation of state information from the child to the parent. A similar mechanis

used by servers to handle multiple simultaneous client connections.

A BClient

A BClient

A BClient

A BClient

Initial idle state

Client invokes RPC to server A

Incidentally, server B makes RPC to
Server A, but A is blocked.

Server A makes RPC call to Server B
as part of servicing client.Deadlock.

Figure 2.9: Example of deadlock condition between two synchronous RPC servers. S
circles represent servers blocked executing a service routine, while dotted circles rep
servers awaiting a connection. A server might invoke an RPC to another server
variety of reasons - for example, propagation of network information.
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ve
B∗

A

B

fork

high-level
request

low-level
request

B∗

A

B

state
changes

A

B

low-level
request

high-level
request

(a) (b)

Figure 2.10: Deadlock between two synchronous serversA andB (a), and its avoidance
through consistent use of forked processes to make high-level requests (b). Any nec
state changes by the child can be sent back to the parent server in a subsequent c

Although the temporary processB* inherits a copy of its parent’s state, it cannot recei
RPC requests of its own.

child

(c)
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Chapter 3

Agent-Assisted Mobile Data Transfer

Other important features of a distributed network data system include client mob

and fault tolerance. In this section, we show how these can be accomplished using

mediate agents. One or more of these agents can be dispatched on establishment o

connection, depending on the level of fault tolerance required. Each agent acts as a

for its client while at the same time retrieving and caching data asynchronously. In

manner, a client can reconnect from the same or differing hosts to retrieve all or a po

of an agent’s cached data. In addition, agents are capable of serializing themselve

thus migrating between hosts to accommodate system failures or perform resource b

ing heuristics. Serialization also allows agents to rendezvous with mobile clients. T

features make intermediate agents useful for both computationally limited as well as b

width limited applications.

3.1 Mobile Data Transfer

Mobile data transfer is the term used to describe data retrieval by hosts which ch

address or have intermittent network connectivity. Common examples include por

notebook and lap-top computers, as well as wireless services such as cellular phone

static client-server model, both client and server are expected to maintain the

addresses during the entire duration of a data transfer. When we remove this rest

and allow hosts to move, several new cases arise. However, if we restrict mobility t

client side, we can generally categorize mobility into two types.

The first type of mobility, known as off-line mobility, allows the client to mov

between requests. This concept is illustrated in Figure 3.1. Hosts of this type are kno

“portable” hosts. The second type of mobility is on-line mobility, which allows the clie

to move at any time, even during communication with a server. Hosts of this type

known as “mobile” hosts.
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Fault tolerance also plays an important role in mobile data transfer, and is defin

the ability of a system to respond gracefully to an unexpected hardware or software

ure. In simple client-server systems, including those involving mobility, clients and s

ers can fail independently. In distributed systems, this typically means failure of node

the network, or failure of the network itself. The possibility of failure - in particular, part

failure, which may be more difficult to detect - is a central reality in distributed comput

With respect to local resources, failure is either total, or is detectable by a central m

nism such as the operating system. However, failure of remote nodes can occur au

mously and is often indistinguishable from failure of the network link to such rem

nodes [60].

Concurrency is also a major issue in distributed computing that does not arise in

computing1. When a node or the network fails during a remote procedure call, or rem

object invocation, the state of the system may become inconsistent. Even in the sim

client-server system, if partial and total failure are not accounted for at some level,

crepancies may arise between the state of the client and server, particularly if one

fails without the other being aware. An example is the failure semantics develope

remote procedure calls, as discussed in Section 1.1.2.2. Both fault tolerance and c

rency problems make implementation of systems supporting mobile data transfer diffi

1. Authors such as [20] and [50] quote partial failure and concurrency as the defining problems o
distributed computing.

Figure 3.1:Client mobility between requests (off-line mobility).

ServerClient

ServerClient

...

1. make request(s)

2. go off-line

3. make request(s)
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3.1.1 Traditional Solutions

3.1.1.1 Client Mobility

System requirements such as client mobility and fault tolerance are often dealt

using existing, well-established solutions, such as those described in [23]. For exa

off-line client mobility can be handled through careful design of the application progr

ming interface in a static client-server model. This is accomplished by including

defined recovery and mobility support in both the client and server. An example

system designed and implemented to support off-line mobility is the Rover Toolkit [2

On the other hand, on-line mobility is usually delegated to a lower level, and typic

requires accompanying hardware and software support, such as specially designed

and extensions to IPv4 or IPv6. Examples of such protocols include the mobility op

available in IPv6 [21], extensions to IPv4 such as use of the loose source routing o

[24] [45], Sony’s virtual IP [56], indirect TCP [3], and the virtual cell approach [32].

Although the majority of these techniques provide some form of backwards com

bility support - either by building on existing protocols, or including support for mapp

to and from them - many changes are still necessary when adopting these protocols

an existing communications system. Even in the ideal case of full backwards compati

of a protocol with existing legacy systems, standards must be agreed upon by ven

meaning that software, documentation, training, and support material must all sti

updated. This makes adoption of technologies supporting mobility slow and costly w

existing infrastructures.

3.1.1.2 Fault Tolerance and Concurrency

Traditionally, fault tolerance has referred to building subsystems from redundant c

ponents that are placed in parallel [34]. This applies to both hardware and software

tems. An example is the computer system for the space shuttle [38], which runs

redundant copies of the same computer. These computers are grouped in pairs, w

pair being in control as long as their results agree with each other. In the case of a
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match, the second set of computers takes over. In the event of both pairs of compute

ing, or to accommodate an error in the software itself, there is a fifth computer

software written by a different team from the main computers as a final backup.

Such redundancy techniques are common in fault tolerant computing. In the sh

example, both module and version redundancy are employed. Although useful in

applications, redundancy is not the cure all for solving fault tolerant problems, an

some cases may not even be feasible. For example, the extra cost associated with

dancy may push a design beyond its allowable budget. In these instances, technique

as acceptance tests or error control coding [23] may be more suitable.

For client-server systems [19] and other forms of distributed computing, fault to

ance typically refers to policies to accommodate node failures on the network, or failu

the network itself. Often, in such loosely-coupled systems, combinations of traditi

fault tolerance techniques are employed to provide necessary failure policies withi

infrastructure itself, thereby limiting the number of failures which must be delegated to

application layer [35].

Traditional solutions for concurrency in distributed systems include commit and

back [12], checkpointing [27], and locking [41]. Concurrency can be handled in an ev

driven manner using the techniques of commit and rollback. A commit event signal

successful end of a transaction, after which any pending updates can be made perm

On the other hand, rollback signals the unsuccessful end of a transaction, after whic

committed updates must be undone, returning the system to its previous state.

Concurrency may also be dealt with on a periodic basis, as is typically the ca

checkpointing. Checkpointing in systems designed for mobile data transfer, such a

tributed databases, is usually scheduled to occur after some specific event takes pla

after a given interval has transpired. For example, checkpointing may occur after a

defined amount of data has been sent, or after the system writes a designated num

entries to a log. A typical application is the comparison of checksums during a file tr

fer, which might occur each time a fixed-size buffer is filled, or when the end of the file
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been reached. Locking mechanisms are also widely used to guarantee concurrency

techniques are attractive in the sense that the correctness of the systems employin

can often be proven with a formal calculus, such as theπ-calculus [36].

3.1.2 Alternatives

Agent-based software engineering provides alternative solutions to some of

approaches that provide similar functionality. Use of software agents does not elim

the need for conventional solutions entirely, especially in the area of on-line mobility

can often simplify the complexity of the overall design. For example, in a critical real-t

system, such as robot control in a manufacturing process, network latencies may be

ceptable for use of a centralized control [30]. Although a conventional client-server m

could be modified to accommodate such latencies, mobile agents offer a more e

solution because they can be dispatched to act locally, to execute a controller’s a

directly.

Agents are also better suited for supporting off-line and on-line client mobility, as w

as relocation of agents themselves. Although the case of on-line mobility is better ha

through underlying hardware and software support, agents can at least provide ro

and recovery support for mobile clients. In fact, for some applications, such support

be sufficient if client-agent transactions tend to be short, thus diminishing the chan

mobility during these sessions and avoiding the overhead incurred in rollback. This a

tecture also avoids costly changes to existing infrastructures.

3.2 Intermediate Agents

3.2.1 Role in Network

In the distributed network data system described in Section 2.1, a software agen

be added to provide both off-line and on-line client mobility, as well as fault tolerance

otherwise available in the original system. This is accomplished by placing the agent

intermediary between client and data server, as shown in Figure 3.2. Placement
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agent as an intermediate node in this manner results in a three-tier client-server arc

ture [54]. A single agent is assigned to operate on behalf of each client which require

additional features provided by agents.

The intermediate agent can be dispatched to a reliable, trusted host, generally in

proximity to the requesting client. Although data servers are expected to reside on st

ary hosts, agents are capable of migrating between hosts. However, agent execution

ited to a subset of hosts, known as acceptor sites, specifically designed for receivin

executing them. A sample data transfer involving this type of intermediate agent is g

in Figure 3.3.

Figure 3.2: Illustration of data transfer with and without intermediate agent.

