An Agent Architecture for Mobile Network
Services: Design and Implementation

by
André Peter Schoorl
B.Eng., University of Victoria, 1997
A Thesis Submitted in Partial Fulfilment of the
Requirements for the Degree of
MASTER OF APPLIED SCIENCE
in the Department of Electrical and Computer Engineering

We accept this thesis as conforming
to the required standard

Dr. N. J. Dimopoulos, Supervisor (Department of Electrical and Computer Engineering)

Dr. K. F. Li, Departmental Member (Department of Electrical and Computer Engineering)

Dr. G. C. Shoja, Outside Member (Department of Computer Science)

Dr. R. N. Horspool, External Examiner (Department of Computer Science)

© André Peter Schoori1999
University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part, by
photocopying or other means, without the permission of the author.

Supervisor: Dr. Nikitas J. Dimopoulos

Abstract

As wireless and ubiquitous computing become increasingly affordable and wide-
spread, traditional client-server models for distributing data fail to offer the flexibility
needed in mobile computing environments. Although systems have been proposed to
address these concerns, most rely on changes to existing infrastructures. This work
describes a server hierarchy that uses currently available resources which alleviates some
of the common problems associated with data mining from mobile hosts. Although
designed for retrieving stored status monitoring information and topology of cable televi-
sion amplifier networks, the proposed system is general enough to be used for disseminat-
ing arbitrary data across a computer network. Client mobility and fault tolerance, if

required, are handled through the use of object serialization and intermediate agents.

Examiners:

Dr. N. J. Dimopoulos, Supervisor (Department of Electrical and Computer Engineering)

Dr. K. F. Li, Departmental Member (Department of Electrical and Computer Engineering)

Dr. G. C. Shoja, Outside Member (Department of Computer Science)

Dr. R. N. Horspool, External Examiner (Department of Computer Science)

Table of Contents

ADSTIACT e e e eeeees L...
Table Of CONTENES........eiiiiiiee et e e e e e e e e
IS A T U PSSP Vi.....
LISt Of TADIES ... e e e e e e e e e e e e e e ebe b e eennns Xeven
I = 10 [T 0 =T SRR Xi.......
[015 oS PUPSPR Xill.....
Yo g 0N oTo (o =T g Loy o PRSPPI XVii
(@ F=1 o (=T i A 1 011 (o To [1 o] o o | 1
1.1 Distributed Computing ParadigmsSooooviiiiiiiiiiiiiiiiiie e 1
1.1.1 Client-Server COMPULINGuuuuuuueeiiiieeeeeeeeeeereeeeeeeeisissesseeeeeeseeseeeennnnnn 2
1.1.2 Remote Procedure CallS ... 4
1.1.2.1 Programmer INTEIfacCecoouvvieeiiiiiiiiiieii e 4
1.1.2.2 FaAUlt TOIEIANCEuuviiiiiiiiiiiiiiieeee e 6
1.1.2.3 DEAUIOCK ...ttt 8
1.1.3 SOfWAIE AQENTSiiiiiiiiiiiiiiiiie ittt e e e e e e e e e e 11
1.1.3.1 Stationary AgENLS.....cccoeiiieeeiieeieeeeeeeeirrie s e e e e e e e e e e e e e ee e 11
1.1.3.2 MODIlE AQENES ... 12
1.1.3.3 Implementation OPLiONS..........coooviiiiiiiiiiiiiiii e 13
3 I AN o] o] [o= 11 o 1SR 15
1.2 Cable AMPIifier NEIWOIKS.........ouiiiiiiii e e 15
1,20 SEHTUCKUIE .ottt e e et e e e e et et e e e e e eaba e e e eeene 15
Y (o | - | PP UPOR 17
I T o 0 To] (o o)P 19
1.2.4 Nature Of PrOCESSING ...ccooiiiiiiiiiiiiiiieie ettt e e e e e e e e e s eeees 19
1.2.5 Storage and Dissemination ReqUIreMentsccccceeveeeiieeeeeeeeeeeeeeennnnns 20
G T Y1 o1 0 1 = P 22
Chapter 2 Distributed Network Data System............ccccoeeeeiiiiiiiii e, 24
2.1 SerVer HIBIarCNYooiiiiiiiiie et 25
S 1< VT G 1Y 1 SO 27
2.2.1 DIr€COrY MASEEIuveiieiiiiiee e 27
2.2.2 DIFECIOIY SEIVEI ..uiiiiiiiiiiiiiiieite e s st e e e e e e e e e e e e e e e e s e aaaan 28
2.2.3 NEIWOIK SEIVET ..coeiiiiiiiie ettt 28
2.2.4 DAlA SEIVEIS ..ottt e e et e e e e e e e ra e 29
2.2.4.1 Client INterface.......ccoovveeei e 29
2.2.4.2 Data Segmentation............ccooviiiiiiiiiiiiiiiieiee e eeeeee e 29
2.2.4.3 RECOVEIY SUPPOIT....couueiieieiiiiie e e et e et eeaa e e e e eeeanns 30
2.2.4.4 Client Call Order........ccieeiieie e e e e e e e e e eeeeannees 31
2.2.4.5 Internal StAteS.......cccuvviiiiiiiiiiiieee e 33

2.3 Clent-Server INTEraCIONcuee e

2.3.1 Directory Server - Directory Mastercccuuveiiiiiiiiiiiiie e 34
2.3.2 Directory Server - NetWOrk SErver ..ot 34
2.3.3 Network Server - Data SEIVEIccccuuiiiiiiiiiiiiiiieee e 35
pZ S O 11T o | U PR 36
2.4 Implementation CONSIAEratioNS..........cccuuuriiiiiiiiiiiieii et 37
2.4.1 ConNection HANAIESuuiiiiiiiiiiiiiiiiieeee e 37
2.4.2 QUEIY FOIMAL ...t r e e e e e e aaa s 38
2.4.3 DeadloCK AVOIJANCEuuuuuiiiiieee e e e e e e e e e e eeeeeennnnes 42
Chapter 3 Agent-Assisted Mobile Data Transfer............cccooeeeiviiiiiiinnnnnn, 45
3.1 MODIle Data TranSTeI......ciiiiiiiieeeeee e 45
3.1.1 Traditional SOIULIONScooiiiiiiiii e 47
3.1.1.1 Client MODITYcueeiiiiiiiiiiiieeee e a7
3.1.1.2 Fault Tolerance and CONCUITENCYuuuveuiiiiiieeeeeeeeeeeeeeenannns a7
3.1.2 AILEINALIVES ..ot e e e et 49
3.2 INtErMEdIAtE AQENTS. ... uuiiiiiiiiiiiii et e e e e e e e e e e e e e 49
3.2. 1 ROIE IN NEIWOIK ...ttt 49
3.2.2 Multi-Agent COOPEratiONcoiieeiiiiiiieeeeee e e e e e e e eaaaaa 51
3.2.3 Clent INTEracCtioNuuuuuuuuiiiiieeeeeeeeeeeeeeeeeeiiiis s e e e e e e e e e eeeeeeeeennnnnees 55
.24 BENETILS ittt 57
3.2.5 Dispatching and Relocation ISSUESccuvviiiiiiiiiiiiiiiceceeee e 58
3.2.6 SECUILY ..eeeeeeiiieiii ettt et e e e e e e e e e e e e e e e e 61
3.2.6.1 High-Level Considerations............cc.ceuuviviviiiiiiiieeeeeeeeeeeeeeeinnns 61
3.2.6.2 Low-Level ConSIiderationsS.........ccoeveeeeeeeeeeeeiieeieeeiiiiiien e 62
Chapter 4 Results and DISCUSSIONciieiiiiiiiiiieeeeeiiiie e e e e e e 63
4.1 Prototype IMplementationuueeeiiiiiiiiiiieeee e 63
4.1.1 Modified Server Hierarchycooovmiiiiiie, 63
O O 111 (=] = o L TSR 66
4.1.2.1 NEIWOIK SEIVENcceeeeeeiiiieiiie et e e e e e 66
4.1.2.2 DaA SEIVENottt 68
4.1.3 IMpPlementation ISSUEScccooeiiiiiiiiiiiiiiiiiiieae e 70
4.1.3. 1 SECUIMY cooeeeeieieee ettt e e e e e e 70
4.1.3.2 MUlti-Threading..........oovvuiiiiiiiiie e 71
v 00 G T0C T B 1= o 18 o o |1 o [OOSR 71
4.1.3.4 RPC Program NUMDErS...........uuuiiiiiiiiiiiiiiiiii 72
4.1.4 Performance CharacteriStiCSciiiiiiieeiiiiiiiiiiiiiiiieeeeeee e 73
4.1.4.1 Varyingthe File Size ... 73
4.1.4.2 Varying the BIOCK Sizecoooiiiiiiiiiiii e 78
4.2 Test Application - Status Monitoring Data.............cceeeeeiiiiiiiiiiiicccce e, 81
4.2.1 Comparison of Direct and Agent-Assisted Transfersccccccvvvvinnnns 82
7 Y 11U = 11 [0] o 84

L T == | = 1 1<) (] 85

4.2.4 Mapping to DNDS ... 85
4.2.5 CACNING ..ooiiiiiiiiiieee e 87
A.2.68 RESUNS oo e e 87
Chapter 5 Conclusions and Recommendations............cccccceevviieeviiiieeeennnnn. 89
DL CONCIUSIONS .. 89
5.2 Recommendations and FUTUIre WOTKcooue e 91
BIDHOGraphy 94
Appendix A Sample Cable Amplifier Network Topology.........ccccceevennn.... 99
Appendix B Network Server Interface Definitioncccccceeeveeveeevnnnnnn. 100
Appendix C Data Server Interface Definition.............cccceeeveeviiiiiin e, 105

Appendix D Debug Library Header Fileccooiiiiiiiiiiiiieee 107

Figure 1.1:

Figure 1.2:
Figure 1.3:

Figure 1.4:

Figure 1.5:

Figure 1.6:

Figure 2.1:
Figure 2.2:

Figure 2.3:

Figure 2.4:

Figure 2.5:

Figure 2.6:

Figure 2.7:

Vi
List of Figures

Client-server model - one or more client programs communicate over a
network with a server which provides some resource.cccc.eeeveeniennn. 3

Remote procedure call communication [4].......cccccceeeeeeeiiiiiieeiiiieeeen 5

Structure of cable amplifier networks. Signals propagate along the for-
ward path from the head-end through high-bandwidth trunk ampilifiers,
then through smaller networks of distribution amplifiers, before arriving
at destination subscribers. There is also a lower bandwidth reverse path
which flows in the opposite direCtion.ovvviiiiiiiiiieie e, 16

Forward pilot signal over a one week interval for amplifier SMT_2208
from the Oshawa cable amplifier Network.............cccccviviiiiiiiiiieeee, 18

Temperature signal over a one week interval for amplifier SMT_2208
from the Oshawa cable amplifier NetwWork.............ccccouviiiiiiiiiiieee, 18

Data flow of cable amplifier network status monitoring signals and topol-
ogy information. Data collectors receive status monitoring signals from
the reverse path of a cable amplifier network; the resulting databases are
sent to one or more storage locations using the file transfer protocol (FTP)
at regular INtErValS..........oooo i 21

SerVer NIEIArCNY.coveeeeeee e e e e e e e e e e e e e eeanaeee 25

Example of client control flow during a multiple session connection
including an off-line period and subsequent reconnection. 32

Data server state transitions during information transaction with client.
For simplicity, the majority of self-loops are not shown........................ 33

Querying by network server amongst data servers to determine location of
unknown data, or to determine how data is spread across servers.......... 35

Structure of Universal Unique Identifier (UUID). Values in square
brackets indicate the number of bits allocated for each field.................. 38

Example of the tree structure used to represent a generic format for DNDS
queries. From the root of the tree, several high-level data groups are de-
fined - in this case, cable amplifier network data and file transfer requests.
Further information is similarly specified in sub-trees, with the lowest lev-
el details occupying the leaf nodes of the tree. The highlighted path
represents a sample of the stream necessary to specify a particular file.39

Proposed encapsulation of query within a byte stream. A number of
UUIDs are included which define the path taken in the DNDS tree. In ad-
dition, an optional payload field can be specified for further parameters -
for example, the start time and end time defining an interval of data to be
ODLAINEA. ... 40

Figure 2.8:

Figure 2.9:

Figure 2.10:

Figure 3.1:
Figure 3.2:
Figure 3.3:

Figure 3.4:

Figure 3.5:

Figure 3.6:

Figure 3.7:

Figure 3.8:

Vil
Modified portion of tree structure after dynamic insertion of new site,

Example of deadlock condition between two synchronous RPC servers.
Solid circles represent servers blocked executing a service routine, while
dotted circles represent servers awaiting a connection. A server might in-
voke an RPC to another server for a variety of reasons - for example,
propagation of network information.ccccooeeiiiiiiiii e, 43

Deadlock between two synchronous servers A and B (a), and its avoidance
through consistent use of forked processes to make high-level requests
(b). Any necessary state changes by the child can be sent back to the par-
ent server in a subsequent call (c). Although the temporary process B* in-
herits a copy of its parent’s state, it cannot receive RPC requests of its

0) o PP 44
Client mobility between requests (off-line mobility).............cccccvnnnn. 46
lllustration of data transfer with and without intermediate agent........... 50

Initial client communication with a mobile agent in Victoria (a), mobility
by client and corresponding rendezvous by agent (b), and subsequent
re-conNNECtion iN TOFONTO (C). ..uuuvvrrrrrriiiiiieieieieee e e e e e e e 51

Multiple agents combined to provide additional features. Parallel redun-
dancy offers additional fault tolerance, while serial chaining provides
pipelining and some control over the routing of packets.........cc............. 52

Cache synchronization between parallel agents. A primary agent is elect-
ed to act as a representative for a group of agents, which it must keep up
to date in case of failure. Recovery is implemented in a standby-sparing
fashion by coordinating with the parent network server............cccccceeee... 54

Sample illustration of client interaction with agent, data server, and net-
work server. Once a session is opened, retrieval and caching by the agent
occurs asynchronously. This simplified diagram does not show threading
(o] g (0] 1 2] o S EUPUPPURPST 56

Example of acceptor site determination during dispatching of intermedi-
ate agent. A combination of factors shown next to each acceptor site may
be used by the network server to determine the best candidate. In this case,
Site 4 will likely be chosen since it has low load average, high throughput,
and reasonable available disk Space...........ccccvviiiiiiiiiiiiii e 59

Trace of remote procedure calls used to migrate a mobile agent from one
host to another. The system starts with a mobile agent executing on some
host (a). The parent network server dispatches a second agent on the target
host (b), and informs the original agent to migrate (c). This causes a trans-
fer of state information between agents (d), after which the original agent
exits, leaving only the mobile agent on the target host (e). If any of the

Figure 4.1:
Figure 4.2:

Figure 4.3:
Figure 4.4:

Figure 4.5:

Figure 4.6:

Figure 4.7:

Figure 4.8:

Figure 4.9:

Figure 4.10:
Figure 4.11:

steps fail, the mobile agent is left on the original host as in (a).............. 60
Modified server NierarChy........ccccooeeiiiiiiiiii e 63

Class hierarchy of network objects. Abstract classes are shown in
rectangular boxes, while instantiable classes are shown in rounded
DOX S, e ———— 64