Client ServerAgent

Client Server

Conventional Data Transfer

Agent-Assisted Data Transfer
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In this system, clients that use an accompanying agent are not bound to any sp

host, and may go up or down at will from the same or differing hosts. Both off-line and

line mobility are treated equally since the client is required to authenticate itself on re

nection. For off-line mobility, this requirement is easily achievable. However, on-

mobility is only supported if a client can detect when changes in its address occur,

can inform its parent network server of these occurrences. Even so, use of authenti

and blocks creates some overhead, meaning lower level support for on-line mobility

be more suitable if the client is changing addresses frequently.

3.2.2 Multi-Agent Cooperation

If additional fault tolerance is required than can be provided by a single agent a

further redundancy can be introduced by combining agents in parallel, as show

Figure 3.4. In the parallel configuration, a group of agents act as a single entity with s

MA
MA

MA

Vancouver

Toronto

Victoria

Figure 3.3: Initial client communication with a mobile agent in Victoria (a), mobility b
client and corresponding rendezvous by agent (b), and subsequent re-connect
Toronto (c).

(a)

(b)

(c)

(b)

MA Mobile Agent Mobile Client Acceptor Site

Iqaluit

MA MA
MA
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lar latency as a single agent transfer, but (depending on the number of agents used

viding additional fault tolerance, if one or more of the agents themselves go down.

agent can be dispatched to differing hosts in the network, reducing the dependence

one node. This technique is similar to common redundancy and voting schemes su

triple-module redundancy (TMR), a well known concept in fault tolerant computing [2

Alternatively, agents may also be combined serially. This is possible because

agent’s interface is the same as that of a data server, allowing one or more agents to

municate with other agents as if they were the original client or server. Although pla

agents in series actually lowers the fault tolerance of the application - by placing reli

on every agent in the chain - this technique could allow forms of pipelining betw

agents or partial application level control over the routing of packets. For example,

cific agents can be placed in key locations to control high level network traffic. Furt

more, each additional agent placed in series provides another layer of indirectio

previous layers - providing agents themselves with the features the client enjoys, su

on-line mobility and fault tolerance. However, due to the obvious drawbacks of s

chaining, its usefulness is fairly limited.

Figure 3.4: Multiple agents combined to provide additional features. Parallel redunda
offers additional fault tolerance, while serial chaining provides pipelining and so
control over the routing of packets.

Client Agent Agent Server...

Client

Agent

Agent

Agent

Server...

Serial Chaining

Parallel Redundancy
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In order to implement the redundant parallel agents shown in Figure 3.4, some co

nation between agents is necessary. In the illustrated configuration, all agents are c

ered equivalent and perform the same operation - to asynchronously retrieve and

data from data servers. In such a system, it is possible for a client to be programm

multiplex between these agents. However, this approach of allowing each agent to ex

autonomously and comparing outputs with a voter is generally not practical. Th

because of several reasons:

• The bandwidth of a given client-agent or agent-data server connection may be

ited, in which case performance could be degraded by multiple agents conten

with each other.

• In order to make a majority vote, the state of all agents must be consistent with

another. If agent data retrieval times differ, this always forces the voter to wai

the slowest agent in the group, making performance be bound to the conne

with lowest throughput.

• Use of a voting system puts complete dependence on the integrity of the vot

the reliability of the voter itself cannot be guaranteed, it defeats the point of u

redundancy in the first place. In hardware, voter circuitry is generally much s

pler than the modules being compared, so the voter is often assumed to be re

However, this is not the case in distributed systems.

• It is difficult to mask the differences between a parallel agent system, convent

single agent transfer, and direct communications with a data server from the c

This complicates the client and network server implementations.

For these reasons, a stand-by sparing approach for implementing parallel agents

posed. A single agent is elected as the primary of a group by a network server. Thi

mary agent is responsible for retrieving requested data from data servers by prov

suitable queries, as well as replying to client requests for this information. In parallel

figurations, this agent is also responsible for ensuring that the caches of one or

spares are kept up to date. This mechanism is illustrated in Figure 3.5.
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Although this approach requires slight modification to the originally proposed be

iour of each agent, it provides several benefits without modification of the client interf

Clients can still remain unaware they are communicating with an agent, as in the ca

serial chaining. If an error occurs during communications with a parallel agent, a c

can correspond with its parent network server to decide on suitable recovery mechan

such as switching to a spare agent. From a client’s perspective, this appears as a

switch to another data server. It is expected that this standby-sparing approach for p

agents could be implemented using a limited number of remote procedure calls, prim

for agent synchronization.

If desired, combinations of serial chaining and parallel redundancy may be emplo

In this manner, some of the benefits of both methods may be achieved. However,

providing some benefit, the trade-off incurred through the use of these approaches

increase in the overall latency of the data transfer.

Figure 3.5: Cache synchronization between parallel agents. A primary agent is elect
act as a representative for a group of agents, which it must keep up to date in ca
failure. Recovery is implemented in a standby-sparing fashion by coordinating with
parent network server.

Agent

...

primary

spare Agent

Agentspare

cache
synchronization

Client Server

Network Server

control
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3.2.3 Client Interaction

Clients are assigned an agent by requesting the mobility option when making the

tial request to the network server. If authenticated, the network server dispatches an

to a suitable acceptor site, and returns information on how to connect to this site to th

ent. Once a client receives this information about the server, it makes an initial requ

it. Since the given server is in fact the dispatched agent, the agent receives this reque

in turn directs a copy of the request on to the actual data server, as shown in Figur

Clients do not realize they are communicating with an agent because the interfaces o

servers and agents are identical.

Data transfer begins once the client opens a session with the agent. At this poi

agent starts an internal thread which asynchronously retrieves and caches data fro

data server. From this point on, the client can retrieve data from the agent’s cached d

desired. It may even hang-up and go off-line for a period of time, then re-establish

and retrieve the remainder of the cached data, as illustrated in the example. Of cours

ing periods when the client is off-line, the agent continues to retrieve data autonomo

Communications are closed and the agent is terminated when the client indicates

completed all data transfers. Client relocation is handled by individual clients and by c

dinating with parent network servers. When a client comes back on-line, it either atte

to contact its existing agent directly if it has maintained this state information, or it c

tacts its network server to redetermine these details. This also facilitates coordinatio

recovery from any unexpected events that may occur, such as agent time-out.
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Figure 3.6: Sample illustration of client interaction with agent, data server, and netw
server. Once a session is opened, retrieval and caching by the agent o
asynchronously. This simplified diagram does not show threading or forking.
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3.2.4 Benefits

In a distributed network data system, use of agents provides several benefits over

tional client-server systems. First, it simplifies implementation of existing clients and s

ers. This simplification is especially useful when multiple server types are requ

Rather than implementing recovery features in each data server, an agent can be

once to encompass all of them at the required complexity level. Each data server

becomes only responsible for producing a suitable output byte stream according to its

with a corresponding client capable of interpreting this incoming byte stream - all mob

and fault tolerance concepts can be encapsulated within the agent itself. Furtherm

improved heuristics become available or situation specific algorithms are necessary

the agent needs to be modified, lowering maintenance costs.

Agents may be capable of monitoring servers and handling unexpected crash

shutdowns, transparently switching to backup servers for redundant data, or multipl

between servers if the requested information is distributed over multiple data server

agent may also be programmed to relocate itself after collecting data to a host that is

in network proximity to the client for faster access. Several agents may also be dispa

to work in parallel on a set of servers to retrieve sought after distributed data. Finally,

agent is not required (for example, if all nodes are on the same LAN), it can be remo

providing maximum throughput.

Although mobile agents offer many desirable features, designs implemented en

using agents are not necessarily the best solution for a particular application, eith

many cases agents are not strictly necessary, over-complicate the problem, or intr

some other drawback, such as increased latency. However, by including mobile age

the distributed network data system while implementing all communications using re

procedure calls, some of the benefits of both worlds can be obtained.

According to [18], most applications which can be realized via mobile agents can

often better, be realized via RPC. In such cases, the DNDS can utilize RPC exclusive

data transfers in order to take full advantage of its improved performance. However, i

uations where mobile agent paradigms are useful or more efficient, agents can be c
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and positioned in situations (either by dispatching an agent directly, or migrating an e

ing agent from its current location) where they are useful. Since the desired ratio bet

these options is completely dependent on the nature of the problem they are being a

to, the ratio of remote RPC transactions made in comparison with migration of agen

left to the specific application.

For large-scale distributed systems, agent-based transactions scale better than

based transactions. This is because the asynchronous nature of mobile agents

enables higher transaction rates - though this can also be achieved with message p

Furthermore, secure agent-based transactions have lower overhead than secure RP

Once authenticated, an agent can communicate without the overhead of security fo

call, as is the case of secure RPC.