Threads used in agent data transfer...........ccooee e 71

Comparison of file transfer timings between two machines on a LAN us-
ing the distributed network data system (DNDS) prototype and common
system commands. The block size for the DNDS server was 256 KB. Each
data point is calculated as the average of three independent trials, with
error bars showing the standard deviation.cccccceeeiiiiiiiiiiceceiiinnn. 75

Consecutive execution of programs (a), in comparison with program in-
terleaving (b) used in DNDS performance testing. This technique helps to
reduce the effects of indeterminate network behaviour for making
PErformance COMPANISONS.ccoiiiiiiiiiitiiiie s aaeeeeeeeees 76

Comparison of file transfer timings from a machine in Toronto, Ontario to
a machine in Victoria, British Columbia using the distributed network
data system (DNDS) prototype and common system commands. Interme-
diate agents were dispatched to a host in Richmond, British Columbia.
The block size for the DNDS server was 256 KB. Each data point is cal-
culated as the average of ten interleaved trials, with error bars showing
the standard deviation. ..o 77

Comparison of time to transfer 1 MB file between two machines on a
LAN using the distributed network data system (DNDS) prototype and
varying block sizes. Each data point is calculated as the average of ten
interleaved trials, with error bars showing the standard deviation. 79

Comparison of time to transfer 1 MB file from a machine in Toronto, On-
tario to a machine in Victoria, British Columbia using the distributed net-
work data system (DNDS) prototype and varying block sizes.
Intermediate agents were dispatched to a host in Richmond, British Co-
lumbia. Each data point is calculated as the average of ten interleaved

trials, with error bars showing the standard deviation.ccccco...... 80
Close-up of the transfer times shown in Figure 4.8 using block sizes

greater than or equal to 1 KB........ooovvviiiiiiiiiiiin e 81
Visualization of status server data using Java applet..............cccoevvvnnnnnnn. 84

Communications overview of the interface between the status monitoring
visualization applet and the distributed network data system................. 86

Table 4.1:
Table 4.2:
Table 4.3:

Table 4.4:
Table 4.5:
Table 4.6:

Table 4.7:

Table 4.8:

Table A.1:

List of Tables
Data server portion of network server interface.cccccceevieiviiiiiiieenennnn, 66
Client portion of network server interface.cococciviviiiiiiiieiiieeceeeen 67
Client options available in network server request. Multiple options may be
specified by performing a bit-wise OR of the desired enumerations. 68
Client information transaction portion of data server interface. 69
ONC RPC program NUMDEIScoooiiiiiiiiiiiiii e 72

Summary of file transfer timings in Figure 4.4 using least-squares linear
1 C=Tq oT0] F= 11 To] o TR TP 74

Summary of file transfer timings in Figure 4.6 using least-squares linear
INEEIPOIALION. ... et e e e e 78

Comparison of transfer times for remote retrieval of status monitoring data for
amplifier SMT_100 from the Rogers cable amplifier network in Mississauga,
Ontario. The first run consists of three and a half weeks of data while the sec-
ond run consists of seven weeks of archived data, both starting from May 6,
1999. DNDS servers were executed on a machine in Toronto, Ontario while
the client was in Victoria, British Columbia. ... 83

Portion of the topology from the cable amplifier network in Newmarket,
Ontario oN APril 14, 1997, ..oveei e 99

Xi
Trademarks

Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Trademarks and registered trademarks used in this
work, where the author was aware of them, are listed below. All other trademarks are
the property of their respective owners.

ANSI is a trademark of the American National Standards Institute.

Apple is a registered trademark of Apple Computer, Inc.

Applet is a trademark of Wilson Window Ware.

C++ is a trademark of American Telephone and Telegraph Company, Inc.
C-COR is aregistered trademark of C-COR Electronics Inc.

Concordia is a trademark of Mitsubishi Electric America, Inc.

CORBA is a registered trademark of Object Management Group, Inc.

Ethernet is a registered trademark of Xerox, Inc.

HP-UX is aregistered trademark of Hewlett-Packard Company.

IBM is a registered trademark of International Business Machines Corp.

IEEE is a registered trademark of the Institute of Electrical and Electronics Engi-
neers, Inc.

Intel is a registered trademark of Intel Corp.

Java and all Java-based trademarks and logos are trademarks or registered trade-

marks of Sun Microsystems, Inc. in the United States and other countries.
Linux is a registered trademark of Linus Torvalds.
Lycos is a registered trademark of Carnegie Mellon University.
MacOS s aregistered trademark of Apple Computer, Inc.

Microsoft is a registered trademark of Microsoft Corp.

Xii

Netscape Netscape Certificater Server, Netscape FastTrack Server, Netscape Naviga-
tor, Netscape ONE, SuiteSpot, and the Netscape N and Ship’s Wheel logos
are registered trademarks of Netscape Communications Corporation in the
United States and other countries. Netscape Communicator is also a trade-
mark of Netscape Communications Corporation, which may be registered
in other countries.

NFS IS a registered trademark of Sun Microsystems, Inc.

Odyssey is a trademark of General Magic, Inc.

Pentium is a registered trademark of Intel Corp.

POSIX is atrademark of the Institute of Electrical and Electronics Engineers, Inc.

Rogers is a trademark of Rogers Communications, Inc.

Solaris is a registered trademark of Sun Microsystems, Inc.

Sony is a registered trademark of Sony Corp.

Sun is a trademark of Sun Microsystems, Inc.

SPARC and UltraSPARC are registered trademarks of SPARC International, Inc.
Products bearing SPARC trademarks are based upon an architecture devel-
oped by Sun Microsystems, Inc.

Telescript is a trademark of General Magic, Inc.

UNIX is a registered trademark of The Open Group.

\Voyager is a trademark of ObjectSpace, Inc.

Aglet

ANSI

API

ASDK

CGlI

COM

CORBA

DCE

DES

DNDS

DoS

FSF

Xiii
Glossary

Agile Applet - a Java-based autonomous software agent.

American National Standards Institute - the primary organization for fos-
tering the development of technology standards in the United States.

Application Program Interface - a set of routines, protocols, and tools for
software application programming.

Aglets Software Development Kit - an SDK provided by IBM to develop
Aglets.

Common Gateway Interface - a specification for transferring information
between a World Wide Web server and a CGI program, which may be writ-
ten in any programming language.

Component Object Modlea model developed by Microsoft which enables
programmers to develop objects which can be accessed by any COM-com-
pliant application.

Common Object Request Broker Architecture - a model developed by an
industry consortium known as the Object Management Group which

allows objects written in different languages or running on different operat-

ing systems to communicate with each other.

Distributed Computing Environment - a suite of technology services devel-
oped by The Open Group for creating distributed applications that run on
different platforms.

Data Encryption Standhr- a 56-bit symmetric-key encryption method
developed in 1975 and standardized by ANSI in 1981 as ANSI X.3.92.

Distributed Network Data System - a system designed for storing large
amounts of data amongst hosts on a computer network, and disseminating
this information to clients in a manner that supports authentication, control,
security, mobility, and fault tolerance.

Denial of Servie - a form of attack aimed at crippling a device or network
So as to make it unusable by legitimate users, often by using a large number
of normally legitimate operations in a technique known as “flooding”.

Free Software Foundation - an organization founded in 1984 by Richard
Stallman dedicated to the generation and distribution of free software. The
most well known effort of the FSF is the GNU project.

FTP

GUI

GNU

HTML

HTTP

IEEE

1/0

ISO

JDK

JVM

LAN

Xiv
File Transfer Protocol - the protocol used on the Internet for sending files.

Graphical User Interfae - a program interface that takes advantage of a
computer’s graphics capabilities to make the program easier to use.

GNU’s Not Unix - a Unix compatible software system developed by the
Free Software Foundation (FSF).

Hypertext Markup Language - the authoring language used to create docu-
ments on the World Wide Web.

Hypertext Transfer Protocol - the protocol for exchanging files (text,
graphic images, sound, video, and other multimedia files) between a server
and web browsers on the World Wide Web.

Institute of Electrical and Electronics Engineers - an organization com-

posed of engineers, scientists, and students best known for developing
computing and electronics standards. The IEEE describes itself as “the
world’s largest technical professional society - promoting the development

and application of electrotechnology and allied sciences for the benefit of
humanity, the advancement of the profession, and the well-being of our

members.”

Input / Output - describes any operation, program, or device that transfers
data to or from a computer.

Internet Protocol - the inter-network data delivery protocol used on the
Internet.

International Organization for Standardization - an international organiza-
tion composed of national standards bodies from over 100 countries. ISO is
not an abbreviation - it is a word, derived from the Gresks meaning
“equal”.

Java Development Kit - an SDK provided by Sun Microsystems for devel-
oping programs written in Java.

Java Virtual Machine - the term used by Sun Microsystems to describe the
software that acts as an interface between compiled Java binary code and
the microprocessor that actually performs the program’s instructions.

Local Area Netwok - a computer network that spans a relatively small
area. Typically, a LAN is limited to a single building or a small group of
buildings.

MAC

NFS

ONC

OSlI

POSIX

RMI

RPC

SCADA

SDK

SMT

STL

XV

Media Access Control - the MAC address is a computer’s unique hardware
number.

Network File System - a method designed by Sun Microsystems of sharing
files between machines on a network by making them appear to be avail-
able on a local filesystem.

Open Network Computing - a network architecture developed by Sun
Microsystems in the 1980s, including a specification for remote procedure
calls (RPC).

Open System Interconnection - an ISO standard for worldwide communi-
cations that defines a networking framework for implementing protocols in
seven layers.

Portable Operating System Interface - a set of IEEE and ISO standards that
define an interface between programs and operating systems. Programs
conforming to the POSIX standard have reasonable assurance of successful
porting to other POSIX-compliant operating systems.

Remote Method Invocatio- a set of protocols developed by Sun Micro-
systems which allows Java objects to communicate with other remote Java
objects.

Remote Procedure Call - a high level primitive used to encapsulate client-
server interaction. RPC encapsulates the service provided by the server to
make it appear as a function call by the client.

System Control And Data Acquisitio a collection of computers, commu-
nications equipment, sensors, and other devices that when put together will
monitor and control an engineering system.

Software Development Kit - a set of programs used by a computer pro-
grammer to write software applications.

Status Monitoring Transponder - the SMT module of a cable amplifier is
responsible for sampling and quantization of analog sensor signals, as well
as providing this information to a central monitoring system.

Standard Template Library - a C++ library of container classes, algorithms,
and iterators which provides many of the basic algorithms and data struc-
tures of computer science.

TCP

TCP/IP

TMR

UDP

uulbD

WAN

WWW

XDR

XVi

Transmission Control Protdcoa connection-oriented network transport
layered on top of IP. TCP enables two hosts to establish a connection and
exchange streams of data. TCP guarantees delivery of data and also guaran-
tees that packets will be delivered in the same order in which they were
sent.

Transmission Control Protocol / Internet Protocol - the basic communica-
tion language or protocol of the Internet.

Triple-module redundancy - the basic concept of TMR is to triplicate the
components of a system and perform a majority vote to determine the out-
put of the system. If one of the modules becomes faulty, the two remaining
fault-free modules mask the results of the faulty module when the majority
vote is performed.

User Datagram Protocol - a connectionless network transport layered on
top of IP, which uses datagram sockets. UDP offers a way to send and
receive datagrams directly, but does not offer any guarantees on the deliv-
ery or order of datagrams received.

Universal Unique Identifier - an immutable, 128 bit number which is guar-
anteed to be unique across time and space.

Wide Area Network - a computer network that spans a relatively large geo-
graphical area. Typically, a WAN consists of two or more local-area net-
works (LANSs).

World Wide Wé - a subset of the Internet which runs servers to distribute
HTML documents and supporting files.

External Data Representation - the ONC standard for portable data trans-
mission to ensure consistency between architectures.

Xvii
Acknowledgements

| wish to thank my supervisor, Dr. Nikitas Dimopoulos, for his guidance and support
throughout the research and preparation of this thesis. | would also like to express my grat-
itude to Dr. Kin Li for his encouragement and advice on entry into graduate studies. As
well, I am grateful to Nicolaos Kouronakis for providing assistance as a graduate student,
and to Caedmon Somers for in depth discussions on many of the core concepts in this the-

sis. Finally, | would like to thank my family and friends for their support.

It should be acknowledged that this research would not have been possible without the
financial support of the Canadian Cable Labs Fund, as well as a University of Victoria Fel-

lowship.

For my parents, Theodora Anthonia Cornelia Schoorl
and Martinus Johannes Schoorl, for their

support through the years.

Chapter 1

Introduction

1.1 Distributed Computing Paradigms

Several paradigms exist for distributed computing. Some client-server technologies
have remained virtually unchanged for decades, while more recent approaches such as
COM and CORBA [8] continue to be actively developed. However, even the most sophis-
ticated of these technologies have roots in the fundamental techniques of messaging, sim-
ple datagrams, sockets, remote procedure calls, and conversations [18]. In general, these
methods can be split into two categories — synchronous and asynchronous protocols. Syn-
chronous data communication requires that each end of an exchange of communication
respond in turn without initiating a new communication. Asynchronous communication
pertains to processes that proceed independently of each other until one process needs to
“interrupt” the other process with a request. An example of a synchronous protocol is the

remote procedure call, while message passing is the classical asynchronous method.

Following the introduction of these basic client-server technologies, several
approaches arose in attempts to improve upon performance and alleviate some of the prob-
lems and limitations which were discovered. For example, the use of several remote proce-
dure calls to perform a client-server transaction may use more network bandwidth than
sending a more complicated query to a server, performing necessary computation or
accessing of databases locally, and returning the results to the client [18]. Initial attempts
used the concept of process migration in an attempt to save bandwidth and increase perfor-
mance. However, movement of an entire address space from one machine to another, as
utilized by this technique, makes it difficult to return the results to the client without

returning the entire process as well [64].

2

The concept of remote evaluation programming [52] improves on process migration
by allowing a program to be sent within a request, having it executed on a remote server,
and returning only the results to the client. However, lack of state information limits the
usefulness of remote evaluation based systems. Mobile objects were subsequently devel-
oped, in which object-oriented programming techniques are used to encapsulate state as

well as code.

In recent years, the mobile agent [28] concept has arisen from these earlier client-
server technologies. Mobile agents extend on the functionality of mobile objects by add-
ing autonomous and asynchronous execution capabilities. This allows mobile agents to
decide for themselves the most efficient means to obtain data, or route around network
bottlenecks. Agents may also be able to perceive their environment and communicate with
other agents, making previously difficult fault-tolerance and distribution heuristics possi-
ble.

In this section, a brief introduction of client-server and distributed computing is given.
Remote procedure calls are discussed as a representative for well known synchronous cli-
ent-server transactions, while mobile agents represent current asynchronous technologies.
Some of the benefits and drawbacks of these methodologies are highlighted, as well as

their relevance to the remainder of this work.

1.1.1 Client-Server Computing

Client-server computing describes the relationship between two computer programs in
which one program, the client, makes a service request to another program, the server,
which fulfills the request. Although the client-server model shown in Figure 1.1 can be
used by programs executing at a stand-alone physical location, the underlying concept is
more useful when applied in networks. In a network, the client-server model provides a
convenient way to interconnect programs that are distributed efficiently across different
locations. In this model, one server, sometimes called a daemon, is activated and awaits

client requests. Clients and servers can communicate with one another using many differ-

3

ent protocols, the simplest being the sending and receiving of datagrams. Typically, multi-
ple client programs share the services of a common server program. Both client programs

and server programs are often part of a larger program or application.

resource

Client
: \ Server

Client

Network

Figure 1.1: Client-server model - one or more client programs communicate over a
network with a server which provides some resource.

Client-server computing can also be thought of as an extension to modular program-
ming. The modular programming concept is based on the assumption that separation of
software into smaller components, or modules, eases development and simplifies main-
tainability. The client-server model is formed upon realization that execution of these
modules need not necessarily occur in the same memory space. That is, modules compris-
ing an application may be physically separated over a network. Once separated, the calling
module is referred to as the client, while the called module performing the execution is
referred to as the server. Using commonly defined interfaces and a platform neutral net-
work format, clients and servers may have heterogeneous operating systems and hard-
ware. Typically, server processes are run on high-performance computers while client
architectures may range from low-end portable computers to high-performance worksta-

tions in themselves.

Clients generally rely on servers for resources such as files, devices, or computational
abilities. Examples of client-server computing include servers which provide the current
time of day, the weather, or retrieve your e-mail messages. Arbitrarily sophisticated sys-
tems are possible, such as database management system servers running on platforms spe-
cially designed and configured to perform queries, or file servers running on platforms

with special elements for managing files. With respect to the Internet, the best known use

4

of the client-server model is the World Wide Web (WWW). A web browser is a client pro-
gram that requests services (the sending of web pages or files) from a web server (also
known as a HTTP server), typically residing on another computer somewhere on the Inter-

net.

1.1.2 Remote Procedure Calls

The remote procedure call (RPC) is a high level primitive that directly supports client-
server communication. RPC encapsulates the service provided by the server to make it
appear as a function call by the client. This capability may be implemented using the stan-
dard client-server send and receive primitives, but these implementation details are hidden
from the programmer. RPC is synchronous in nature to maintain client call order but the

underlying implementation may use asynchronous messaging.

1.1.2.1 Programmer Interface

The result of RPC encapsulation is an interface which, from the programmer’s per-
spective, makes invoking a remote procedure appear similar to the traditional procedure
call mechanism of pushing parameters, context, and a return address onto the stack, then
executing a jump to the procedure’s starting address. In an imperative programming lan-

guage, this is typically done through an interface such as

return_value function(argumentl, argument2, ..., argumentN,

resultl, result2, ..., resultM)

In the case of a remote procedure call, the client opens a communications channel to
the server to have it perform a procedure on its behalf. Parameters can be passed as before,
but are typically encoded into a platform neutral state, such as the external data representa-
tion (XDR), before being sent across the network. The programmer interface, however,

now appears as a call to a service similar to

call service(argumentl, argument2, ..., argumentN,

resultl, result2, ..., resultM)

5

Certain RPC implementations may not support multiple results and arguments within
these services, but in these cases aggregate types can always be used. Both the client and
server communicate through stubs which encapsulate the underlying network protocols to
make transactions appear as conventional procedure calls, as shown in Figure 1.2. Both
the client and the server must use a common interface, although the two parties may not

necessarily have matching hardware or software.

Client Server

calling called
procedure procedure
arguments results
results arguments
Client Stub Server Stub
network network
transport transport
request
messages messages

Network

Figure 1.2: Remote procedure call communication [4].

While a local procedure can generally be invoked in a few microseconds (not includ-
ing the execution time of the procedure itself), the RPC introduces overhead due to mar-
shalling, transmission, and unpacking, and typically has a latency of a few milliseconds
[18]. This remote object invocation latency is typically 10,000 to 100,000 times larger
than that of local objects, and given the relative rates at which processor speed and net-
work latency speeds are changing, the difference in the future promises to be at best no
better, and will likely be worse [60]. Even so, the inherent distributed nature of available
resources makes use of client-server primitives, such as RPC, unavoidable in modern com-

puting systems.

6

Unlike socket connections, which are assigned to a specific port number, RPC uses a
daemon called the portmapper which controls all RPC connections. To distinguish
between servers, the portmapper uses program and version numbers. The program number
must be unique to each server on a system, while the version number can be used to allow
different generations of clients and servers to co-exist [4]. Clients cannot query for these
values directly, but must know the program and version numbers of a specific agmrer

ori. Servers typically register themselves in the portmap on creation.

For security, most remote procedure call implementations provide some form of
authentication and encryption facility. For example, the Open Network Computing (ONC)
RPC implementation [51] provides Data Encryption Standard (DES) public key encryp-
tion. However, these authentication and encryption techniques add significant overhead
[57].

1.1.2.2 Fault Tolerance

With respect to fault tolerance, remote procedure calls raise previously unseen issues.
As opposed to local functions, where the caller of a function resides on the same machine
as the callee, remote procedure calls involve two processes (i.e., the client and the server)

which typically reside on physically independent machines.

If a fault occurs on a system invoking a standard procedure call, both the caller and the
callee are affected equally. However, in a remote procedure call, the client and server
nodes are independent, meaning that either or both machines may have independent fail-
ures. Furthermore, the communications network may also fail - either losing messages, or
by re-ordering or otherwise corrupting messages - during execution of a remote procedure

call.

Under failure conditions, the semantics of the RPC cannot be like that of a simple pro-
cedure in a sequential program, in which the failure of a node means the failure of the
caller as well as the callee, and the failure of the communication network has no effect

[22]. This means that remote procedure calls are made in an environment in which failures

7

are common. To enumerate the possible scenarios, the classification scheme for the

semantics of remote procedure calls described in [37] and [42] is adopted. This is given
by:

* At least onceThe remote procedure has been executed one or more times if the
invocation terminates normally. If it terminates abnormally, nothing can be said
about the number of times the remote procedure has executed. It may have exe-

cuted partially, zero, one, or multiple times.

* Exactly onceThe remote procedure has been executed exactly once if the invoca-
tion terminates normally. If it terminates abnormally, then it can be asserted that

the remote procedure has not been executed more than once.

* At most onceThis is the same as exactly-once semantics if the invocation termi-
nates normally. If it terminates abnormally, then it is guaranteed that the remote

procedure has been executed completely once, or has not been executed at all.

These failure cases of RPC give rise to many scenarios where the state of the system
cannot be guaranteed to be consistent. For example, consider a server whose entire state
consists of a single number, which can be incremented using a remote procedure call by a
client. Under failure conditions, if a client invokes this RPC, nothing can be said about
whether the server’s counter was actually incremented or not. There are mechanisms to
avoid these scenarios caused by network or processor failure - for example, the client may
retry the remote procedure call. However, this causes another problem - orphans [42],
which are the unwanted execution of remote procedures. These can also arise because of

timing or synchronization problems.

The choice of the transport protocol also plays a role in the fault tolerance of an appli-
cation. Typical RPC implementations provide mechanisms for use of either UDP or TCP
as transport protocols. UDP provides a simple mechanism for transmitting datagrams
directly - however, it does not guarantee delivery nor maintains order of these datagrams at

the receiver, meaning it is not completely reliable. Using UDP, even with additional user-

8

level code, if a datagram is lost, neither server nor client are aware of it [4]. On the other
hand, TCP is reliable and handles these issues internally. However, there is a small amount

of overhead involved, particularly when the initial connection is established.

Although many of the failure cases of RPC can be handled transparently by the under-
lying implementation, a server with internal state information may still be affected by cer-
tain types of failure. For example, an orphan process could inadvertently modify a server’s
state, making it inconsistent with that of the corresponding client. For these reasons, the
possibility of partial or total failure must still be accounted for in the implementation of

systems which utilize remote procedure calls.

1.1.2.3 Deadlock

Since remote procedure calls are generally implemented as synchronous and blocking

callst, the possibility for deadlock exists. Specifically, this occurs when an individual
server cannot handle service requests because it is blocked making a request of its own. If
a cycle in these client-server dependencies exists, then the system is said to have dead-
locked. To see why this is the case, we have to consider the four necessary conditions for

deadlock [53], [17], from operating system theory:
1. Mutual exclusion condition Resources exist that are not sharable.

2. Non-preemption condition Once a resource is given to a process, it cannot be

revoked until the process voluntarily gives it up.

3. Hold and wait, or partial allocation condition Processes currently holding

resources granted earlier can request new resources.

4. Cycles, or circular wait condition There must be a circular chain of two or more
processes, each of which is waiting for a resource held by the next member of the

chain.

Asynchronous RPC with or without replies also exists, such as QRPC used in Rover [25]. Asyn-
chronous RPC is useful in applications where precise synchronization is not required. In certain
cases, use of asynchronous messages may offer improved performance over synchronous meth-
ods [1]. However, due to lack of standards, documentation, and increased design complexity, its
use is much less common than synchronous RPC.

9

Rewording this in terms of synchronous RPC systems, processes represent clients and
resources represent access to particular servers. The first condition, mutual exclusion, is
satisfied because traditional single threaded servers can only deal with one client at a time,
thus making access to a server itself a non-sharable resource. Similarly, the non-preemp-
tion condition is satisfied because once a server-side RPC begins executing, it does not ter-
minate until completion. Partial allocation occurs because remote procedures themselves
may act as clients, and request more resources - which allows circular dependencies to
exist, satisfying the remaining condition. All four conditions must be satisfied in order to
create a deadlock. In synchronous RPC, the first three conditions are generally unavoid-

able, but the fourth condition (cycles) can often be avoided.

There are several ways to deal with deadlock in distributed systems. The first method,
deadlock recovery, takes no steps at preventing deadlock, but attempts to correct the situa-
tion once it has occurred. In this technique, deadlock detection schemes are used which
analyze the state of the system to check if the four necessary conditions for deadlock are
satisfied - especially, if a cycle exists in the client-server dependencies. Once detected,
suitable recovery mechanisms are employed. In the worst case, the system may have to be
restarted or rebooted. A less drastic approach is to take back a resource from a process to
break a cycle. However, if the resource is not preemptable, this may force termination of
the process. Slightly more sophisticated techniques to gracefully undo committed state
changes include checkpointing [27] and rollback [12], which are common in database sys-
tems. In terms of RPC, deadlock detection is usually implemented using time-outs for cli-
ent calls. However, even when deadlock is detected in an RPC system, recovery from such

situations can still be a problem.

Alternatively, we can use deadlock prevention to eliminate the possibility of a dead-
lock occurring in the first place. Theoretically, we can prevent deadlock by removing any
one of the four necessary conditions. The partial allocation condition may be avoided by
forcing a process (or client) to allocate all the resources it will ever need at start-up time,

or by making it release all of its resources before allocating any more. However, placing

10

either of these restrictions may not be practical, especially when a large number of
resources is involved. Therefore, as mentioned previously, in synchronous RPC systems it

may only be possible to remove the possibility of cycles.

Typically, the circular wait condition is prevented through an algorithm known as hier-
archical allocation. In this algorithm, resources are first assigned numbers. Although each
resource is generally given a uniqgue number, this is not a strict requirement for the algo-
rithm to work. Using these assignments, if processes (or clients) always request resources

(or servers) in increasing numerical order, then deadlock cannot occur [53].

The final approach for handling deadlock is called deadlock avoidance. In this tech-
nique, resources are not necessarily granted to a requesting process (or client) even if they
are currently available, if by granting the resource places the system in a possible unsafe
state. Typically, this safety check is done in a worst case fashion, assuming that all running
processes immediately request all the remaining resources available to them. The most
well known technique is the “Banker’s Algorithm” by E. W. Dijkstra [9]. However, use of
such an algorithm requires delaying client requests for resources until the system is in a
safe state, which may be unacceptable when communicating over a network. Furthermore,
since deadlock avoidance requires central knowledge and control, its usefulness is limited

in distributed systems.

Remote-procedure call implementations generally provide an accompanying time-out
for client requests, which can be used to detect deadlock. However, use of such time-outs
alone makes detection of faults of the network or remote node indistinguishable from that
of deadlock conditions. As well, reliance on time-outs may introduce large latencies in cli-
ent communications. Therefore, deadlock must be avoided since it can cause unreliable
service as well as leave the system in a possible inconsistent state. It is left to the program-
mer of a distributed RPC application to avoid deadlock, either by enforcing an order on
resource allocation, or by other means, such as the use of multiple threads or forked pro-

cesses, to eliminate the possibility of cyclical dependencies.

11

1.1.3 Software Agents

The software agent concept takes the idea of client-server computing a step further by
combining both client and server functionality into a single entity and allowing it to per-
form actions independently. Although the theory behind agents has been around for some

time, agents have become more prominent with the recent growth of the Internet.

Agents seem to offer benefits not possible in conventional programs - but what distin-
guishes an agent from a program? Several definitions provide insight into this question.
Wooldridge and Jennings [66] provide the following definition of an agerhardware or
(more usually) software-based computer system that enjoys the following properties over

conventional programs:

e autonomy -agents operate without the direct intervention of humans or others, and

have some kind of control over their actions and internal state;

» social ability - agents interact with other agents (and possibly humans) via some

kind of agent-communication language;

* reactivity- agents perceive their environment, (which may be the physical world, a
user via a graphical user interface, a collection of other agents, the Internet, or per-
haps all of these combined), and respond in a timely fashion to changes that occur
init;

* pro-activenessagents do not simply act in response to their environment, they are

able to exhibit goal-directed behaviour by taking the initiative.

A more succinct definition is that an autonomous agent is a system situated within and
a part of an environment that senses that environment and acts on it, over time, in pursuit

of its own agenda and so as to affect what it senses in the future [13].

1.1.3.1 Stationary Agents
Mobility is not a necessary requirement for a program to be called an agent - there are
many applications that can still benefit from agents which do not move after their initial

creation. These agents are termed stationary agents and can still provide many of the

12

aforementioned properties of agents. In particular, features such as asynchronous and
autonomous execution may still be useful properties even when execution is limited to a

single system. An example is the user, information, query, and support agents described in
the ISAME architecture [43]. Java applets could also be considered stationary agents
because after they are initially sent to a target virtual machine to execute, they generally do

not move to other hosts.

If a stationary agent needs information from another system, or wishes to communi-
cate with another agent on a remote system, it cannot migrate to the other system itself,
but must use some other means, such as remote procedure calls, in order to communicate
with the remote system. Therefore, while stationary agents are still useful in some applica-
tions, it is evident that allowing an agent to be mobile greatly increases its flexibility. A
mobile agent can either move data to itself, or move itself to the data - whichever method

is preferred.

1.1.3.2 Mobile Agents

A mobile agent is a software entity able to travel throughout a network, to negotiate
with other entities (agents or otherwise) so as to achieve a specific task and to reach objec-
tives [6]. Mobile agents control where computation happens by moving programs as well
as data. While there are no applications that cannot be solved without mobile agents, there
are many applications which can benefit from their use. The work in [30] describes seven

main benefits to using mobile agents:

1. They reduce the network loacan agent may move to a destination host where it
may perform computation locally, rather than having data transmitted across the

network.

2. They overcome network laten€in large systems, latency becomes a major prob-
lem in maintaining control. An agent may be dispatched to perform some actions

locally - for example, in a real-time system.