3.2.5 Dispatching and Relocation Issues

On creation, heuristics can be used to dispatch an agent to a host based on facto

as processor load, network traffic, or data locality. In the simplest case, a linear com

tion of these values can be used to determine an overall candidacy rating. For exa

consider the rating  for a node , given by

(3.1)

where is the load average, is the estimated throughput, and is the ava

disk space for a specific acceptor site. Due to the dynamic nature of the network,

measured values are expected to change over time. The positive constants , ,

must be determined empirically to normalize units and bring these values within com

ble ranges. Since load average is undesirable while throughput and available disk

are desirable quantities, minimization of will produce the acceptor site most lik

to be chosen by the network server for dispatching of a mobile agent. The values o

constants used can be modified to emphasize specific options requested by the

Other requirements may also be enforced, such as the strict need for a given amo

Ω n( ) n

Ω n( ) αLn βTn– γ Dn–= α β γ 0≥, ,

Ln Tn Dn

α β γ

Ω n( )
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free disk space. In this technique, acceptor sites are assumed to have comparable ha

so that no one node overwhelms all other nodes. An example of this form of accepto

determination is given in Figure 3.7.

Similar heuristics can be used by the agent for relocation purposes, although

locality will likely be more of an issue. This is because the overhead of migration mus

offset by the benefit (typically, higher throughput) of moving to a new acceptor site. T

are also cases where migration is unavoidable, such as notification of shutdown of th

rent node. The remote procedure calls used to implement migration are show

Figure 3.8. Clients become aware of an agent’s new location by coordinating with

parent network server. Unless specifically requested to rendezvous by a client, age

not typically migrate during communications with a client.

Site 1

Network Server

Data ServerClient

Site 3

Site 2

Site 4

MA
0.1 load

100 KB/s
2.0 GB

2.3 load
60 KB/s
1.1 GB

0.8 load
34 KB/s
3.7 GB

dispatch

Figure 3.7: Example of acceptor site determination during dispatching of intermed
agent. A combination of factors shown next to each acceptor site may be used b
network server to determine the best candidate. In this case, Site 4 will likely be ch
since it has low load average, high throughput, and reasonable available disk space

0.2 load
8 KB/s
0.9 GB

MA Mobile Agent Acceptor Site
load average
estimated throughput
available disk space

L
T
D



60

host
parent
riginal
), after
f any
MA

Original Host

MA

Target Host

NS(d)

ds_migrate

MA

Original Host Target Host

NS(a)

MA

Original Host

MA
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NS(b)

dispatch

MA

Original Host

MA

Target Host

NS(c)

ds_migrate

Original Host

MA

Target Host

NS(e)
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NS Network Server

Figure 3.8: Trace of remote procedure calls used to migrate a mobile agent from one
to another. The system starts with a mobile agent executing on some host (a). The
network server dispatches a second agent on the target host (b), and informs the o
agent to migrate (c). This causes a transfer of state information between agents (d
which the original agent exits, leaving only the mobile agent on the target host (e). I
of the steps fail, the mobile agent is left on the original host as in (a).

MA Mobile Agent Acceptor Site
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3.2.6 Security

Security of mobile agents is of utmost concern. Since agents often exhibit virus

behaviour [18], it can be difficult to distinguish between acceptable and unaccep

behaviour by programs. Furthermore, in many mobile agent systems, both state and

information are sent across the network. Transfer of state information is of moderate

cern in itself, but systems which transmit code across the network and execute it on re

hosts introduce a myriad of security concerns.

3.2.6.1 High-Level Considerations

In typical mobile agent systems, code is sent through a scripting language su

Telescript [63] or MAPL [11], or by using a byte code representation such as the one

in Java. Corruption, malicious modification, or other forms of attack on this informa

without suitable security checks in place can make an otherwise valid mobile agent sy

unusable in real-life applications. For this reason, much research has been done in th

of security of mobile agent systems. Some of the current solutions are:

• To develop a formal model of the security of the system, and prove its correct

mathematically. A number of distributed process calculi have been propose

this purpose. An example is the Seal calculus [58], in which seals are define

encapsulate localities and mobility of computational entities.

• To design a Turing-complete language in which no virus can be written [18].

limiting what an agent language itself can do, we can prevent agents from alte

other programs. In such a system, no virus can be written, making virus dete

unnecessary. However, other forms of attack are just as likely and equally ha

deal with.

• To disallow transfer of code entirely. In such a system, mobile agents can m

between hosts only if suitable binaries are already installed on target acceptor

Although no code is transferred, eliminating a large number of security conce

inconsistency of state information can cause security problems in itself, altho

these scenarios are typically easier to deal with. However, this solution is
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practical in applications where transfer of code is not necessary, limiting its us

ness.

3.2.6.2 Low-Level Considerations

While high level design plays an important role in the security of a mobile agent

tem, lower level details are equally important. In many systems, these details are

overlooked, or only dealt with in the testing phase of an application. At this point,

problem is discovered, in the worst case the entire design may be compromised. T

fore, when attempting to build a secure mobile agent environment, much of the sec

rests on the eventual implementation. Formal proofs of a system’s correctness are

vant if the accompanying implementation itself has flaws. Often, these vulnerabilitie

caused by very subtle coding problems, making them difficult to find. Typical exam

include buffer overflow errors or invalid pointer references. Although compiler modifi

tions such as StackGuard [7] exist to detect certain forms of attack, their availabili

limited (i.e., C and Linux only), they introduce overhead, and their coverage is not f

proof. Even in languages with complete run-time checking for these coding errors, su

Java, other problems exist with respect to mobile code, such as non-termination of th

bage collector [58].

It is expected that consideration of both high-level and low-level security details

be sufficient to meet the requirements the distributed network data system and acc

nying mobile agents were designed for, as described in Section 2.1. In the next cha

prototype implementation of the DNDS is discussed, including implementation detai

security, as well as initial results and performance characteristics obtained.
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Chapter 4

Results and Discussion

4.1 Prototype Implementation

4.1.1 Modified Server Hierarchy

Currently, a subset of the server hierarchy proposed in Section 2.1 has been i

mented, by moving some of the functionality of higher level servers into the netw

server layer, as shown in Figure 4.1. Specifically, authentication and control has

made local to the network server and global state propagation amongst high level s

has been left out. This initial compromise provides us with the majority of the des

functionality at the sacrifice of some scalability.

The resulting sub-system has been written in C++ using encapsulated C and RP

tem calls. This language was chosen for its natively compiled performance, POSIX th

support, multiple inheritance, and easy integration with available compilers and com

ing resources. The target platforms were Linux and Solaris, although porting to other

platforms should also be possible. RPC was chosen for its availability, simplicity, pe

mance, and accompanying platform neutral state, which simplifies serialization an

serialization between heterogeneous architectures. TCP was chosen as the transpor

col due its guaranteed reliability [4].

Status
Status

Figure 4.1:Modified server hierarchy.

Network Server

Status

Client

Topology FTP
FTP

FTP

get topology

register &
request service

get status
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An agent has been implemented which is capable of dispatching to an initially sele

host, asynchronously retrieving and caching data for mobile clients, and serializin

state (no code is transferred) to an output stream. This allows the agent to rendezvou

a mobile client, or relocate to a specific host on completion. Status, topology, and

transfer (FTP) data servers have also been realized. Objects are arranged in the cla

archy shown in Figure 4.2.

All objects have the ability to write their state to an output stream - typically to me

ory, a network socket, or disk. This is useful for recovery from unexpected terminat

such as shutdowns or power outages, and can either be done on a periodic basis

demand driven basis during state transitions. When a node restarts it can load this inf

tion to recover its previous state.

This is accomplished by deriving all network objects from theSerializable class,

which contains common code relevant to serialization, such as the ability to transpa

swap between two files in case one is corrupted by termination during writing. The vi

function serialize() is overridden in derived classes as necessary to ensure all

Figure 4.2: Class hierarchy of network objects. Abstract classes are shown in rectan
boxes, while instantiable classes are shown in rounded boxes.

Serializable

Node

Client Server

Topology Server Status Server FTP Server

Network Client Network ServerData Client

Agent

Data Server
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variables in the hierarchy are considered. Classes with no member variables (and

no state) of their own need not provide a definition, as they inherit it from their pa

classes.

Code and variables common to both client and server are kept in theNode class, such

as the current hostname, program and version numbers of the RPC port, and a UU

uniquely identify the node in the network. Similarly, theClient andServer classes con-

tain routines common to their respective subclasses. From this level, the first instan

classes are derived, namely theNetwork Client andNetwork Server for communi-

cating with and implementing a network server, respectively. TheData Server acts as

an abstract class for actual realizations of the data server interface. Currently, the ava

data servers are theTopology Server , Status Server , andFTP Server . TheData

Client is similarly derived and can be instantiated on its own to interface with arbitr

data servers - however, it also acts as a base class in providing lower level function

such as mobile agents.

TheAgent class implements a mobile agent, and acts as both a data client and s

through multiple inheritance. In this manner it is able to act as an intermediary betw

arbitrary data clients and servers; the same agent can be used for all data server type

is possible because all data is sent as byte streams - the agent can cache these in m

or flush them to disk as required.
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4.1.2 Interfaces

4.1.2.1 Network Server

The portion of the network server interface relevant to data servers is given in T

4.1. This consists primarily of functions to register and de-register instances of data

ers, as well as functions to maintain connection status. The complete network server

face specification is listed in Appendix B.

Table 4.1:Data server portion of network server interface.