3. They encapsulate protocolagents can communicate with servers or other agents

using their own proprietary protocols, rather than relying on a host’s native means

13
of communication, which may be constrained by legacy software.

4. They execute asynchronously and autonomouslyce an agent is dispatched, it

becomes an independent entity.

5. They adapt dynamically agents can perceive their environment and act on their

own to solve a problem.

6. They are naturally heterogeneousgents are generally dependent only on their
execution environment, and not the specific hardware or software they are running

on.

7. They are robust and fault-tolerantnobile agents’ ability to migrate between hosts

makes them attractive for implementing fault-tolerant systems.

Examples of large-scale industrial efforts in which mobile agents have been utilized
include General Magic’s Odyssey [40], ObjectSpace’s Voyager [59], Mitsubishi’s Concor-
dia [65], IBM’s Aglets Software Development Kit (ASDK) [31], and multi-agent data col-
lection in Lycos [15]. Applications for mobile agents include e-commerce, personal
assistants to perform tasks on behalf of their creators, distributed information retrieval
such as WWW searches, and information dissemination such as electronic news or soft-
ware updates. Mobile agents are well suited to electronic commerce applications [16],

since transactions often require real-time access to remote resources.

1.1.3.3 Implementation Options

Most mobile agent implementations tend to be in Jav&oncordia, Odyssey, Voy-
ager, and Aglets are all Java based. Multi-platform support, built-in serialization (a mech-
anism for reading and writing objects to and from I/O streams), dynamic loading of
objects, and wide-spread adoption of the Java virtual machine make Java attractive for

implementing mobile agent systems.

2. Some authors [64] quote Java as the “language of choice for mobile agent systems”.

14

However, Java is not without its drawbacks. Since Java is generally interpreted at the
byte code level on a general purpose microprocessor (e.g., the Intel Pentium), performance
can be a problem in both I/O bound and computationally bound applications, in compari-
son with natively compiled code. Furthermore, language constraints such as lack of multi-
ple inheritance support may make a particular design difficult to map into Java, although
workarounds can be achieved using Java interfaces. The work in [44] describes additional

limitations with Java in relation to mobility and persistence support:
1. lack of persistence support makes Java access to databases non-standard.
2. itis difficult to transfer complex data structures between Java programs.

Security problems in mobile agent implementations are also of concern. Denial of ser-
vice attacks (DoS) [33] are common to all agent systems. DoS attacks are aimed at crip-
pling a device or network so as to make it unusable by legitimate users, often by using a
large number of normally legitimate operations in a technique known as “flooding”. This
type of attack must be dealt with in a mobile agent system regardless of the programming
language used for implementation. However, more subtle vulnerabilities also exist in the
Java virtual machine, such as placing a non-terminating loop in the body of a finalizer
[58]. This type of mobile code attack can tie up the Java garbage collector, preventing

memory from being de-allocated.

Often, many of these implementation details are ignored in the design of a mobile
agent system until a prototype is being or has been developed. In the worst case, some of
these pitfalls may not come to light until the application testing phase. To avoid these mis-
takes, it is important to consider the available technologies, requirements, and design
options before implementing a mobile agent system. Therefore, although providing many
features for directly supporting mobile agents, Java may not always be the best language

to use in all circumstances.

15

1.1.4 Applications

Many applications exist for client-server and mobile agent data distribution systems.
Examples include existing bank, commerce, and stock market applications, as well as
development of electronic commerce architectures such as the one described in [55].
Other well known examples include distributed filesystems such as NFS [61], [46], or
CODA [47]. Distributed computing techniques are particularly attractive in large-scale
systems where vast amounts of data must be delivered over a wide geographical area. In
industry, this situation often arises whenever a signal is sampled at regular intervals,
archived, and used in subsequent control and analysis - for example, SCADA systems in
engineering plants. One such application which benefits directly from distributed comput-
ing paradigms is the retrieval of stored status monitoring information and topology of

cable amplifier networks.

1.2 Cable Amplifier Networks

1.2.1 Structure

A cable amplifier network is a broad-band network used to distribute cable television
signals from a central distribution site to subscribers. To accomplish this, the network
incorporates a number of high frequency “trunk” amplifiers in a tree type hierarchy.
Smaller spans of “distribution” amplifiers exist at the leaf nodes of this tree, which propa-
gate the cable signals from the main trunk network to subscribers. The most common use

for cable amplifier networks is the distribution of television signals.

Cable amplifier networks provide bidirectional communications. The forward path
from the head-end to subscribers is a high bandwidth path, which is primarily used for
delivering cable television services. The reverse path has a relatively low bandwidth and is
used to send information from the trunk amplifiers to the head-end. An example of the use
of this reverse path is in providing Internet upload abilities for cable modems. Due to the
wide-spread use of cable amplifier networks, as well as greater dependence on these net-
works in recent years, the requirement to provide high quality forward and reverse ampli-

fier paths has become increasingly important.

16
Certain types of amplifier networks, such as those owned by Rogers Communications

Inc., utilize the reverse path to also send status monitoring data from the trunk ambplifiers
to the head-end. Each amplifier in these status monitored networks has a name and loca-
tion, as well as connectivity and functionality attributes. The majority of the main trunk
amplifiers are equipped with a Status Monitoring Transponder (SMT), which reports the
status of the amplifier to the head-end office. This status monitoring information is prima-
rily used in efforts to detect faulty behaviour in amplifiers, in order to maintain network
reliability to subscribers. Detection of such faults allows directed maintenance to be

scheduled, and suitable repairs to be undertaken. A typical section of the main trunk is
depicted in Figure 1.3.

}

Trunk Amplifiers

Distribution
Amplifiers

Forward
Path

Figure 1.3: Structure of cable amplifier networks. Signals propagate along the forward
path from the head-end through high-bandwidth trunk amplifiers, then through smaller
networks of distribution amplifiers, before arriving at destination subscribers. There is also
a lower bandwidth reverse path which flows in the opposite direction.

3 In Rogers networks, cable amplifiers are primarily manufactured by C-COR Electronics Inc.,
and are specifically designed for use in broad-band networks.

17

In order to perform system monitoring, certain information about an amplifier network
and its components must be obtained. This information is obtained by sensors which are
designed to measure specific parameters of interest. For practical and economical reasons
not all components within the amplifiers are monitored. Typically, only those which are
critical to the plant’'s operation and offer information about the amplifiers’ behaviour are

chosen to be monitored [29].

1.2.2 Signals

In a status monitored cable plant, each status monitor has its own electronic address
that is used by the head end to poll for status information. Each amplifier is polled at fixed
intervals - typically every few minutes. In the Rogers cable plant in Newmarket, Ontario,

each SMT is polled once every 55 seconds. Variables that are monitored include [39]:
1. Forward pilot level (a measure of the forward signal strength)
2. Reverse pilot level (a measure of the reverse signal strength)
3. Amplifier enclosure temperature
4. Raw DC voltage into the amplifier
5. B+ voltage of amplifier power supply
6. DC current draw
7. Reverse switch status
8. Trunk lid status

Since the majority of the bandwidth in a cable amplifier network is allocated to the for-
ward path, and since all monitored signals are affected by temperature, two of the most
important of these signals are the forward pilot level and amplifier enclosure temperature.
An example of the forward pilot signal from the Rogers cable amplifier network in
Oshawa, Ontario is given in Figure 1.4. The accompanying temperature signal for the
same time interval is given in Figure 1.5. As typical in industrial status monitoring sys-

tems, the coarse quantization and poor sampling of these signals is clearly evident.

Oshawa: SMT_2208 [From 1999/03/04 10:16:17 to 1999/03/11 04:44:51]
39.8 T T T

39.6

Forward Pilot Level [dBmV]

38.4

38.2 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000
Sample No.

Figure 1.4: Forward pilot signal over a one week interval for amplifier
SMT_2208 from the Oshawa cable amplifier network.

Oshawa: SMT_2208 [From 1999/03/04 10:16:17 to 1999/03/11 04:44:51]
T T T T T T T

48

46

44

N
N

N
o

Temperature [C]

w
@

36

34

1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000
Sample No.

Figure 1.5: Temperature signal over a one week interval for amplifier
SMT_2208 from the Oshawa cable amplifier network.

19

1.2.3 Topology

Since cable amplifier networks are evolving structures that can grow, shrink, or be oth-
erwise modified over time, topology data describing their layout is also recorded. This
information includes amplifier names and type, as well as the names of their respective
parents and children in the hierarchy of the cable amplifier network. The fields used to
store this information are shown in a portion of the sample topology given in Appendix A.
By recording the structure of the network as well as status data, archived signals can be
traced back to the topology at the time they were sampled. This can be useful in post-pro-
cessing - for example, in the fault detection techniques described in [39]. However, unlike
status monitoring signals, topology of cable amplifier networks is not polled at regular
intervals, but is instead updated on a demand-driven basis after a change in topology

OCcCurs.

1.2.4 Nature of Processing

In many industrial status monitoring systems, sampled data is used in real-time fault
detection techniques such as limit checking. Use of a real-time technique alleviates the
need for sampled data to be stored, although a small buffer of recent data may be required
for applications which require previous input values, such as digital filters [2]. This is
because after a suitable heuristic is performed, the data used is considered irrelevant and
only the output of the heuristic is stored. However, in slightly more sophisticated real-time
systems, the original data may prove useful in manual or automatic analysis in order to
determine the cause of an event - for example, tracing the path of a transient in a power

guality classification system.

Currently, in the cable amplifier network application, all data manipulation is done in
batch post-processing. These processing techniques include fault detection using recurrent
neural networks [10] as well as statistics and feed-forward neural networks [49]. At the
minimum, these methods require a week’s worth of archived data to achieve an affective

training set and to accommodate expected diurnal temperature variations [49]. However,

20

in most cases, several months worth of data is analyzed. This creates the need for signifi-
cant on-line storage. In addition, dissemination of these large archives of SMT data to cli-

ents is also of concern.

Alternatives to post-processing include real-time analysis of status monitoring signals.
In these methods, data is continuously fed to process sites. These techniques generally
assume reliable network connections between collector sites and processing locations. In
addition, the desired processing algorithms used may not necessarily perform in real-time
in all cases. For example, although the recurrent neural network techniques described in
[10] can process data in real-time after some initial training, they must retrain to learn new
behaviour following fault events. Such occurrences can introduce delays in process output.
For these reasons, post-processing is currently used in the cable network application on
data buffered at one or more storage locations. This also facilitates the tracing of event

causes.

1.2.5 Storage and Dissemination Requirements

Status monitoring signals of cable amplifier networks, along with their nominal values,
status flags, and information on the topology of the cable amplifier network, are down-
loaded from their respective collector sites, tested for integrity, compressed, and archived
daily. Since both data and client demand are spread over a large geographical area, multi-
ple data collectors and storage locations are required. Each data collector corresponds to a
specific cable amplifier network, and uses the reverse path of the coaxial cable to receive

and subsequently store incoming status monitoring signals.

Hosts acting as storage locations download information from one or more of these data
collectors at regular intervals (typically once a day). These file transfers from data collec-
tors to their respective storage locations are generally programmed to occur automatically.
A reasonable policy is to schedule these occurrences at night, during periods when com-
puter activity and network traffic are typically at their lowest levels. The resulting flow of

status monitoring data as it is sampled, collected, and archived is shown in Figure 1.6.

21

reverse path FTP

Cab&%té,vn(;ﬁlmer —— | Data Collector

-

Storage Locatio

Cab@&rgg?ﬂy —— | Data Collector

/ Storage Locatio
— = Data Collecton

Figure 1.6: Data flow of cable amplifier network status monitoring signals and topology
information. Data collectors receive status monitoring signals from the reverse path of a
cable amplifier network; the resulting databases are sent to one or more storage locations
using the file transfer protocol (FTP) at regular intervals.

-

Cable Amplifier
Network

In a typical cable amplifier plant consisting of several hundred amplifiers polled every
few minutes, each data collector produces on the order of eight to ten megabytes of com-
pressed data per day. With even a limited number of these sites being archived at a given
location, the storage requirements necessary to buffer this data become significant. In
order to maintain an on-line repository for a reasonable period (at least a few months), this

quickly turns into gigabytes of required storage.

Clients request this archived data in order to perform large-scale fault detection
sweeps such as those described in [49]. In this access pattern, a client typically requests all
data from a given cable amplifier network for a specific period, in order to perform batch
post-processing. Such requests typically come from sites specifically tailored for handling
these high bandwidth requirements and for using the incoming data in performing cable
network diagnostics. Since the number of these sites is generally limited, special accom-
modations can be made to ensure a storage location is at the same site, or within close net-

work proximity.

However, sporadic requests for data are also expected to come from clients at any
time, anywhere on the network. An example is the retrieval of status monitoring signals

from a notebook computer during on-site directed maintenance. In such environments,

22

computing resources are naturally heterogeneous. In addition, bandwidth is often limited
and network connections are intermittent and prone to failure. For these reasons, data is
made available to clients using a distributed network data system, which combines fea-
tures of traditional client-server computing as well as more recent mobile agent para-
digms. This system is designed to accommodate both large-scale batch requests from fixed

clients as well as sporadic fine-grained requests from mobile clients.

1.3 Summary

Reliability of cable amplifier networks has become increasingly important in recent
years as additional consumer applications are being found for these networks’ available
bandwidth. In order to maintain reliability of these networks, amplifiers can be monitored
and the resulting status monitoring data collected, stored, and delivered to clients. Due to
the geographically distributed nature of its sources as well as the significant storage
requirements involved, data retrieved in this manner is typically archived and possibly rep-
licated at multiple storage locations. The resulting status data can be used in post-process-
ing techniques for fault detection purposes, so that suitable recovery measures can be
undertaken. Topology information describing the structure of these networks can also be
useful. It is evident that data collection, storage, retrieval, and processing of cable ampli-
fier data in such a system may all occur in independent locations, emphasizing the need

for a network infrastructure for coordinating transfers between these sites.

In the remainder of this work, we shall present a system to achieve the storage and dis-
semination requirements of the cable amplifier network application described in Section
1.2. The proposed system is a distributed client-server architecture in which both data and
processing are expected to occur in different locations. A hierarchy of servers is used in
order to provide country-wide scalability and fault tolerance. In addition, mobile agents
are used to support client mobility and improve overall reliability of the system. Chapter 2
begins by presenting the design of the distributed network data system used as the basis

for these techniques. Chapter 3 introduces intermediate software agents to this system,

23

while Chapter 4 discusses implementation and gives initial results achieved using a proto-
type implementation. Finally, Chapter 5 concludes and gives recommendations on possi-

ble future work.

24

Chapter 2

Distributed Network Data System

Large-scale data archival is a common requirement in modern computing systems.
Whether the archived data is sets of files, electronic mail, satellite telemetry images,
polled status signals, or any other form of data, systems designed to extract information
from these databases tend to have common characteristics. These include consistency as

well as correctness, efficiency, robustness, adaptability, and reusability [14].