Function Prototype Description

bool  ns_register (
svr_request  svr

)

Called by a data server to register itself with a net-

work server. The parameter passed in contains infor

mation on the data server such as node ID, name

address, program and version numbers. Returns tru

on successful registration, false otherwise.

bool  ns_deregister (
uuid_t  uuid

)

Called by a data server to de-register itself with a net

work server. The parameter passed in contains th

node ID of the data server. Returns true on successfu

de-registration, false otherwise.

bool ns_connect (
conn_request  conn

)

Called by a data server to inform the network serve

of a new client-data server connection. Returns true

on success, false otherwise.

bool ns_disconnect (
uuid_t  uuid

)

Called by a data server to inform the network serve

of a new client-data server connection. Returns true

on success, false otherwise.



67

4.2.

o cli-

poses

these

e

uest

lient

rovide

a

,

in

s,

c

-

A summary of the client portion of the network server interface is given in Table

In the current implementation, only one network server access function is available t

ents. However, this function is flexible in the sense that it can be used for several pur

through the use of optional fields in the function’s argument parameter. In each of

cases, client authentication must be provided by a valid username and password.

Current client options available in thens_request command to a network server ar

given in Table 4.3. A client uses these options to specify information about itself, req

high level control functions, or some combination of these options. For example, a c

may specify that it intends to be mobile using theCL_MOBILITYoption. In this case,

assuming access is granted, suitable steps will be taken by the network server to p

Table 4.2:Client portion of network server interface.

Function Prototype Description

request_rc ns_request (
ns_request_attr
request

)

Called by clients to authenticate themselves and

make requests to the network server. This may be

request for data, or some other control operation

such as agent rendezvous. The parameter passed

contains the username, password, desired option

connection UUID if known, requested server type,

and a byte stream of parameters for the specifi

server. The function returns a connection UUID and

information on the data server to contact next on suc

cess, or a suitable error code otherwise.
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mobility support. In the DNDS, this will typically be accomplished through the dispat

ing of an intermediate agent. A network server reserves the right to deny granting of

cific client options.

4.1.2.2 Data Server

As mentioned in Section 2.2.3, requests provided to data servers come in the fo

queries. The portion of the data server interface relevant to information transactio

given in Table 4.4, while the complete interface specification is given in Appendix C. E

Table 4.3: Client options available in network server request. Multiple options may
specified by performing a bit-wise OR of the desired enumerations.

Client Option Description

CL_NORMAL Default value if no other options are necessary.

CL_AGENT Specifies that the originator of the request is itself an

agent. Disables the effect of theCL_MOBILITY

option, if also specified. Used to prevent recursive

chaining of agents.

CL_MOBILITY Requests mobility option - that is, an intermediate

agent is desired.

CL_RENDEZVOUS Requests that an existing agent should rendezvou

with the client at the host from which the request

originated.

CL_RECONNECT Indicates that the client is attempting to re-establish

previously broken connection. Used to support both

off-line and on-line mobility.
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function takes a UUID - either directly or encapsulated within another structure - w

acts as the connection handle. Incoming requests with invalid or unknown connection

dles are ignored, and the client is returned a suitable error code (e.g.,SVR_DENIED).

Table 4.4:Client information transaction portion of data server interface.

Function Prototype Description

request_rc  ds_request (
uuid_t  uuid

)

Called to establish a new connection. Returns infor

mation on which server a client should use to obtain

data, for forking or forwarding purposes.

bool  ds_open (
bs_request  query

)

Called to open a new session in a previously estab

lished connection. Queries specific to the data serve

type are encoded in the incoming byte stream (e.g.,

filename). Returns information on which server a cli-

ent should use to obtain data, for forking or forward-

ing purposes.

byte_stream ds_get_data (
bs_request  ack

)

Called to return the next block of available data in the

current session. The incoming byte stream can b

used to encode additional parameters, as well as ser

ing as a piggy-back acknowledgement for previous

blocks. Returns a byte stream containing the nex

block of the requested data.

bool ds_acknowledge (
bs_request  ack

)

Called to acknowledge receipt of data in the curren

session. Returns true on successful receipt o

acknowledgement, false otherwise.

bool ds_complete (
uuid_t  uuid

)

Called to indicate all client transactions are complete

allowing the server to close any open resources

Returns true on successful receipt of completion

false otherwise.
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4.1.3 Implementation Issues

4.1.3.1 Security

Security in the distributed network data system, particularly with respect to mo

agents, is handled as follows:

• Client authentication is done through usernames and encrypted passwords.

words are encoded using the samecrypt function used for Unix account pass

words. However, due to the relative insecurity of this method, use ofcrypt is

limited to password encryption only.

• Standard Unix verification is used for dispatching of agents. Agents are dispat

to acceptor sites using the provided remote shell and login primitives. Mainten

of which hosts to allow incoming agents from at acceptor sites must be done m

ually by the system administrator.

• During agent migration, only state information is sent, and not code. This av

many of the problems associated with execution of untrusted code, as is the

with many other mobile agent systems. The remote procedure calls used to ac

plish the required transfer of state information are shown in Figure 3.8.

• Agents have an owner associated with them, which is propagated from the

name used in the initial network server request which created them. Using

owner information at each transaction prevents an agent from accessing da

making requests the originating user would not have had the permission t

directly.

• Limits can be placed on the number of simultaneous connections to a parti

server, or resources allocated to an individual user, in an effort to reduce the e

bool ds_hangup (
uuid_t  uuid

)

Called to indicate graceful degradation of client. True

on successful receipt of hangup, false otherwise.

Table 4.4:Client information transaction portion of data server interface.

Function Prototype Description
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of denial of service attacks.

• File transfers are restricted to relative paths below an administrator defined

directory. User specified absolute paths are strictly forbidden.

• Finally, all servers are run under a special account (e.g., the standardnobody

account common to many Unix systems) which has limited privileges. In the e

of a security exploitation in the code, this limits the abilities of what a server p

cess is able to do, minimizing the potential damage by attackers.

4.1.3.2 Multi-Threading

Because of their synchronous nature, RPC servers are normally blocked waiting

connection when not currently executing a procedure. This is a problem for theAgent

class, which needs to simultaneously act as a client as well as a server. To overcome

client thread is created within the agent process which can asynchronously collect

The server thread communicates information between this client thread as nece

through a shared cache protected by critical sections. This concept is illustrated in F

4.3. Standard POSIX threads were used for this purpose.

4.1.3.3 Debugging

Since multiple threads are used in each process, and since processes are for

servers (as described in Section 2.4.3) to avoid deadlock, the complexity of the res

system is significant. Furthermore, agents are mobile and can move autonomously (e

rendezvous with a client), meaning programs can effectively move between hosts d

Client Thread

Server Thread

Data Server

Data Client

Agent

Figure 4.3:Threads used in agent data transfer.

Cache
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execution. This makes traditional means of debugging the distributed network data s

difficult. Standard debuggers which expect a program name as a command line argu

or which attach to a running process, have limited usefulness in this system since

cesses tend to have relatively short lifetimes. For this reason, a special multi-thre

multi-process debug library was developed to facilitate creation of the DNDS. The he

file describing the interface of this debug library is given in Appendix D.

This debug library provides primitives to print out debugging statements to the con

and/or to a file. For clarity, indentation of these statements is done in a manner pr

tional to the depth of the call stack. Semaphores are used to prevent undesired mix

statements between threads. This allows related logical groups of threads and proce

send their output to one or more common destinations, greatly assisting in debugging

overhead incurred through use of these routines is small, however, all debugging c

disabled through removal of a single compile time option. Finally, since migration

agents can be difficult to visualize in debugging, an option is provided to dispatch t

within a terminal window, to capture and isolate their output.

4.1.3.4 RPC Program Numbers

In ONC RPC, use of program numbers is regulated by a global authority, Sun M

systems. These program numbers are implemented as long integers (unsigned 32-b

bers), and divided into several ranges, as shown in Table 4.5. Typically, servers w

assigned a unique value in the user-defined range. However, since their lifetime

expected to be limited, agents are assigned RPC program numbers in the transient 

Table 4.5:ONC RPC program numbers

Minimum value Maximum value Description

0x00000000 0x1FFFFFFF Defined by Sun

0x20000000 0x3FFFFFFF User-defined

0x40000000 0x5FFFFFFF Transient

0x60000000 0xFFFFFFFF Reserved
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4.1.4 Performance Characteristics

Some testing of the DNDS prototype was performed in order to determine whethe

of the system is feasible and whether it gives adequate performance for use in large

information retrieval. Initial tests were accomplishing by sending files from an FTP se

to a client. The first set of tests consisted of varying the file size while keeping the b

size constant at a reasonable value. This was done in order to determine how transfe

compared to built-in system commands. The second set of tests kept the file size con

but varied the block size. These tests were made to determine the best block size

Since the nature of the network has a large effect on these tests, all of these tests we

formed on both a local area network and the Internet. Finally, further tests were do

order to evaluate performance in a real-life application.

4.1.4.1 Varying the File Size

Initial performance characteristics of the prototype DNDS on a 10 Mbps Ethernet

ment using a fixed 256 KB block size are given in Figure 4.4. In this test, the cl

machine was a dual 400 MHz Pentium II based machine running Linux 2.2.3, while

servers resided on an UltraSPARC 5 running Solaris 2.6. Agents were dispatched

same machine as the servers were executing on. File sizes were varied from 0 MB

MB, in steps of 1 MB. Each sample was averaged over the result of three independe

als.

Notice how the use of an agent adds a fixed overhead (averaging 3.1283 secon

comparison with DNDS without agent) which is independent of the data size. This e

time is a result of the overhead incurred in dispatching the agent, which requires re

authentication and execution. Throughput for all techniques was similar, averaging 0

MB/s. A summary of these results is given in Table 4.6.
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Tests across the Internet were also conducted, but initial transfer times were inco

tent using the same independent trial approach used for the local area network tes

achieve meaningful results in this non-deterministic packet-switched network, an i

leaving technique was used for the tests. Rather than performing and completing a

then moving on to another test, each test was interspersed amongst all other tests in

ner similar to time-division multiplexing. This technique helped average out change

network state over the duration of the experiment, and is illustrated in Figure 4.5.

Table 4.6: Summary of file transfer timings in Figure 4.4 using least-squares
linear interpolation.

Technique Throughput [MB/s] Initial overhead [s]

FTP 0.7373 0.6918

Remote copy (rcp) 0.6860 1.6460

DNDS without agent 0.6266 1.1764

DNDS with agent 0.6941 4.3047
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DNDS: LAN Test [From 1999/03/23 16:51:49 to 1999/03/24 14:43:46

FTP               
Remote copy (rcp) 
DNDS without agent
DNDS with agent   

Figure 4.4: Comparison of file transfer timings between two machines on a LAN us
the distributed network data system (DNDS) prototype and common system comm
The block size for the DNDS server was 256 KB. Each data point is calculated a
average of three independent trials, with error bars showing the standard deviation.
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The resulting performance characteristics using the same block size as the pre

LAN example are given in Figure 4.6, with a corresponding summary provided in T

4.7. In this experiment, the client machine was the same dual Pentium II machin

before, located in Victoria, British Columbia. However, the UltraSPARC 10 ser

machine was located in Toronto, Ontario, while agents were dispatched to a Pentium

MHz based system in Richmond, British Columbia. To reduce the time taken for t

tests, file sizes were varied from 0 MB to 1 MB, in steps of 128 KB.

From these results, we see that an interesting phenomenon has occurred - the th

put provided by the DNDS with agent transfer (51.8175 KB/s) is much higher than

throughput of any other method (others average 4.3504 KB/s). This is because the lo

of the intermediate agent (Richmond, British Columbia) has forced packets to be ro

through different network paths than the paths chosen by routers alone in the other

niques.

DNDS with agent

FTP

DNDS without agent

Remote copy (rcp)

DNDS with agent

FTP

DNDS without agent

DNDS with agent

FTP

DNDS without agent

Remote copy (rcp)

DNDS with agent

. .
 .

FTP

. .
 .

DNDS without agent

. .
 .

Remote copy (rcp)

. .
 .

Remote copy (rcp)

. .
 .

T
im

e

Figure 4.5: Consecutive execution of programs (a), in comparison with progr
interleaving (b) used in DNDS performance testing. This technique helps to reduce
effects of indeterminate network behaviour for making performance comparisons.

(a) (b)
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In fact, a trace of the route taken by these techniques indicated the packets were

inadvertently routed through San Francisco. This discrepancy caused latency tim

approximately 100 ms for the agent-assisted transfer in comparison with 500 ms fo

other techniques. This low traffic niche discovered in the network made the initial o

head of dispatching the agent less evident than in the previous example. Although i

case it was merely a coincidence that this low cost path was found, it does demonstra

possibility for high level servers and agents to use heuristics in order to adapt to ne

conditions on their own. For example, a network server could compare network lat

times between a set of remote machines before dispatching an agent. In fact, the

found was short lived, emphasizing the fact that network conditions change over tim
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DNDS: Internet Test [From 1999/05/06 14:03:04 to 1999/05/06 18:23:49

FTP               
Remote copy (rcp) 
DNDS without agent
DNDS with agent   

Figure 4.6: Comparison of file transfer timings from a machine in Toronto, Ontario t
machine in Victoria, British Columbia using the distributed network data system (DN
prototype and common system commands. Intermediate agents were dispatched to
in Richmond, British Columbia. The block size for the DNDS server was 256 KB. E
data point is calculated as the average of ten interleaved trials, with error bars showi
standard deviation.
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These results show that the DNDS prototype gives transfer times which are com

ble to their system counterparts for a reasonable range of file sizes. All of these tests

conducted using a fixed 256 KB block size, which is relatively large. Due to the cac

and client recovery features of the intermediate agents used, it is desirable to minimiz

block size, as long as doing so does not significantly degrade performance. Therefo

order to determine the effect of varying the block size itself, additional tests were

formed.

4.1.4.2 Varying the Block Size

In these tests, the file transfer size was fixed at 1 MB, and the block size was v

from 32 bytes to 1 MB, in incremental powers of two. Since a 1 MB file was transfer

the largest block size used corresponds to complete transfer of this file in a single blo

this case, no segmentation is being done at the application layer, meaning that the

packetization taking place is by TCP/IP itself. Results of these tests on a local area

work are given in Figure 4.7. Specific machines chosen for these tests were the sa

those used to obtain Figure 4.4. Note that the horizontal axis shown uses a logari

scale in order to accommodate the wide range of block sizes tested.

Table 4.7: Summary of file transfer timings in Figure 4.6 using least-squares
linear interpolation.

Technique Throughput [KB/s] Initial overhead [s]

FTP 4.0175 7.8536

Remote copy (rcp) 4.2947 8.1412

DNDS without agent 4.7389 24.5374

DNDS with agent 51.8175 25.6200
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These results show that with very small block sizes (less than 1 KB), use of an i

mediate agent on a LAN results in transfer times that are several times greater than

fers without an agent. This is because of the very high overhead involved in the u

these impractical block sizes. With more reasonable block sizes of 4 KB or greate

agent only incurs a constant dispatch overhead, and provides comparable through

direct transfers. However, as mentioned previously, intermediate agents are typical

required on a LAN, emphasizing the need for Internet performance tests.

Transfer times on the Internet using various block sizes are shown in Figure 4.8. T

tests were performed with a client in Victoria, servers in Toronto, and intermediate ag

dispatched to Richmond, as in previous tests. As in the case of a LAN, very small b

sizes give inefficient results for both direct and agent-assisted transfers, but these m
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DNDS: LAN Test [From 1999/06/19 12:07:08 to 1999/06/19 15:03:34

DNDS without agent
DNDS with agent   

Figure 4.7: Comparison of time to transfer 1 MB file between two machines on a LA
using the distributed network data system (DNDS) prototype and varying block s
Each data point is calculated as the average of ten interleaved trials, with error
showing the standard deviation.

Block size = 4 KB

Block size = 1 KB
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approach one another as the block size is increased. Since the transfers times show

in several orders of magnitude, a sub-plot is needed to distinguish between these tra

using larger blocks.

A close-up of Internet transfer times using block sizes greater than or equal to 1 K

shown in Figure 4.9. It is noted that at block sizes 32 KB and above, use of an interme

agent adds approximately constant overhead. Once again, this overhead is primarily

the initial dispatch time required for agents.
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Figure 4.8: Comparison of time to transfer 1 MB file from a machine in Toronto, Onta
to a machine in Victoria, British Columbia using the distributed network data sys
(DNDS) prototype and varying block sizes. Intermediate agents were dispatched to
in Richmond, British Columbia. Each data point is calculated as the average o
interleaved trials, with error bars showing the standard deviation.



81

para-

d the

f the

nt-

LAN.

nable

to a

and

hese

s are

ater
The conclusions of these tests are that transfer times for DNDS transfers are com

ble to those obtained with built in system commands for both local area networks an

Internet, with a slight overhead for initial dispatching of intermediate agents. Use o

DNDS on a LAN is efficient using block sizes of 4 KB or greater for either direct or age

assisted data transfers, although intermediate agents are typically not required on a

For the Internet, use of block sizes greater than or equal to 32 KB provides a reaso

compromise in terms of performance, caching, and recovery purposes.

4.2 Test Application - Status Monitoring Data

The described server hierarchy and intermediate agents have been applied

research application for field testing - retrieving stored status monitoring information

topology of the cable amplifier networks described in Section 1.2. Signals from t

cable amplifier networks are collected and archived daily. The resulting database
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Figure 4.9: Close-up of the transfer times shown in Figure 4.8 using block sizes gre
than or equal to 1 KB.

Block size = 32 KB
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made available through status servers shown in Figure 4.1. In addition, the structur

cable amplifier network at various instants in time is provided by a topology ser

Increased dependence on cable amplifier networks in recent years makes the fault de

nation schemes described in [49] useful when applied to this data.

The following assumptions are made in applying the described server hierarchy t

status monitoring application:

• A cable amplifier network is a group of cable amplifiers providing service to a s

cific geographic area. Cable amplifier networks do not overlap.