However, a distributed network data system must also take into account additional
possibilities such as network and server failures in order to be useful on a wide scale, for
example, on a country wide basis. To achieve this level of scalability, a hierarchy of server
types can be used which provides levels of redundant state information to improve overall
network consistency. In this manner, multiple servers can be assigned to the same data for
backup or locality purposes, or data can be distributed across servers. In addition, use of a
hierarchy allows authentication and control to be handled by high level servers while data
manipulation can be delegated to lower level servers. This means distributed data can be
treated as a unit, simplifying maintenance. This location transparency is similar to tech-

niques utilized by network filesystems such as NFS [61].

In this chapter, we present a system designed for storing and retrieving data generated
by the cable amplifier networks described in Section 1.2. Data sources in this system
reside on hosts which are physically distributed over the Internet, with storage locations
which may be further distributed. Data may be transported on an infrequent basis to
backup servers in order to provide replication at different localities. These geographical
differences can introduce large latencies in data transfers, making use of a centralized con-

trol impractical.

25

To accommodate these latencies, and to achieve a level of fault tolerance, the proposed
solution is structured as a distributed client-server problem. Access to archived data is
enabled for a certain number of clients which do not know the specifics of where this data
is physically located. Supporting client mobility is also an issue. Furthermore, for the sta-
tus monitoring problem, many servers of varying types are required. This gives rise to the
need for a form of control and organization amongst these servers. Starting with Section

2.1, the design of the system is described.

2.1 Server Hierarchy

To provide authentication, consistency across the network, and redundancy in the case
of server failure, four server types are arranged in the hierarchy shown in Figure 2.1. This
arrangement is based on the hierarchy first proposed in [62], and subsequently published
in [48]. There is a single directory master for the entire system, while there can be any

number of lower level servers, creating a tree type hierarchy.

(Directory MasteD

request / \

network server

Client »(Directory ServeD (Directory ServeD

/
/7 Q @g Y
Q(/@Sff@ - P
SG’V/ .
Ce

\%fo« (Network ServeD
S

(Network Server>

get data

Data Servers
Figure 2.1: Server hierarchy.

This server hierarchy is designed to achieve the specific storage and dissemination
requirements for the cable amplifier network application described in Section 1.2.5.

Although this gives a particular solution for a certain class of distributed computing prob-

26

lems, the nature of the archived data is left completely general. This means the system can
be used for similar problems in which large amounts of distributed data need to be col-
lected, stored, and retrieved. This may include data that is distributed physically, environ-
mentally, and logically, but these details are hidden from the user. To maintain ease of use,

users are only required to know the logical grouping of data.

Each server uses information provided in lower layers and makes its presence known

to higher layers through a registration/de-registration prdc@ée directory master at the

root of the hierarchy is responsible for maintaining consistency among all of the directory
servers. The directory master also acts with the directory and network servers to provide
system security. Directory servers contain a global image of all network servers for which
data is available. Network servers keep track of the actual data server locations for a small

number of data servers, typically in a common geographical area.

Clients retrieve data by first contacting directory and network servers before obtaining
data from individual data servers. Clients use directory servers to determine which net-
work servers are available and how to contact them. From a network server the client then
obtains a set of queries which it can use to obtain data from specific data servers. Any
number of data server types are possible. Each data server is capable of providing any
number of data types, though server and data types are typically mapped together logi-
cally. For example, a web server typically only provides HTML pages and supporting files
(e.g., Java applets), and not other forms of data. In addition, particular records may span
several data servers. Network servers are able to provide specific queries to clients on how

to retrieve this distributed data.

Although security in the illustrated system is considered, the environment for which
the distributed network data system is designed is expected to be somewhat secure. For

example, deployment within the wide-area network (WAN) of a large corporation. If used

L There are a number of remote procedure calls to facilitate this communication between layers. A
default null procedure is also provided which can be used by clients (or other servers) to check
whether a particular server is running or not. This function can also be used for latency timing.
In the initial approach, both clients and servers are expected to be static - that is, to not move
during an information transaction. However, these restrictions are addressed in subsequent sec-
tions for the client side of the communications.

27

in a less secure environment, such as the Internet, then it is assumed that the nature of the
data being transmitted is not sensitive to eavesdropping. To provide some security, client
authentication is done at the network server level using usernames and encrypted pass-
words. When a user logs in at the client, he/she must enter a valid username and password
in order to be considered for any future transactions. For each authenticated connection,
the client is returned a connection handle for subsequent server calls. Since RPC is used
for all client-server communication, additional security, if required, can be provided using

Data Encryption Standard (DES) encryption.

2.2 Server Types

2.2.1 Directory Master

The directory master is at the top of the server hierarchy and is responsible for main-
taining consistency of directory information amongst the directory servers. It also main-
tains a global password list which is manually updated by the system administrator.
Changes to user information and passwords at this level are in turn propagated down to the
rest of the servers. The directory master is the only server type which does not allow com-

munication directly from clients.

Only a single directory master may be active at any given time in a distributed network
data system. This is because it is difficult to perform consistency operations from multiple
independent locations - namely, from multiple directory masters. Also, the password list
capabilities of the directory master lend themselves to the use of a centralized control, thus

providing a single location where the system administrator can maintain access privileges.

Although only one directory master may be active at any given time, it is possible to
introduce redundancy using inactive servers in a standby-sparing fashion. That is, one or
more backup directory masters may exist to assume control in the event of failure of the
primary directory master. These backup servers may periodically mirror the state of the
primary server while it is operational. Currently, redundancy of directory masters has not

been implemented. Even so, during periods when no directory master is available, the

28

underlying directory servers have the ability to continue operation using the most recent
local copy of the network structure and password list sent to them by the previously active

directory master.

2.2.2 Directory Server

The directory server is at the second level in the server hierarchy, just below the direc-
tory master. Its purpose is to maintain consistency between the network servers. It also
provides a copy of the password list, as well as servicing high level client requests. Any
number of directory servers are allowed below the directory master, but typically only a

few are necessary.

Each directory server maintains a list of all known networks in the entire system. Since
each network server only reports to one directory server, each directory server will have a
different list of which networks are available below it. It is the responsibility of the direc-
tory master to query each directory server and distribute any unique network information
to all other directory servers. In this manner, even though each network server only reports
to a single directory server, all directory servers can still have a global view of the system.
Clients communicate with directory servers to determine which network servers are avail-

able.

2.2.3 Network Server

The network server’s main responsibility is to provide clients with a set of ordered
gueries which they can use to obtain data from data servers. It also forms part of the secu-
rity of the system by authenticating client validity against usernames and encrypted pass-
words propagated down by its parent directory server. Local passwords can also be added
to individual network servers by site system administrators, but these do not propagate to
other servers. As in the case of the directory server, any number of network servers may

exist within the server hierarchy.

The main advantage of providing a set of ordered queries to the client rather than actu-
ally retrieving data and forwarding is efficiency. It prevents the network server from hav-

ing to temporarily buffer data on behalf of a cltera job better suited for an intermediate

29

entity, as discussed in Section 3.2. In addition, the network server would have to manage
several of these client requests at the same time. For these reasons, only a set of ordered
gueries is returned to the client so it can obtain data by itself. This also facilitates the case

where the data set is distributed across several data servers.

Many different options may be specified by a client when it initially makes its request
to the network server. A client uses these options to specify information about itself, as
well as perform high level control operations. For example, reconnection from a broken
connection. The network server contains a manually updated list of directory servers.
When a network server starts, it attempts to register itself with its preferred directory

server. If this fails, it tries the next server on the list, and so on.

2.2.4 Data Servers

2.2.4.1 Client Interface

The data server defines a generic interface which can be implemented by any number
of specific data servers. The purpose of a data server is to provide a specific form of data to
clients - for example, a file transfer server. This architecture relies on the fact that all forms
of information served by data servers can be encoded in a serial fashion. For basic file
transfers this serialization requirement is trivial, since files are already stored on disk in a

serial fashion.

Transfer of arbitrary data structures can be slightly more complicated. Due to differ-
ences in endian convention, word size, and byte alignment between various architectures,
transfer of direct memory contents is not possible. However, using the external data repre-
sentation (XDR) for basic types described in [4] to encode on the server side and corre-
spondingly decode on the client side, serialization and de-serialization can be

accomplished on arbitrary data sets in a platform independent manner.

2.2.4.2 Data Segmentation
The information transaction portion of the data server interface relies on the concepts
of sessions, byte streams, and blocks. In this context, a session refers to the set of remote

procedure calls needed to service some specific data requested by the client. A byte stream

30

refers to the stream of bytes representing the data for a given session. For network trans-
mission, memory allocation, and caching reasons, byte streams are generally split into
manageable size blocks - typically between 32K and 1024K. This is similar to the concept

of packets or datagrams but is done at the application layer rather than at lower layers of
the OSI model, such as the transport or network layers, and hence given a different name.
Use of blocks at the application layer provides convenient boundaries for caching, check-

pointing, and recovery mechanisms. Each block must be requested individually and is sent

separately to the client.

Although transport and lower layer protocols (e.g., TCP/IP) partition data into packets
themselves, this information is typically hidden from applications. Although movements
are being made to application-aware switch routers [5], these techniques are still evolving
and are not available in current infrastructures. For this reason, data segmentation is cur-
rently done at the application layer using blocks, although more efficient means of coordi-

nating with lower OSI layers may become available in the future.

Smaller block sizes provide more fault tolerance in the sense that a client can recover
from a broken data transfer closer to the point it left off. However, the drawback is a higher
overhead incurred than transfers using larger blocks. If this is an issue, in the limiting case
an entire data transfer can be accomplished in a single block. The block size used is there-
fore not hard coded, but is left variable to best suit the application. If necessary, the block

size can be negotiated during a data transfer.

2.2.4.3 Recovery Support

If a specific data server supports recovery directly, a client can recover from a broken
connection by indicating at which offset to re-initiate a data transfer when it issues the
open command. This offset is implemented as a byte count relative to the start of the byte
stream representing the data for the current session. The resulting functionality offered
through the use of this technique is similar to RESTcommand in FTP, which can be
used to resume an aborted transfer. To perform this for file transfers, the data server can
simply seek to a given offset in a file. However, for other data server applications, this may

be difficult or even impossible to implement.

31

For example, a data server which outputs prime numbers in increasing order may be
unable to generate primes from an arbitrary starting point, and may be forced to restart its
internal algorithm, particularly if it has lost any critical state information. Although this is
a contrived example, the possibility applies equally well to many other applications. In
these cases, the caching functionality of the intermediate agents described in Section 3.2

may be more suitable for supporting client recovery from interrupted data transfers.

2.2.4.4 Client Call Order

An example of the function call order made by a client when communicating with a
data server is given in Figure 2.2. In this example, two separate sessions are shown. In the
case of a file transfer, these sessions may correspond to separate files. For other data server
types, they could represent some other logical grouping of data. Initially the client
requests a connection and opens a session. Assuming access is granted, the client then car-
ries on to download its data. The first session demonstrates a normal transaction - the cli-
ent callsget_data repeatedly to obtain the series of blocks needed to reproduce the
incoming byte stream. Acknowledgement for previous blocks can be made individually or
can be piggy-backed on top of subsequeet data calls, except for the last block,

which requires a separaieknowledge call.

The second session is started by anotpen call with a different query from the first
session. In this example, the client makes sewggaldata calls before it is forced to go
off-line. This could occur in practice due to mobility requirements, power failure, or sys-
tem shutdown. In the case of graceful degradation, the client has time to inform the server
it is going down by making thé@angup call. This gives the data server a chance to per-
form any internal cleanup routines, such as the closing of open resources. When the client
comes back on-line, it must re-authenticate itself and re-issuepte request - after
which it can continue receiving the remainder of the byte stream using the same policy as

before.

32

Client Control Flow Description
request Establish initial connection
open Open first session
Session 1
r— — — — n
: get_data : Get first block of data
| get_data | Get next block, acknowledge previous
— : get_data : Get last block, acknowledge previous
% | | acknowledge | Acknowledge last block

L—_ — - — — -
open Open second session
f—_— — gess_ion_|2

v : get_data : Get first block of data
! hangup ! Graceful degradation of client

request Re-establish connection
open Re-open second session
[[
| get_data | Get next block, acknowledge previous
|
| get_data : Get last block, acknowledge previous
| | acknowledge | Acknowledge last block
L — — — — — |
complete Close connection

Figure 2.2: Example of client control flow during a multiple session connection including
an off-line period and subsequent reconnection.

Non-graceful degradation, such as unexpected termination, loss of power, or suddenly
changing IP addresses, is handled similarly, but the data server is not given the liberty of
receiving thehangup call. Data server detection of non-graceful degradation by a client is
application specific. For example, a file transfer server could use a time-out between client
calls, which, if exceeded, would force closure of any open files. Assuming no failure con-
ditions in the underlying remote procedure calls, the scenarios possible between a client

and data server using this API can generally be represented as a number of states.

33

2.2.4.5 Internal States

The four data server states and corresponding transition rules resulting from this
method of information transfer are shown in Figure 2.3. The bodlee8TBLOCK indi-
cates whether the next block is the last block in the currently open session. The system ini-
tially starts in stateS; , and does not move to the connection &ate until it receives a
request call from the client. At this point, the client can either callmplete or
hangup to return back to the initial state, or it can issueapen request to open a new

session and move the data server to the data transfeBgtate

startup getdatall] LASTBLOCK

getdatall] LASTBLOCK
(s]

completed hangup

request open

request

completed hangup

wait state connection data transfer re-open
established

Figure 2.3: Data server state transitions during information transaction with client. For
simplicity, the majority of self-loops are not shown.

Once a connection has been established, the client cargetallata to receive

blocks for the current session until the last block, which moves the data server back to
stateS, . Alternatively, the client can discard the current session, open another session by
temporarily moving to the stat§, , then follow an unconditional link back to the data

transfer state. Finally, as before, the client may also complete the connection or hangup

while in stateS; at any time.

34
2.3 Client-Server Interaction

2.3.1 Directory Server - Directory Master

Directory servers each maintain a list of networks served by all network servers in the
system. This list is built up by network servers registering themselves and propagating
information on their sub-networks to their parent directory server. However, since each
network server only registers with one directory server, each directory server has a differ-

ent view of which network servers are available.

Creating an identical list on each directory server is the job of the directory master.
The directory master analyzes the information sent to it by each directory server and prop-
agates it as needed to other directory servers. Directory servers inform the directory mas-
ter when their status has changed by sending it a ‘my network list has been updated’
message. The directory master notes this and propagates any changes to directory servers
using commands synonymous with the ‘upload your network information’ and ‘accept

new network information’ messages.

The second job of the directory master is to maintain a global password list. Whenever
this list is updated, it is copied to each of the directory servers and from there to each of
the network servers. However, a directory server will not pass on the list until it is sure that

its copy is consistent with all other servers.

2.3.2 Directory Server - Network Server

There is minimal interaction between the directory and network servers. When a net-
work server initializes, it registers itself with a directory server. The network server knows
the name of this directory server because it has access to a patrtial list of all directory serv-
ers. This partial list is manually updated by a local system administrator. If the network
server cannot register itself with its preferred directory server, it tries the next one on the
list. From this point on, it does not contact the directory server until one of the networks it
serves changes, in which case it issues an ‘update my registration’ message. On shutdown,

the network server de-registers itself with its directory server.

35

The directory server contacts a network server after a requesting server has registered,
or updated its registration, in order to determine which networks it serves. The directory
server then sends the global password information to the network server. From this point
on, the only interaction occurs when the global password file is updated or when the net-

work server notifies the directory server that it has somehow changed its state.