• A network object represents a cable amplifier network and is made up of

topology object and one or more status objects. This network object store

changing state of a cable amplifier network over time.

• Status monitoring information is never split topology-wise amongst status obj

• Status monitoring information may be split time-wise amongst status objects.

• The topology object includes the evolution of the topology of the cable ampli

network over time.

• All of the information needed to describe a given cable amplifier network’s top

ogy will be stored in a single topology object.

• Each status object contains a time series of status monitoring data for a p

specified by start and end times.

4.2.1 Comparison of Direct and Agent-Assisted Transfers

Timing comparisons for the remote retrieval of status monitoring data using the DN

prototype are shown in Table 4.8. Direct DNDS transfers are compared to the times

for each step in an intermediate agent’s lifetime. These tests were performed with a

in Victoria and servers in Toronto, as in previous tests. Agents were initially dispatche

the server machine so they could retrieve data locally, but were subsequently reques

relocate and rendezvous with the client machine in Victoria. Two runs were performed
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second consisting of twice as much data as the first. Block sizes used varied slightly,

for status monitoring data it is convenient to split byte streams on day boundaries. Fo

Mississauga plant, doing so results in block sizes of approximately 50 KB.

It is noted that direct DNDS retrieval requires times roughly proportional to the d

size - taking approximately one and two minutes to retrieve three and a half and s

weeks worth of data, respectively. These runs correspond to byte streams cont

1,049,096 and 1,996,560 bytes. Agent request times for both runs is essentially cons

a few seconds, due primarily to network latency and remote shell invocation. Remote

collection by the agent and rendezvous times consist of a constant overhead plus a

ple of the total transfer size based on throughput. It is expected that larger retrievals w

scale similarly, as indicated by previous performance tests. Total agent life-span

required connection times for clients are also given.

Table 4.8: Comparison of transfer times for remote retrieval of status
monitoring data for amplifier SMT_100 from the Rogers cable amplifier
network in Mississauga, Ontario. The first run consists of three and a half weeks
of data while the second run consists of seven weeks of archived data, both
starting from May 6, 1999. DNDS servers were executed on a machine in
Toronto, Ontario while the client was in Victoria, British Columbia.

Method Times for Run 1 [s] Times for Run 2 [s]

Direct DNDS retrieval 57.97 129.16

Request for new remote
agent

4.29 4.21

Agent data collection at
remote host

35.62 75.40

Agent relocation and
rendezvous to local host

22.87 51.96

Retrieval from local
agent

3.65 5.99

Total agent life-span 66.43 137.56

Required time on-line 7.94 10.20
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Although the total agent life-span is longer than the time taken for direct retrieva

remote data by a client, this is in part due to the fact that data collection by the agen

retrieval by the client were not happening concurrently, as they normally could if the c

was on-line. However, using an agent the total time a client is required to be on-line is

nificantly lower (approximately one tenth) than that of a direct remote transfer, w

requires the client to be on-line for the entire duration of the transfer. This is espec

useful for mobile clients with intermittent network connectivity.

4.2.2 Visualization

A client interface designed for the status monitoring application has been develop

a Java applet, as shown in Figure 4.10. The Java applet consists of a series of text fie

user input and two plotting windows to display signals. The intent behind this was to

duce a mobile, platform independent client. Since web browsers are available for a

every platform, this provides us with a good framework with which to test the mob

and fault tolerant features of the system.

Figure 4.10:Visualization of status server data using Java applet.
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4.2.3 Parameters

The user must enter a valid username and password1 in the fields allocated for them in

order to be granted access to any data. They must also enter sufficient parameters

mulate the query that will be sent across the network - in the case of status monitoring

for cable amplifier networks, this consists of the site name of the cable amplifier plan

requested amplifier name, and the start time and end time of the desired interval. Mi

error checking is done on all fields locally by the applet to minimize erroneous reques

an incorrect value is entered, the faulty field is highlighted until the user enters a co

value.

4.2.4 Mapping to DNDS

Once a set of valid parameters have been entered, a connection is made to a Java

known as the status mapper to interpret the request, as illustrated by the communic

overview in Figure 4.11. Due to security reasons, applets are typically restricted b

Java security manager to only open socket connections back to the machine they

served from. For this reason, in order to run the status mapper on a machine other th

web server, a proxy can be used which redirects communication from the status map

make it appear to come from the same machine as the web server. This circumven

security limitations imposed by the Java virtual machine.

1. The echo character for the password field is set to an asterisk to avoid having the password d
played on the screen.
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Since the web servers illustrated only need to serve applet code and perhaps

small supporting documents, they generally do not require advanced features su

caching. This means use of a full featured web server such asapache is not strictly neces-

sary. Therefore, to avoid adding unnecessary third party software, a simple multi-thre

web server was written in Java. Use of a small footprint web server means proxy se

can be avoided, since individual web servers can be run on the same machines as th

responding status mapper servers. This Java web server implementation performe

quately for all prototyping and testing purposes. However, if the illustrated syste

adopted on a wider scale, it may be more suitable to consider using a more advance

server.

The status mapper server is also written in Java and provides the necessary ma

between requests made by the Java applet and the distributed network data s

(DNDS) described in Chapter 2. The status mapper server listens on a socket, wait

accept the username, password, site name, amplifier name, start time, and end time

DNDS

Figure 4.11: Communications overview of the interface between the status monito
visualization applet and the distributed network data system.

Web Browser
applet

Proxy

Web Server

(optional)

Machine 1

Status Mapper

Proxy

Web Server

(optional)

Machine 2

Status Mapper

control/data

applet

control/data



87

it con-

s the

ly for

k at the

store

Java

on is

This

ler-

switch

ng or

m has

pense

status

ent’s

st be

st that

ly, to a

has

.

as

11. An

server

ata at
from a Java applet. Once a connection is made and the required fields are received,

verts them into a suitable call for the DNDS, executes this command, and return

results to the calling applet. For performance reasons, some buffering is done local

both input and output so that reasonable amounts of data are sent across the networ

same time.

4.2.5 Caching

The Java applet contains a local cache in order to switch between displays and

data from multiple queries locally. However, this cache persists only as long as the

virtual machine, and hence, the web browser, is active. Therefore, the mobility opti

also specified by the status mapper when making the initial request to the DNDS.

results in an agent being dispatched in the DNDS which provides mobility and fault to

ance features to the client. With respect to the Java prototype, this means a user can

from one machine to another, reboot, or quit and restart their web browser either duri

after downloading of status signals.

Provided the user makes the same query again and the agent dispatched for the

not timed out, the applet can retrieve an agent’s cached data without incurring the ex

of computations necessary to obtain the data - in this case, uncompressing stored

monitoring signals. Theoretically, any subsequent queries which intersect with an ag

available data could make use of the cache, but in the initial prototype the query mu

an exact match to the query made previously. Furthermore, the user could also reque

the agent be moved to a specified acceptor site using the rendezvous option - typical

host closer in proximity to a current or future destination. Although this functionality

been implemented in the DNDS, it has not yet been extended to the applet interface

4.2.6 Results

Authentication, retrieval of data, and caching abilities of the agent all worked

expected when tested from the applet and status mapper system shown in Figure 4.

agent was successfully dispatched upon successful authentication and network

request by the Java applet. Uninterrupted retrieval and display of status monitoring d



88

ioned

inally

eably

al data

und

ed sta-

vesti-

m-

at time

at the

s also

hough

ested

nce

cep-

JVM)

4.6,

Ms
this point was also successful. Furthermore, disconnection and reconnection funct

properly, as the Java applet was able to re-establish a connection with the orig

launched agent. Upon reconnection, retrieval of data by the Java applet was notic

faster, because the agent had time to asynchronously retrieve and cache addition

while the client was off-line. In this scenario, data extraction becomes network bo

rather than computationally bound due to the required decompression of the request

tus monitoring signals.

The Java applet was then used to retrieve data in directed maintenance. During in

gation of a fault event in the cable amplifier network located in Richmond, British Colu

bia, several sets of additional data were successfully retrieved using the Java applet

intervals near the event in question. From these successful trials, it is envisioned th

described system could prove useful in on-site maintenance. Rendezvous capabilitie

worked as expected, as an agent was able to meet client at a given acceptor site. Alt

it is not possible to issue this command from the Java applet, this functionality was t

manually through a simple command line version of the client.

The only drawback found with the Java applet for visualization was that performa

was slightly slower than natively compiled C++ code, possibly due to the run-time ex

tion checking in Java’s input and output stream classes. Java virtual machines (

which were tested include Sun Appletviewer in JDK 1.1.7, Netscape Communicator

Microsoft Internet Explorer 5.0, and Apple MRJ 2.1.2. Platforms on which these JV

resided include Linux, Solaris, HP-UX, and MacOS.
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Chapter 5

Conclusions and Recommendations

5.1 Conclusions

Throughout this thesis, the design and implementation of an agent architectur

mobile network services was presented. This architecture is specifically tailored for

retrieval in a distributed network data system. A number of techniques were illustr

which assist in supporting authentication, control, mobility, and fault tolerance within

system. The techniques used include a server hierarchy to support scalability and int

diate agents to support mobile clients.

Initially, distributed computing paradigms were discussed, including client-server

mobile agent systems, and how these systems can be implemented using remote pro

calls. Subsequently, cable amplifier networks were introduced, in which a coaxial ca

used to provide a number of services to subscribers, the most prominent of these se

being television and Internet data transfer capabilities. In order to provide reliable se

within these networks, status monitoring on a number of key signals can be perfor

This monitoring data can be regularly collected from each amplifier. Doing so resul

large amounts of generated data to be archived at storage locations. Retrieval of this

mation is useful in post-processing and visualization upon client request.

In order to meet the storage and dissemination requirements of this cable ne

application, as well as to accommodate the distributed and heterogeneous nature o

sources, storage locations, and client requests, a distributed network data system (D

was proposed. This data system uses a server hierarchy to achieve scalability and fa

erance. High-level servers are used for control and authentication, while low-level se

such as data servers, exist to handle client requests for data. No logical restriction is p

on the number of data server types that can exist within this hierarchy.
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However, the assumption made is that hosts do not move during or between data

fers. While this is generally the case for server machines, it is not necessarily true fo

client side of communications. In order to support client mobility, a mobile agent ca

dispatched to act as an intermediary between client and data server. Although incur

slight overhead - primarily a constant offset for its initial creation - this agent can pro

several benefits including caching and recovery support, as well as rendezvous ca

ties. Several agents can also be combined to provide additional features, such as fa

erance of agents themselves, and partial application level control over routing. Ma

the security problems traditionally associated with mobile agents are avoided in this

tem by only sending state information, and not code.

These techniques have been incorporated in a prototype subsystem and graphic

interface tailored to a specific industrial application, and are currently undergoing

testing. A prototype of the distributed network data system and accompanying m

agents has been implemented using a subset of the original server hierarchy. This

was written on Unix platforms using C++ and remote procedure calls. Status and top

servers have been written to provide data for the discussed cable network applicati

well as an FTP server for handling arbitrary file requests. A graphical interface for plo

status monitoring signals has also been developed as a Java applet. A total of over 1

lines of C++ and 1,500 lines of Java code were written for this implementation, exclu

third party software, which further increases these totals to 16,100 and 9,000 lines, re

tively. Numerous Perl scripts, shell scripts, and build routines were also develope

assist in compilation, testing, and support.

Several tests were done in order to analyze the performance of this prototype sy

Conclusions of these tests are that transfer times for DNDS transfers are compara

those obtained with built in system commands for both local area networks and the

net, with a slight overhead for initial dispatching of intermediate agents. Use of the DN

on a LAN is efficient using block sizes of 4 KB or greater for either direct or age

assisted data transfers, although intermediate agents are typically not required on a

For the Internet, use of block sizes greater than or equal to 32 KB provides a reaso

compromise in terms of performance, caching, and recovery purposes.
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Further tests showed that retrieval of status monitoring data using this system pro

reasonable performance for both direct and agent-assisted data transfers. Rend

capabilities of intermediate agents were also exercised. These initial results are enc

ing in that the system works as expected and has promising performance characteris

is envisioned that this agent architecture will be used to retrieve data on a country

basis, simplifying access to monitoring information used in directed maintenance.

5.2 Recommendations and Future Work

Although initial results using the current prototype have been encouraging, the

still some future work that could be done to improve upon the agent architecture desc

in this work. In particular, in order to achieve the country-wide scalability the system

designed for, the remainder of the server hierarchy described in Chapter 2 would ha

be implemented. In the prototype code, some functionality was temporarily moved

the network server layer - for example, storage of usernames and encrypted pass

However, these routines were originally designed to reside in higher level servers, su

the directory server and directory master. In addition, these servers assist in the pro

tion of network information and improve the overall fault tolerance of the system.

The intermediate agent extensions to conventional client-server communication

described in Chapter 3, could also be improved. For example, dispatching heuristics

be considered for initial selection of acceptor sites. Currently, a host is chosen rand

from a provided list, although a combination of load average, estimated throughput

available disk space on a given set of hosts has been proposed. Furthermore, al

serial chaining of agents is supported, this is primarily due to a common interface bet

agent and data server. Parallel agents and an accompanying stand-by sparing tec

have also been proposed to improve redundancy, but have not yet been implem

Autonomous execution abilities of the agent could also be enhanced, by allowing an

to migrate between hosts on its own rather than only when specifically requested by

ent - either to rendezvous with a client at an acceptor site, or to migrate to a given sit

lowing retrieval of data.
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It is felt that further evaluation and performance tests of the DNDS implementa

should be undertaken, particularly with respect to client recovery from errors, agent c

ing, and block sizes used in data transfers. Following any necessary refinements

lished by these in-house tests, release of a beta version to Rogers’ technical staff

provide useful wide-scale testing and user feedback for further finalizing the eve

release of the system. For example, users may request changes to the graphical use

face, in order to make it easier to use. As well, this would provide a useful scenari

testing the full scalability and security of the system.

Future technologies may also play a role in the development of the agent archite

described in this work. For example, application-aware routers or an equivalent tec

ogy could be used to improve performance, possibly making use of blocks at the ap

tion layer obsolete. Existing protocols such as UDP, although less reliable than the

protocol currently used, could also be considered. Other areas in which performance

be improved include the compression of byte streams and the initial dispatching of ag

Since the majority of the time involved in a client-server data transfer is dependent o

network latency, compression/decompression of data before and after transfer cou

performed. In order to maintain application transparency, this could be impleme

within the DNDS. For this technique to be useful, the computational overhead incu

must be offset by the network transmission time saved. However, in modern compute

tems this is likely to be the case, particularly with scaling processor performance. Fur

more, agent dispatch overhead could likely be reduced by implementing a cu

authentication and execution facility at each acceptor site, rather than using the bu

Unix remote shell capabilities. However, this would require a special server to be ru

each acceptor site.

Finally, although the target platforms for the DNDS prototype are Linux and Sola

the implementation is written using standard Unix programming paradigms. It is expe

that the C++ code developed would be relatively simple to port to other varieties of U

particularly those which conform to the POSIX standard. One restriction is that m

threaded support and ONC RPC are required, though these are common to man

forms. In addition, the C++ standard template library (STL) was used for container cla
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such as hash tables and linked lists. However, this only involves installation or upgra

of a compiler, since current versions of the GNU C++ compiler provide built-in supp

for STL. Although all of the aforementioned requirements are common to several

forms, certain portions of the implementation are unavoidably platform dependent

example, determination of the MAC address of the ethernet adapter, for use in the no

field of UUIDs. These routines would have to be modified or re-written for any ot

potential platforms. Obviously, the Java applet and servers developed for visualizati

status monitoring signals are naturally platform independent, due to the interpreted n

of Java itself.
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Appendix A

Sample Cable Amplifier Network Topology

Table A.1: Portion of the topology from the cable amplifier network in
Newmarket, Ontario on April 14, 1997.

Amplifier
Name

Location Type Children Parent

SMT_100 Headend NULL NULL NULL

SMT_109 SN3 Launch Low SMT_411 NULL

SMT_207 Bristol High SMT_211 SMT_208

SMT_2210 SN5 Launch NULL SMT_210 NULL

SMT_2417 SN4 GW1 Launch NULL SMT_417 NULL

SMT_2423 Leslie High SMT_423 SMT_424

SMT_2424 SN11 Launch NULL SMT_424 NULL

SMT_2519 New Const. NULL SMT_2520 SMT_516

SMT_392 HWY  #11 Low SMT_393 SMT_291

SMT_398 Sherwood High NULL SMT_397

SMT_425 SN11 Launch High SMT_426 NULL

SMT_431 Site 431 Low SMT_432 SMT_430

SMT_434 Far end High SMT_435 SMT_433

SMT_510 millard and ea NULL SMT_511,
SMT_528

NULL

SMT_524 Alex Donner Dr. High SMT_525 SMT_523

SMT_801 Sanford High SMT_831 SMT_713

SMT_815 19 Foxtail Rid High NULL SMT_808

SMT_831 Hodgson High NULL SMT_801

SMT_941 Ivesbridge High SMT_942 SMT_728

SMT_100 Headend NULL NULL NULL
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Appendix B

Network Server Interface Definition

/* Server runs in foreground */

const RPC_SVC_FG = 1;

/* UUID structure definition, if not already defined */

%#if RPC_XDR || !defined(UUID_T_DEFINED)

%#define UUID_T_DEFINED

struct uuid_t

{

u_int time_low;

u_short time_mid;

u_short time_hi_and_version;

u_char clock_seq_hi_and_reserved;

u_char clock_seq_low;

u_char node[6];

};

%#endif

/* Enumeration of byte stream control field */

enum bs_control

{

BS_NORMAL = 0,

BS_LAST = 1,

BS_ERROR = 2

};

/* Byte stream definition */

struct byte_stream

{

bs_control control;

u_long byte_count;

opaque data<>;



101
};

/* Client attributes */

struct client_attr

{

string hostname<>;

};