2.3.3 Network Server - Data Server

Communication between these two layers consists primarily of calls to keep track of
individual client connections. However, as with other adjacent server types in the hierar-
chy, when data servers initialize, they register themselves with their parent network server

and correspondingly de-register themselves on shutdown.

When a client makes a request, the network server may contact data servers of a com-
mon type to determine what information they have available, as shown in Figure 2.4. This
is useful if the client request is ambiguous, the location of the data is unknown, or the data
is spread across several data servers. Using this information, the network server then
returns a set of suitable queries to the client on where and how to obtain the requested
data, using up-to-date availability information. This linear search is only necessary in
instances where multiple data servers are defined to service the same data - for example,
redundant copies of an FTP server using the same name. In most cases, there may only be
a single data server defined for a specific set of data, in which case this search is not

needed.

(Network ServeD

guery_avail_data

(oaa) (oam)

1 2 n

Figure 2.4: Querying by network server amongst data servers to determine location of
unknown data, or to determine how data is spread across servers.

36

2.3.4 Client

Data retrieval by clients is done through a top-down communications process in the
server hierarchy. Clients communicate with all server types in the hierarchy, with the
exception of the directory master. A client first contacts high level servers in order to
authenticate itself and determine where to obtain the data it is looking for, before moving

to lower level servers to actually obtain the data.

Specifically, a client communicates with a directory server in order to determine which
network to use, then authenticates itself with a network server to obtain a set of queries,
and finally presents these queries to one or more data servers in order to actually obtain the
requested data. A client can repeat this process as desired to obtain additional data. This
technique is valid if the data retrieved is much larger than the size of the queries used to
obtain the data. Although expected to be unlikely, if contention at higher levels of the
server hierarchy becomes an issue during wide-scale testing, the client retrieval process
can be modified slightly. For example, additional functionality could be programmed into
a client to cache directory server and network server information and make subsequent
requests directly to the low level servers it has found. This would help to reduce traffic to
servers at the upper layers of the server hierarchy, avoiding possible contention with other
clients. However, this technique implies that clients remain authenticated between ses-

sions, which may introduce security concerns.

Each client contains, or has access to, a partial list of directory servers. When a client
initializes, it attempts to connect to the preferred directory server on this list. If successful,
the client then downloads a list of networks for which data is available. The client applica-
tion uses this list to make a decision on which network to use - either by using a suitable
heuristic, or by prompting the user - and sends this choice back to the directory server. In
response, the directory server returns the name and address of a network server that the
client should contact. A client caches this association between network server and network
data, and may use the same mapping for subsequent transactions without referencing the

directory server. This is the extent of client - directory server interaction unless one of two

37

things happes - a client will request a different network server if it wants to obtain
another network’s data, or if the network server that the client has been communicating

with becomes unreachable. There is no client authentication done by the directory server.

Once a client knows which network server to establish a connection with, it contacts
that server in order to determine how to obtain data. At this point, the network server
authenticates the client against its copy of the username and encrypted password list,
before handling the request. If access is granted, an ordered set of ‘queries to make’ is
returned to the client. Sometimes, a client’s request for a given series of data may be bro-
ken up into several ‘queries to make’. This is because data may be spread over several data

servers.

When the client receives the list of ‘queries to make’, it executes these queries sequen-
tially. The format of the list of queries returned by the network server is dependent on the
requested data server type, and for generalization purposes is therefore encapsulated
within a byte stream. In the case of an FTP server, this byte stream may contain a serial-
ized representation of one or more filenames. A generic query format for this purpose is
given in Section 2.4.2. The client decodes these requests and issues them to their respec-
tive data servers, concatenating the results into one data set. In some applications, multiple
requests may not map well onto the logical mapping of the data. However, in these cases,
individual requests can still be used. Authentication at the data server level is accom-

plished through consistent use of the connection handles described in Section 2.4.1.

2.4 Implementation Considerations

2.4.1 Connection Handles

In the distributed network data system shown in Figure 2.1, an arbitrary number of
connections can occur simultaneously. In order to keep track of and distinguish between
these connections, each connection is assigned a unique handle. The Universal Unique
Identifier (UUID), established for the Distributed Computing Environment (DCE), is used

for this purpose.

38

Universal Unique Identifiers are immutable, 128 bit numbers which are guaranteed to
be unique across time and space. The mechanism used to guarantee that UUIDs are unique
is a combination of hardware addresses, time stamps and random seeds. The structure

used for UUIDs is given in Figure 2.5.

Time low [32]

Time mid [16]
Vers [4] | Time high [12]
Res [3] clkSeqHi [5]
clkSegLow [8]

Node ID [48]]

Figure 2.5: Structure of Universal Unique Identifier (UUID). Values in square brackets
indicate the number of bits allocated for each field.

The node ID represents the 48-bit MAC address of the first network adapter - typically
an Ethernet card. Since Ethernet addresses are assigned by a single global authority, this
guarantees uniqueness in space. Other components of the UUID contain timestamps
which guarantee uniqueness in time. Anomalies such as time moving backwards or UUID
generation faster than the system’s clock resolution are also accounted for. Remaining bits
in the UUID are used for reserved and version fields. Due to their guaranteed uniqueness,
UUIDs are ideal for use as connection handles. They are also useful as node identifiers in

a network, such as the clients and servers used in the DNDS.

2.4.2 Query Format

A generic query format is proposed for client and data server interaction, as shown in
Figure 2.6. The tree structure used represents a dynamic hierarchical organizational mech-
anism which is designed to encapsulate arbitrary queries within a byte stream. In fact, por-
tions of the tree may represent entirely different logical groups of data, or varying data
types. In the illustrated example, status monitoring and topology signals from a cable
amplifier network are shown, in addition to basic file transfer functionality. Although
slightly more complicated to implement initially, this query system allows for dynamic

insertion of new data types without modifying and recompiling code.

39

Cable Net

ftpservA ftpservB

SiteA
7\ 7\ filel fileN

intervall intervalN

Figure 2.6: Example of the tree structure used to represent a generic format for DNDS
gueries. From the root of the tree, several high-level data groups are defined - in this case,
cable amplifier network data and file transfer requests. Further information is similarly
specified in sub-trees, with the lowest level details occupying the leaf nodes of the tree.
The highlighted path represents a sample of the stream necessary to specify a particular
file.

A complete path from the root node to a leaf node fully specifies a set of data. The byte
stream resulting from serialization of this path can be used as a query to obtain this set
from a data server. Partial paths can also be used to determine what data is available - for
example, in order to traverse the DNDS tree. An application could potentially start with no
information on the layout of the tree, start at the root node (the query for which is always
known), and query repeatedly for children in order to determine the structure of the tree.
In the cable amplifier network case, the necessary sub-tree is deeper than with file transfer
because an extra parameter must be specified - namely, whether status or topology infor-
mation is requested. Additional arbitrarily deep sub-trees may be added for other types of

data as necessary.

40

Each node in the tree, with the exception of some leaf nodes, is assigned a UUID to
uniquely identify it. This includes both logical data types as well as instances of individual
data servers. Inner nodes of the tree are also assigned a string which acts as a name for pre-
sentation to the user. These names and UUIDs can be mapped to one another internally.
Since names are not necessarily unique, each name may correspond to one or more
UUIDs.

Use of UUIDs to distinguish nodes allows for redundant copies of data servers. For
example, two FTP servers may have the same name, but can still be differentiated by their
UUID. Leaf nodes that cannot be uniquely identified by a UUID are specified in the pay-
load field of the byte stream shown in Figure 2.7. This payload field is variable length and
can be used to accommodate any information that cannot be represented by an enumera-
tion alone (e.g., a filename to download from a specific FTP server). Although a path can
be fully specified by the lowest level UUID in the tree, the full path of UUIDs is used in
this data structure for redundancy, detection of invalid queries, and possible recovery from

these errors.

N UuiD1| --- |UUIDN payload

Figure 2.7: Proposed encapsulation of query within a byte stream. A number of UUIDs
are included which define the path taken in the DNDS tree. In addition, an optional
payload field can be specified for further parameters - for example, the start time and end
time defining an interval of data to be obtained.

In the server hierarchy of the DNDS, the network server is responsible for maintaining
the tree data structure shown in Figure 2.6. The network server uses the UUIDs to deter-
mine the type of data requested as well as specifics on the data server to redirect the query
to. Network servers are not responsible for decoding the payload field, since its contents
are data server specific. Therefore, data servers are also required to accept these queries,
but are only required to decode their own specific payload formats. Network servers also
keep track of the mapping between names and UUIDs, typically by storing them in a hash
table.

41

Use of the query data structure provides several benefits to the programmer, system

administrator, and end users:

* The programmer can treat all data types equally at the network server level, and

only deal with specifics at the data server level.

* Maintenance by the system administrator can be done dynamically at run-time via
some external interface, such as configuration files. Timestamps on these files can
be polled or inter-process signals can be used by the system administrator to
inform DNDS servers a configuration change has occurred. This ability greatly

simplifies maintenance.

» Since no code needs to be altered to modify the tree, this eliminates the downtime
necessary for upgrading binaries when adding new server types, or modifying

existing entries.

» Users can traverse the tree using a suitable interface (e.g., a specifically designed
GUI, or web browser and accompanying data source such as a Java applet or CGI
binary) and use it interactively determine what data is available and submit queries

to retrieve designated portions.

An example of the flexibility of this technique is the on-line addition of information -
that is, modification of the tree while the system is running. In the cable amplifier network
portion of the tree shown in Figure 2.6, a new data collector site (SiteC) can be added in
addition to the two existing sites, as shown in Figure 2.8. Both status and topology sub-
trees are affected by this change. Once this change has been committed to the tree, the site
will become available and users will be able to access data from it. In a similar manner,

other portions of the tree can be added to, modified, or removed entirely.

42

intervall intervalN intervall intervalN

Figure 2.8: Modified portion of tree structure after dynamic insertion of new site, SiteC.

2.4.3 Deadlock Avoidance

Deadlock can occur in the distributed network data system shown in Figure 2.1 when a
server refuses to handle requests because it is blocked trying to make a call of its own -
typically, a remote-procedure call to a higher level server. This is because each RPC server
process used is generally single threaded, and can therefore only service one client at a
time. This makes access to each server a non-sharable resource. If a particular server’s ser-
vice routines make client calls to similar servers, which also make client calls, then the
possibility for cyclical dependencies exists. If this is the case, then all four necessary con-
ditions for deadlock are satisfied, as described in Section 1.1.2.3. An example of a possible

deadlock scenario in the DNDS is given in Figure 2.9.

43

Client . A) \ B) Initial idle state

/ - N
Client —»@ \ B ' Clientinvokes RPC to server A
/
N
Client Incidentally, server B makes RPC to
Ien Server A, but A is blocked.
Client Server A makes RPC call to Server B
1en as part of servicing clienbeadlock.

Figure 2.9: Example of deadlock condition between two synchronous RPC servers. Solid
circles represent servers blocked executing a service routine, while dotted circles represent
servers awaiting a connection. A server might invoke an RPC to another server for a
variety of reasons - for example, propagation of network information.

Deadlock in this system is avoided by forking separate child processes to make high
level calls, therefore ensuring each server is always able to deal with incoming requests
and eliminating the possibility of a cycle occurring in the client-server dependency graph.
When a process is forked, it obtains a complete copy of its parent process’ memory, but is
executed in its own protected address space. After completion of the high-level request,
and following any necessary state changes back to its parent, the child process is termi-
nated. This deadlock avoidance technique is illustrated in Figure 2.10. To avoid cycles
using this technique, forked processes created in this manner are only allowed to make
requests to higher-level servers. In addition, the only parent-child interaction allowed is
the propagation of state information from the child to the parent. A similar mechanism is

used by servers to handle multiple simultaneous client connections.

44

A A A
low-level A
low-level high-level request
request request _
high-level
request

B B B
fork state
child BU changes

(a) (b) (€)

Figure 2.10: Deadlock between two synchronous servesndB (a), and its avoidance
through consistent use of forked processes to make high-level requests (b). Any necessary
state changes by the child can be sent back to the parent server in a subsequent call (c).
Although the temporary proces inherits a copy of its parent’s state, it cannot receive
RPC requests of its own.

45

Chapter 3

Agent-Assisted Mobile Data Transfer

Other important features of a distributed network data system include client mobility
and fault tolerance. In this section, we show how these can be accomplished using inter-
mediate agents. One or more of these agents can be dispatched on establishment of a new
connection, depending on the level of fault tolerance required. Each agent acts as a proxy
for its client while at the same time retrieving and caching data asynchronously. In this
manner, a client can reconnect from the same or differing hosts to retrieve all or a portion
of an agent’s cached data. In addition, agents are capable of serializing themselves and
thus migrating between hosts to accommodate system failures or perform resource balanc-
ing heuristics. Serialization also allows agents to rendezvous with mobile clients. These
features make intermediate agents useful for both computationally limited as well as band-

width limited applications.

3.1 Mobile Data Transfer

Mobile data transfer is the term used to describe data retrieval by hosts which change
address or have intermittent network connectivity. Common examples include portable
notebook and lap-top computers, as well as wireless services such as cellular phones. In a
static client-server model, both client and server are expected to maintain the same
addresses during the entire duration of a data transfer. When we remove this restriction
and allow hosts to move, several new cases arise. However, if we restrict mobility to the

client side, we can generally categorize mobility into two types.

The first type of mobility, known as off-line mobility, allows the client to move
between requests. This concept is illustrated in Figure 3.1. Hosts of this type are known as
“portable” hosts. The second type of mobility is on-line mobility, which allows the client
to move at any time, even during communication with a server. Hosts of this type are

known as “mobile” hosts.

46

1. make request(s) Client ~—® Server
2. go off-line
3. make request(s) Client ~—® Server

Figure 3.1: Client mobility between requests (off-line mobility).

Fault tolerance also plays an important role in mobile data transfer, and is defined as
the ability of a system to respond gracefully to an unexpected hardware or software fail-
ure. In simple client-server systems, including those involving mobility, clients and serv-
ers can fail independently. In distributed systems, this typically means failure of nodes on
the network, or failure of the network itself. The possibility of failure - in particular, partial
failure, which may be more difficult to detect - is a central reality in distributed computing.
With respect to local resources, failure is either total, or is detectable by a central mecha-
nism such as the operating system. However, failure of remote nodes can occur autono-
mously and is often indistinguishable from failure of the network link to such remote
nodes [60].

Concurrency is also a major issue in distributed computing that does not arise in local

computindg. When a node or the network fails during a remote procedure call, or remote
object invocation, the state of the system may become inconsistent. Even in the simplest
client-server system, if partial and total failure are not accounted for at some level, dis-
crepancies may arise between the state of the client and server, particularly if one node
fails without the other being aware. An example is the failure semantics developed for
remote procedure calls, as discussed in Section 1.1.2.2. Both fault tolerance and concur-

rency problems make implementation of systems supporting mobile data transfer difficult.

L Authors such as [20] and [50] quote partial failure and concurrency as the defining problems of
distributed computing.

47

3.1.1 Traditional Solutions

3.1.1.1 Client Mobility

System requirements such as client mobility and fault tolerance are often dealt with
using existing, well-established solutions, such as those described in [23]. For example,
off-line client mobility can be handled through careful design of the application program-
ming interface in a static client-server model. This is accomplished by including pre-
defined recovery and mobility support in both the client and server. An example of a

system designed and implemented to support off-line mobility is the Rover Toolkit [26].

On the other hand, on-line mobility is usually delegated to a lower level, and typically
requires accompanying hardware and software support, such as specially designed routers
and extensions to IPv4 or IPv6. Examples of such protocols include the mobility options
available in IPv6 [21], extensions to IPv4 such as use of the loose source routing option
[24] [45], Sony’s virtual IP [56], indirect TCP [3], and the virtual cell approach [32].

Although the majority of these techniques provide some form of backwards compati-
bility support - either by building on existing protocols, or including support for mapping
to and from them - many changes are still necessary when adopting these protocols within
an existing communications system. Even in the ideal case of full backwards compatibility
of a protocol with existing legacy systems, standards must be agreed upon by vendors,
meaning that software, documentation, training, and support material must all still be
updated. This makes adoption of technologies supporting mobility slow and costly within

existing infrastructures.

3.1.1.2 Fault Tolerance and Concurrency

Traditionally, fault tolerance has referred to building subsystems from redundant com-
ponents that are placed in parallel [34]. This applies to both hardware and software sys-
tems. An example is the computer system for the space shuttle [38], which runs four
redundant copies of the same computer. These computers are grouped in pairs, with one

pair being in control as long as their results agree with each other. In the case of a mis-

48

match, the second set of computers takes over. In the event of both pairs of computers fail-
ing, or to accommodate an error in the software itself, there is a fifth computer with

software written by a different team from the main computers as a final backup.

Such redundancy techniques are common in fault tolerant computing. In the shuttle
example, both module and version redundancy are employed. Although useful in many
applications, redundancy is not the cure all for solving fault tolerant problems, and in
some cases may not even be feasible. For example, the extra cost associated with redun-
dancy may push a design beyond its allowable budget. In these instances, techniques such

as acceptance tests or error control coding [23] may be more suitable.

For client-server systems [19] and other forms of distributed computing, fault toler-
ance typically refers to policies to accommodate node failures on the network, or failure of
the network itself. Often, in such loosely-coupled systems, combinations of traditional
fault tolerance techniques are employed to provide necessary failure policies within the
infrastructure itself, thereby limiting the number of failures which must be delegated to the

application layer [35].

Traditional solutions for concurrency in distributed systems include commit and roll-
back [12], checkpointing [27], and locking [41]. Concurrency can be handled in an event-
driven manner using the techniques of commit and rollback. A commit event signals the
successful end of a transaction, after which any pending updates can be made permanent.
On the other hand, rollback signals the unsuccessful end of a transaction, after which any

committed updates must be undone, returning the system to its previous state.

Concurrency may also be dealt with on a periodic basis, as is typically the case in
checkpointing. Checkpointing in systems designed for mobile data transfer, such as dis-
tributed databases, is usually scheduled to occur after some specific event takes places, or
after a given interval has transpired. For example, checkpointing may occur after a pre-
defined amount of data has been sent, or after the system writes a designated number of
entries to a log. A typical application is the comparison of checksums during a file trans-

fer, which might occur each time a fixed-size buffer is filled, or when the end of the file has

49

been reached. Locking mechanisms are also widely used to guarantee concurrency. These
techniques are attractive in the sense that the correctness of the systems employing them

can often be proven with a formal calculus, such asuteculus [36].

3.1.2 Alternatives

Agent-based software engineering provides alternative solutions to some of these
approaches that provide similar functionality. Use of software agents does not eliminate
the need for conventional solutions entirely, especially in the area of on-line mobility, but
can often simplify the complexity of the overall design. For example, in a critical real-time
system, such as robot control in a manufacturing process, network latencies may be unac-
ceptable for use of a centralized control [30]. Although a conventional client-server model
could be modified to accommodate such latencies, mobile agents offer a more elegant
solution because they can be dispatched to act locally, to execute a controller’s actions

directly.

Agents are also better suited for supporting off-line and on-line client mobility, as well
as relocation of agents themselves. Although the case of on-line mobility is better handled
through underlying hardware and software support, agents can at least provide rollback
and recovery support for mobile clients. In fact, for some applications, such support may
be sufficient if client-agent transactions tend to be short, thus diminishing the chance of
mobility during these sessions and avoiding the overhead incurred in rollback. This archi-

tecture also avoids costly changes to existing infrastructures.

3.2 Intermediate Agents

3.2.1 Role in Network

In the distributed network data system described in Section 2.1, a software agent can
be added to provide both off-line and on-line client mobility, as well as fault tolerance not
otherwise available in the original system. This is accomplished by placing the agent as an

intermediary between client and data server, as shown in Figure 3.2. Placement of an

50

agent as an intermediate node in this manner results in a three-tier client-server architec-
ture [54]. A single agent is assigned to operate on behalf of each client which requires the

additional features provided by agents.

Conventional Data Transfer

Client —® Server

Agent-Assisted Data Transfer

Client [-—® Agent «—® Server

Figure 3.2: lllustration of data transfer with and without intermediate agent.

The intermediate agent can be dispatched to a reliable, trusted host, generally in close
proximity to the requesting client. Although data servers are expected to reside on station-
ary hosts, agents are capable of migrating between hosts. However, agent execution is lim-
ited to a subset of hosts, known as acceptor sites, specifically designed for receiving and
executing them. A sample data transfer involving this type of intermediate agent is given

in Figure 3.3.

51

~ Vancouver
Victoria ~ (b)
N

Iqaluit

C Mobile Agent B Mobile Client @ Acceptor Site

Figure 3.3: Initial client communication with a mobile agent in Victoria (a), mobility by
client and corresponding rendezvous by agent (b), and subsequent re-connection in
Toronto (c).

In this system, clients that use an accompanying agent are not bound to any specific
host, and may go up or down at will from the same or differing hosts. Both off-line and on-
line mobility are treated equally since the client is required to authenticate itself on recon-
nection. For off-line mobility, this requirement is easily achievable. However, on-line
mobility is only supported if a client can detect when changes in its address occur, so it
can inform its parent network server of these occurrences. Even so, use of authentication
and blocks creates some overhead, meaning lower level support for on-line mobility may

be more suitable if the client is changing addresses frequently.

3.2.2 Multi-Agent Cooperation
If additional fault tolerance is required than can be provided by a single agent alone,
further redundancy can be introduced by combining agents in parallel, as shown in

Figure 3.4. In the parallel configuration, a group of agents act as a single entity with simi-

52

lar latency as a single agent transfer, but (depending on the number of agents used) pro-
viding additional fault tolerance, if one or more of the agents themselves go down. Each

agent can be dispatched to differing hosts in the network, reducing the dependence on any
one node. This technique is similar to common redundancy and voting schemes such as

triple-module redundancy (TMR), a well known concept in fault tolerant computing [23].

Parallel Redundancy

Agent

=
Client |=—» L ﬁg_erE | -—p Server

Agent

Serial Chaining

Client «—» Agent [« Agent < - <a—» Server

Figure 3.4: Multiple agents combined to provide additional features. Parallel redundancy
offers additional fault tolerance, while serial chaining provides pipelining and some
control over the routing of packets.

Alternatively, agents may also be combined serially. This is possible because each
agent’s interface is the same as that of a data server, allowing one or more agents to com-
municate with other agents as if they were the original client or server. Although placing
agents in series actually lowers the fault tolerance of the application - by placing reliance
on every agent in the chain - this technique could allow forms of pipelining between
agents or partial application level control over the routing of packets. For example, spe-
cific agents can be placed in key locations to control high level network traffic. Further-
more, each additional agent placed in series provides another layer of indirection to
previous layers - providing agents themselves with the features the client enjoys, such as
on-line mobility and fault tolerance. However, due to the obvious drawbacks of serial

chaining, its usefulness is fairly limited.

53

In order to implement the redundant parallel agents shown in Figure 3.4, some coordi-
nation between agents is necessary. In the illustrated configuration, all agents are consid-
ered equivalent and perform the same operation - to asynchronously retrieve and cache
data from data servers. In such a system, it is possible for a client to be programmed to
multiplex between these agents. However, this approach of allowing each agent to execute
autonomously and comparing outputs with a voter is generally not practical. This is

because of several reasons:

* The bandwidth of a given client-agent or agent-data server connection may be lim-
ited, in which case performance could be degraded by multiple agents contending

with each other.

* In order to make a majority vote, the state of all agents must be consistent with one
another. If agent data retrieval times differ, this always forces the voter to wait for
the slowest agent in the group, making performance be bound to the connection

with lowest throughput.

* Use of a voting system puts complete dependence on the integrity of the voter. If
the reliability of the voter itself cannot be guaranteed, it defeats the point of using
redundancy in the first place. In hardware, voter circuitry is generally much sim-
pler than the modules being compared, so the voter is often assumed to be reliable.

However, this is not the case in distributed systems.

» ltis difficult to mask the differences between a parallel agent system, conventional
single agent transfer, and direct communications with a data server from the client.

This complicates the client and network server implementations.

For these reasons, a stand-by sparing approach for implementing parallel agents is pro-
posed. A single agent is elected as the primary of a group by a network server. This pri-
mary agent is responsible for retrieving requested data from data servers by providing
suitable queries, as well as replying to client requests for this information. In parallel con-
figurations, this agent is also responsible for ensuring that the caches of one or more

spares are kept up to date. This mechanism is illustrated in Figure 3.5.

54

Network Server

¢ control

primary, Agent
{ »
<
>
r— - — 10
- | 38
Client spare | Agent S8 Server
L — — — — 13>
N @
2
(@]
r— - - — v al >
spare | Agent I
L - — — -

Figure 3.5: Cache synchronization between parallel agents. A primary agent is elected to
act as a representative for a group of agents, which it must keep up to date in case of
failure. Recovery is implemented in a standby-sparing fashion by coordinating with the
parent network server.

Although this approach requires slight modification to the originally proposed behav-
iour of each agent, it provides several benefits without modification of the client interface.
Clients can still remain unaware they are communicating with an agent, as in the case for
serial chaining. If an error occurs during communications with a parallel agent, a client
can correspond with its parent network server to decide on suitable recovery mechanisms,
such as switching to a spare agent. From a client’'s perspective, this appears as a simple
switch to another data server. It is expected that this standby-sparing approach for parallel
agents could be implemented using a limited number of remote procedure calls, primarily

for agent synchronization.

If desired, combinations of serial chaining and parallel redundancy may be employed.
In this manner, some of the benefits of both methods may be achieved. However, while
providing some benefit, the trade-off incurred through the use of these approaches is an

increase in the overall latency of the data transfer.

55

3.2.3 Client Interaction

Clients are assigned an agent by requesting the mobility option when making their ini-
tial request to the network server. If authenticated, the network server dispatches an agent
to a suitable acceptor site, and returns information on how to connect to this site to the cli-
ent. Once a client receives this information about the server, it makes an initial request to
it. Since the given server is in fact the dispatched agent, the agent receives this request and
in turn directs a copy of the request on to the actual data server, as shown in Figure 3.6.
Clients do not realize they are communicating with an agent because the interfaces of data

servers and agents are identical.

Data transfer begins once the client opens a session with the agent. At this point the
agent starts an internal thread which asynchronously retrieves and caches data from the
data server. From this point on, the client can retrieve data from the agent’s cached data as
desired. It may even hang-up and go off-line for a period of time, then re-establish itself
and retrieve the remainder of the cached data, as illustrated in the example. Of course, dur-
ing periods when the client is off-line, the agent continues to retrieve data autonomously.
Communications are closed and the agent is terminated when the client indicates it has
completed all data transfers. Client relocation is handled by individual clients and by coor-
dinating with parent network servers. When a client comes back on-line, it either attempts
to contact its existing agent directly if it has maintained this state information, or it con-
tacts its network server to redetermine these details. This also facilitates coordination and

recovery from any unexpected events that may occur, such as agent time-out.

56

Client Agent Data Server Network Server

ns_register ———

mobility option

ns_request >
dispatch
ds_request 44‘

ns_connect L
I

ds_request———— >

ns_connect——————»

ds open >

ds open ————»

ds_get datg——»

ds_get datg——»

ds_get_data g'
ds_hangup ®
ds_get datg—»
ds ack ——————» v
ns_request >

ds_open

ds_get datg——»

ds ack ———»

ds_completg————»

ds_complete————»

ds_disconne¢gt———

ds_disconne¢t -

Figure 3.6: Sample illustration of client interaction with agent, data server, and network
server. Once a session is opened, retrieval and caching by the agent occurs
asynchronously. This simplified diagram does not show threading or forking.

57

3.2.4 Benefits

In a distributed network data system, use of agents provides several benefits over tradi-
tional client-server systems. First, it simplifies implementation of existing clients and serv-
ers. This simplification is especially useful when multiple server types are required.
Rather than implementing recovery features in each data server, an agent can be written
once to encompass all of them at the required complexity level. Each data server then
becomes only responsible for producing a suitable output byte stream according to its role,
with a corresponding client capable of interpreting this incoming byte stream - all mobility
and fault tolerance concepts can be encapsulated within the agent itself. Furthermore, if
improved heuristics become available or situation specific algorithms are necessary, only

the agent needs to be modified, lowering maintenance costs.

Agents may be capable of monitoring servers and handling unexpected crashes or
shutdowns, transparently switching to backup servers for redundant data, or multiplexing
between servers if the requested information is distributed over multiple data servers. An
agent may also be programmed to relocate itself after collecting data to a host that is closer
in network proximity to the client for faster access. Several agents may also be dispatched
to work in parallel on a set of servers to retrieve sought after distributed data. Finally, if an
agent is not required (for example, if all nodes are on the same LAN), it can be removed,

providing maximum throughput.

Although mobile agents offer many desirable features, designs implemented entirely
using agents are not necessarily the best solution for a particular application, either. In
many cases agents are not strictly necessary, over-complicate the problem, or introduce
some other drawback, such as increased latency. However, by including mobile agents in
the distributed network data system while implementing all communications using remote

procedure calls, some of the benefits of both worlds can be obtained.

According to [18], most applications which can be realized via mobile agents can also,
often better, be realized via RPC. In such cases, the DNDS can utilize RPC exclusively for
data transfers in order to take full advantage of its improved performance. However, in sit-

uations where mobile agent paradigms are useful or more efficient, agents can be created

58

and positioned in situations (either by dispatching an agent directly, or migrating an exist-
ing agent from its current location) where they are useful. Since the desired ratio between
these options is completely dependent on the nature of the problem they are being applied
to, the ratio of remote RPC transactions made in comparison with migration of agents is

left to the specific application.

For large-scale distributed systems, agent-based transactions scale better than RPC-
based transactions. This is because the asynchronous nature of mobile agents likely
enables higher transaction rates - though this can also be achieved with message passing.
Furthermore, secure agent-based transactions have lower overhead than secure RPC [18].
Once authenticated, an agent can communicate without the overhead of security for each

call, as is the case of secure RPC.