/* Enumeration of supported server types */

enum svr_type

{

NULL_TYPE = 0,

NS_TYPE = 100,

DS_TYPE_AGENT = 200,

DS_TYPE_FTP = 301,

DS_TYPE_STATUS = 302,

DS_TYPE_TOPOL = 303

};

/* Server attributes */

struct svr_attr

{

svr_type type;

string hostname<>;

u_long prog_num;

u_long vers_num;

};

/* Server request */

struct svr_request

{

uuid_t uuid;

svr_attr server;

byte_stream param;

};

/* Connection attributes */

struct conn_attr
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{

client_attr client;

svr_attr server;

};

/* Connection request */

struct conn_request

{

uuid_t uuid;

conn_attr conn;

};

/* Enumeration of server control field */

enum svr_control

{

SVR_DENIED = 0,

SVR_VALID = 1,

SVR_RECONNECT = 2

};

/* Request */

struct request_rc

{

uuid_t conn_uuid;

svr_control control;

svr_attr server;

};

/* Client options, can be OR'ed together */

enum cl_options

{

/* Standard client, no extra options */

CL_NORMAL = 0,

/* Originator is an agent */

CL_AGENT = 1,

/* Request mobility */
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CL_MOBILITY = 2,

/* Request rendezvous */

CL_RENDEZVOUS = 4,

/* Request reconnect */

CL_RECONNECT = 8

};

/* Network server request */

struct ns_request_attr

{

/* User access control */

string username<>;

string password<>;

/* Connection options e.g. mobility */

cl_options options;

/* Previous connection identifier if known */

uuid_t conn_uuid;

/* Requested server type */

svr_type type;

/* Additional parameters for specific server */

byte_stream param;

};

/* Network server interface definition */

program NS_PROG

{

version NS_VERS

{

/* Clients */

/* Initial request */

request_rc NS_REQUEST(ns_request_attr request) = 1;
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/* Data Server */

bool NS_REGISTER(svr_request svr) = 100;

bool NS_DEREGISTER(uuid_t uuid) = 101;

bool NS_CONNECT(conn_request conn) = 102;

bool NS_DISCONNECT(uuid_t uuid) = 103;

} = 1;

} = 0x30000825;
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Data Server Interface Definition

/* Server runs in foreground */

const RPC_SVC_FG = 1;

/* Data server program numbers for known types */

const DS_PROG_FTP    = 0x30000827;

const DS_PROG_STATUS = 0x30000828;

const DS_PROG_TOPOL  = 0x30000829;

/* Inter-header dependency */

%#include "ns_rpc.h"

/* UUID and byte stream grouped together in single structure */

struct bs_request

{

uuid_t uuid;

byte_stream bs;

};

/* Data server interface definition */

program DS_PROG

{

version DS_VERS

{

/* Mobility */

bool DS_RECEIVE_STATE(byte_stream state) = 200;

bool DS_MIGRATE(svr_attr svr) = 201;

/* Network Server */

bool DS_RECEIVE_CONN_UUID(uuid_t uuid) = 300;

bool DS_RECEIVE_REQUEST(ns_request_attr request) = 301;

byte_stream DS_QUERY_AVAIL_DATA(byte_stream query) = 302;
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/* Clients */

/* Initial request */

request_rc DS_REQUEST(uuid_t uuid) = 400;

/* Start a transfer */

bool DS_OPEN(bs_request query) = 401;

/* Transfer and acknowledgement of data */

byte_stream DS_GET_DATA(bs_request ack) = 402;

bool DS_ACKNOWLEDGE(bs_request ack) = 403;

/* Transfer complete */

bool DS_COMPLETE(uuid_t uuid) = 404;

/* Graceful degradation */

bool DS_HANGUP(uuid_t uuid) = 405;

} = 1;

} = 0x30000826;
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Debug Library Header File

#ifndef AS_DEBUG_H

#define AS_DEBUG_H

/* ------------------------------------------------------------------

   Define DEBUG as a compiler flag in all source files to enable

   debugging messages.  For example:

      gcc -DDEBUG -c debug.cc

   Provided macros are:

      ASSERT             - assert replacement with debug support

      STREAM             - used for writing to ostream with debug

                           support

      DB                 - used for printing messages to cerr

      DB_ASSERT          - same as ASSERT, but only included in DEBUG

                           mode

      DB_ENTER           - call this when entering a function

      DB_REDIRECT        - redirect debug output to file and/or cerr

      DB_SET_EXIT_DEPTH  - override exit level for subsequent calls

      DB_SET_PRINT_DEPTH - override print level for subsequent calls

      DB_STAT            - useful for printing values of

                           variables/functions

      DB_STREAM          - same as STREAM, but only included in DEBUG

                           mode

      DB_TIME            - print out the current date and time accurate

                           to the hundredths of a second

      DB_WARN            - similar to DB_ASSERT but does not exit
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   Typical usage might be something like:

      #include "debug.h"

      void main(void)

      {

         int i = 22;

         DB_ENTER(main);

         DB_SET_PRINT_DEPTH(2);

         DB_SET_EXIT_DEPTH(10);

         DB("Hello world, i = " << i);

      }

   If DEBUG is not defined, default is no debugging and macros with DB_

   prefix are expanded to nothing, meaning no code is included.  Macros

   without this prefix such as ASSERT expand to code in both cases, but

   will not include debugging support unless DEBUG is defined.

   ------------------------------------------------------------------ */

#ifndef DEBUG

#include <assert.h>

#define ASSERT(X) \

assert(X)

#define STREAM(S, X) \

S << X

// Debug mode off, so disable all DB macros

#define DB(X)

#define DB_ASSERT(X)

#define DB_DELAY()

#define DB_ENTER(X)

#define DB_REDIRECT(X, F)

#define DB_SET_EXIT_DEPTH(X)
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#define DB_SET_PRINT_DEPTH(X)

#define DB_STAT(X)

#define DB_STREAM(S, X)

#define DB_TIME()

#define DB_WARN(X)

#else

// Compile time options

#define DEBUG_THREADS

#define DEBUG_TIME_ACCURACY

#include <iostream.h>

#ifdef DEBUG_THREADS

#include "critsec.h"

#endif

class Debug

{

private:

char *func_name;

int prev_exit_depth, prev_print_depth;

public:

static int exit_depth, indent_depth, print_depth;

static bool cerr_enable;

static ostream *os_ptr;

#ifdef DEBUG_THREADS

static Mutex mutex;

#endif

Debug(char *_func_name);

~Debug();
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static void _assert(char *expr, char *filename, int line);

static void delay(int num_seconds = 5);

static void indent(void);

static void preline(void);

static void print_time(void);

static void redirect(char *_filename = NULL,

bool _cerr_enable = true);

static void set_exit_depth(int _exit_depth);

static void set_print_depth(int _print_depth);

static void warn(char *expr, char *filename, int line);

};

// Private helper macros

#define DB_STREAM_PRINT(S, X) \

S << X

#ifdef DEBUG_THREADS

#define DB_ACQUIRE_CRITSEC() \

Critical_Section critsec(Debug::mutex)

#define DB_STREAM_PRINT_THREAD(S) \

DB_STREAM_PRINT(S, "," << pthread_self())

#else

#define DB_ACQUIRE_CRITSEC()

#define DB_STREAM_PRINT_THREAD(S)

#endif

#define DB_PRINT(X) \

{ \

DB_ACQUIRE_CRITSEC(); \

if (Debug::cerr_enable) \

DB_STREAM_PRINT(cerr, X); \

if (Debug::os_ptr) \

DB_STREAM_PRINT(*Debug::os_ptr, X); \

}
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#define DB_STREAM_INDENT(S) \

{ \

DB_STREAM_PRINT(S, getpid()); \

DB_STREAM_PRINT_THREAD(S); \

DB_STREAM_PRINT(S, ": "); \

for (int i=0; i < Debug::indent_depth; i++) \

{ \

DB_STREAM_PRINT(S, " "); \

} \

}

#define DB_INDENT() \

Debug::indent()

// Macros defined in both debug and normal modes

#define ASSERT(X) \

if ((X) == 0) \

Debug::_assert(#X, __FILE__, __LINE__)

#define STREAM(S, X) \

{ \

DB_STREAM_INDENT(S); \

DB_STREAM_PRINT(S, X); \

}

// Macros defined only if debugging is enabled

#define DB(X) \

if (Debug::print_depth > 0) \

{ \

DB_INDENT(); \

DB_PRINT(X << endl); \

}

#define DB_ASSERT(X) \

ASSERT(X)
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#define DB_DELAY() \

Debug::delay();

#define DB_ENTER(X) \

Debug debug(#X)

#define DB_REDIRECT(X, F) \

Debug::redirect(X, F)

#define DB_SET_EXIT_DEPTH(X) \

Debug::set_exit_depth(X)

#define DB_SET_PRINT_DEPTH(X) \

Debug::set_print_depth(X)

#define DB_STAT(X) \

DB(#X << " = " << (X))

#define DB_STREAM(S, X) \

STREAM(S, X)

#define DB_TIME() \

Debug::print_time()

#define DB_WARN(X) \

if ((X) == 0) \

Debug::warn(#X, __FILE__, __LINE__)

#endif

#endif // AS_DEBUG_H
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