3.2.5 Dispatching and Relocation Issues

On creation, heuristics can be used to dispatch an agent to a host based on factors such
as processor load, network traffic, or data locality. In the simplest case, a linear combina-

tion of these values can be used to determine an overall candidacy rating. For example,

consider the ratin@(n) for a node , given by

Q(n) = aL,-BT,-vyD, a,B,y=0 (3.1)

wherelL, isthe load averagé&,, s the estimated throughputDgnd is the available

disk space for a specific acceptor site. Due to the dynamic nature of the network, these
measured values are expected to change over time. The positive comstghts ,y , and
must be determined empirically to normalize units and bring these values within compara-
ble ranges. Since load average is undesirable while throughput and available disk space
are desirable quantities, minimization @{(n) will produce the acceptor site most likely
to be chosen by the network server for dispatching of a mobile agent. The values of the
constants used can be modified to emphasize specific options requested by the client.

Other requirements may also be enforced, such as the strict need for a given amount of

59

free disk space. In this technique, acceptor sites are assumed to have comparable hardware
so that no one node overwhelms all other nodes. An example of this form of acceptor site

determination is given in Figure 3.7.

Network Server

0.8 load
34 KB/s
3.7GB 0.2 load
Site 2
Client ~ P Data Server
T~ _ s
~ — Ve
2.3 load 0.1 load
60 KB/s 100 KB/s
11GB 2.0 GB
Site 3 Site 4

L load average
Mobile Agent Q Acceptor Site T estimated throughput
D available disk space

Figure 3.7: Example of acceptor site determination during dispatching of intermediate
agent. A combination of factors shown next to each acceptor site may be used by the
network server to determine the best candidate. In this case, Site 4 will likely be chosen
since it has low load average, high throughput, and reasonable available disk space.

Similar heuristics can be used by the agent for relocation purposes, although data
locality will likely be more of an issue. This is because the overhead of migration must be
offset by the benefit (typically, higher throughput) of moving to a new acceptor site. There
are also cases where migration is unavoidable, such as notification of shutdown of the cur-
rent node. The remote procedure calls used to implement migration are shown in
Figure 3.8. Clients become aware of an agent’s new location by coordinating with their
parent network server. Unless specifically requested to rendezvous by a client, agents do

not typically migrate during communications with a client.

60

Original Host Target Host Original Host Target Host
(b) NS (e) NS
\‘ dispatch
Original Host Target Host Original Host Target Host
(c) NS
ds_migrate)/
Original Host Target Host

Mobile Agent NS | Network Server @ Acceptor Site

Figure 3.8: Trace of remote procedure calls used to migrate a mobile agent from one host
to another. The system starts with a mobile agent executing on some host (a). The parent
network server dispatches a second agent on the target host (b), and informs the original
agent to migrate (c). This causes a transfer of state information between agents (d), after
which the original agent exits, leaving only the mobile agent on the target host (e). If any

of the steps fail, the mobile agent is left on the original host as in (a).

61

3.2.6 Security

Security of mobile agents is of utmost concern. Since agents often exhibit virus-like
behaviour [18], it can be difficult to distinguish between acceptable and unacceptable
behaviour by programs. Furthermore, in many mobile agent systems, both state and code
information are sent across the network. Transfer of state information is of moderate con-
cern in itself, but systems which transmit code across the network and execute it on remote

hosts introduce a myriad of security concerns.

3.2.6.1 High-Level Considerations

In typical mobile agent systems, code is sent through a scripting language such as
Telescript [63] or MAPL [11], or by using a byte code representation such as the one used
in Java. Corruption, malicious modification, or other forms of attack on this information
without suitable security checks in place can make an otherwise valid mobile agent system
unusable in real-life applications. For this reason, much research has been done in the area

of security of mobile agent systems. Some of the current solutions are:

* To develop a formal model of the security of the system, and prove its correctness
mathematically. A number of distributed process calculi have been proposed for
this purpose. An example is the Seal calculus [58], in which seals are defined to

encapsulate localities and mobility of computational entities.

» To design a Turing-complete language in which no virus can be written [18]. By
limiting what an agent language itself can do, we can prevent agents from altering
other programs. In such a system, no virus can be written, making virus detection
unnecessary. However, other forms of attack are just as likely and equally hard to

deal with.

* To disallow transfer of code entirely. In such a system, mobile agents can move
between hosts only if suitable binaries are already installed on target acceptor sites.
Although no code is transferred, eliminating a large number of security concerns,
inconsistency of state information can cause security problems in itself, although

these scenarios are typically easier to deal with. However, this solution is only

62

practical in applications where transfer of code is not necessary, limiting its useful-

ness.

3.2.6.2 Low-Level Considerations

While high level design plays an important role in the security of a mobile agent sys-
tem, lower level details are equally important. In many systems, these details are often
overlooked, or only dealt with in the testing phase of an application. At this point, if a
problem is discovered, in the worst case the entire design may be compromised. There-
fore, when attempting to build a secure mobile agent environment, much of the security
rests on the eventual implementation. Formal proofs of a system’s correctness are irrele-
vant if the accompanying implementation itself has flaws. Often, these vulnerabilities are
caused by very subtle coding problems, making them difficult to find. Typical examples
include buffer overflow errors or invalid pointer references. Although compiler modifica-
tions such as StackGuard [7] exist to detect certain forms of attack, their availability is
limited (i.e., C and Linux only), they introduce overhead, and their coverage is not fool-
proof. Even in languages with complete run-time checking for these coding errors, such as
Java, other problems exist with respect to mobile code, such as non-termination of the gar-
bage collector [58].

It is expected that consideration of both high-level and low-level security details will
be sufficient to meet the requirements the distributed network data system and accompa-
nying mobile agents were designed for, as described in Section 2.1. In the next chapter, a
prototype implementation of the DNDS is discussed, including implementation details of

security, as well as initial results and performance characteristics obtained.

63

Chapter 4

Results and Discussion

4.1 Prototype Implementation

4.1.1 Modified Server Hierarchy

Currently, a subset of the server hierarchy proposed in Section 2.1 has been imple-
mented, by moving some of the functionality of higher level servers into the network
server layer, as shown in Figure 4.1. Specifically, authentication and control has been
made local to the network server and global state propagation amongst high level servers
has been left out. This initial compromise provides us with the majority of the desired

functionality at the sacrifice of some scalability.

register &
request service

Client Network Server>

(Topology)

Status FTP

get status

Figure 4.1: Modified server hierarchy.

The resulting sub-system has been written in C++ using encapsulated C and RPC sys-
tem calls. This language was chosen for its natively compiled performance, POSIX thread
support, multiple inheritance, and easy integration with available compilers and comput-
ing resources. The target platforms were Linux and Solaris, although porting to other Unix
platforms should also be possible. RPC was chosen for its availability, simplicity, perfor-
mance, and accompanying platform neutral state, which simplifies serialization and de-
serialization between heterogeneous architectures. TCP was chosen as the transport proto-

col due its guaranteed reliability [4].

64

An agent has been implemented which is capable of dispatching to an initially selected
host, asynchronously retrieving and caching data for mobile clients, and serializing its
state (no code is transferred) to an output stream. This allows the agent to rendezvous with
a mobile client, or relocate to a specific host on completion. Status, topology, and file
transfer (FTP) data servers have also been realized. Objects are arranged in the class hier-

archy shown in Figure 4.2.

Serializable
Node
Client Server

PN AN

(Data CIient> (Network Clie@ Data Server (Network Serv@

(Topology Serv§r (Status ServeD (FTP Server)

Figure 4.2: Class hierarchy of network objects. Abstract classes are shown in rectangular
boxes, while instantiable classes are shown in rounded boxes.

All objects have the ability to write their state to an output stream - typically to mem-
ory, a network socket, or disk. This is useful for recovery from unexpected terminations
such as shutdowns or power outages, and can either be done on a periodic basis or on a
demand driven basis during state transitions. When a node restarts it can load this informa-

tion to recover its previous state.

This is accomplished by deriving all network objects from Heeializable class,
which contains common code relevant to serialization, such as the ability to transparently
swap between two files in case one is corrupted by termination during writing. The virtual

function serialize() is overridden in derived classes as necessary to ensure all state

65

variables in the hierarchy are considered. Classes with no member variables (and hence,
no state) of their own need not provide a definition, as they inherit it from their parent

classes.

Code and variables common to both client and server are kept Mdieclass, such
as the current hostname, program and version numbers of the RPC port, and a UUID to
uniquely identify the node in the network. Similarly, tGéent andServer classes con-
tain routines common to their respective subclasses. From this level, the first instantiable
classes are derived, namely thetwork Client ~ andNetwork Server for communi-
cating with and implementing a network server, respectively. Ddwa Server acts as
an abstract class for actual realizations of the data server interface. Currently, the available
data servers are thi@pology Server , Status Server ,andFTP Server . TheData
Client is similarly derived and can be instantiated on its own to interface with arbitrary
data servers - however, it also acts as a base class in providing lower level functionality,

such as mobile agents.

TheAgent class implements a mobile agent, and acts as both a data client and server
through multiple inheritance. In this manner it is able to act as an intermediary between
arbitrary data clients and servers; the same agent can be used for all data server types. This
is possible because all data is sent as byte streams - the agent can cache these in memory

or flush them to disk as required.

4.1.2 Interfaces

4.1.2.1 Network Server

66

The portion of the network server interface relevant to data servers is given in Table

4.1. This consists primarily of functions to register and de-register instances of data serv-

ers, as well as functions to maintain connection status. The complete network server inter-

face specification is listed in Appendix B.

Table 4.1:Data server portion of network server interface.

Function Prototype Description
bool ns_register (Called by a data server to register itself with a net-
Svr_request svr
) work server. The parameter passed in contains irfor-
mation on the data server such as node ID, ngme,
address, program and version numbers. Returns|true
on successful registration, false otherwise.
bool ns_deregister (Called by a data server to de-register itself with a net-
) Huid.t e work server. The parameter passed in contains| the
node ID of the data server. Returns true on successful
de-registration, false otherwise.
bool ns_connect (Called by a data server to inform the network server
conn_request conn
) of a new client-data server connection. Returns frue
on success, false otherwise.
bool ns_disconnect (Called by a data server to inform the network seryver
) -t of a new client-data server connection. Returns true
on success, false otherwise.

67

A summary of the client portion of the network server interface is given in Table 4.2.
In the current implementation, only one network server access function is available to cli-
ents. However, this function is flexible in the sense that it can be used for several purposes
through the use of optional fields in the function’s argument parameter. In each of these

cases, client authentication must be provided by a valid username and password.

Table 4.2:Client portion of network server interface.

Function Prototype Description
request_rc ns_request (Called by clients to authenticate themselves and
ns_request_attr]
request make requests to the network server. This may be a
) request for data, or some other control operatjon,

such as agent rendezvous. The parameter passed in
contains the username, password, desired options,
connection UUID if known, requested server type,
and a byte stream of parameters for the specific
server. The function returns a connection UUID and
information on the data server to contact next on suc-

cess, or a suitable error code otherwise.

Current client options available in tms_request command to a network server are
given in Table 4.3. A client uses these options to specify information about itself, request
high level control functions, or some combination of these options. For example, a client
may specify that it intends to be mobile using tGe_MOBILITY option. In this case,

assuming access is granted, suitable steps will be taken by the network server to provide

68

mobility support. In the DNDS, this will typically be accomplished through the dispatch-

ing of an intermediate agent. A network server reserves the right to deny granting of spe-

cific client options.

Table 4.3: Client options available in network server request. Multiple options may be
specified by performing a bit-wise OR of the desired enumerations.

off-line and on-line mobility.

Client Option Description

CL_NORMAL Default value if no other options are necessary.

CL_AGENT Specifies that the originator of the request is itself an
agent. Disables the effect of th€L_MOBILITY
option, if also specified. Used to prevent recursive
chaining of agents.

CL_MOBILITY Requests mobility option - that is, an intermediate
agent is desired.

CL_RENDEZVOUS Requests that an existing agent should rendezyous
with the client at the host from which the request
originated.

CL_RECONNECT Indicates that the client is attempting to re-establish a
previously broken connection. Used to support bjoth

4.1.2.2 Data Server

As mentioned in Section 2.2.3, requests provided to data servers come in the form of

gueries. The portion of the data server interface relevant to information transactions is

given in Table 4.4, while the complete interface specification is given in Appendix C. Each

69

function takes a UUID - either directly or encapsulated within another structure - which

acts as the connection handle. Incoming requests with invalid or unknown connection han-

dles are ignored, and the client is returned a suitable error cod&SER).DENIED.

Table 4.4:Client information transaction portion of data server interface.

Function Prototype Description
request_rc ds_request (Called to establish a new connection. Returns infor-
) et e mation on which server a client should use to obtain
data, for forking or forwarding purposes.
bool ds_open (Called to open a new session in a previously estab-
bs request query
) lished connection. Queries specific to the data server
type are encoded in the incoming byte stream (e.g., a
filename). Returns information on which server a ¢li-
ent should use to obtain data, for forking or forwatd-
ing purposes.
byte_stream ds_get data (| Called to return the next block of available data in the
bs request ack
) current session. The incoming byte stream can be
used to encode additional parameters, as well as serv-
ing as a piggy-back acknowledgement for previpus
blocks. Returns a byte stream containing the next
block of the requested data.
bool ds_acknowledge (Called to acknowledge receipt of data in the current
bs request ack
) session. Returns true on successful receipt| of
acknowledgement, false otherwise.
bool ds_complete (Called to indicate all client transactions are complete,
) Huiae allowing the server to close any open resourges.
Returns true on successful receipt of completion,
false otherwise.

70

Table 4.4:Client information transaction portion of data server interface.

Function Prototype Description

bool

)

ds_hangup (Called to indicate graceful degradation of client. True
uuid_t uuid
B on successful receipt of hangup, false otherwise.

4.1.3 Implementation Issues

4.1.3.1 Security

Security in the distributed network data system, particularly with respect to mobile

agents, is handled as follows:

Client authentication is done through usernames and encrypted passwords. Pass-
words are encoded using the samngpt function used for Unix account pass-
words. However, due to the relative insecurity of this method, useypt is

limited to password encryption only.

Standard Unix verification is used for dispatching of agents. Agents are dispatched
to acceptor sites using the provided remote shell and login primitives. Maintenance
of which hosts to allow incoming agents from at acceptor sites must be done man-

ually by the system administrator.

During agent migration, only state information is sent, and not code. This avoids
many of the problems associated with execution of untrusted code, as is the case
with many other mobile agent systems. The remote procedure calls used to accom-

plish the required transfer of state information are shown in Figure 3.8.

Agents have an owner associated with them, which is propagated from the user-
name used in the initial network server request which created them. Using this
owner information at each transaction prevents an agent from accessing data or
making requests the originating user would not have had the permission to do

directly.

Limits can be placed on the number of simultaneous connections to a particular

server, or resources allocated to an individual user, in an effort to reduce the effects

71
of denial of service attacks.

» File transfers are restricted to relative paths below an administrator defined root

directory. User specified absolute paths are strictly forbidden.

* Finally, all servers are run under a special account (e.g., the standaody
account common to many Unix systems) which has limited privileges. In the event
of a security exploitation in the code, this limits the abilities of what a server pro-

cess is able to do, minimizing the potential damage by attackers.

4.1.3.2 Multi-Threading

Because of their synchronous nature, RPC servers are normally blocked waiting for a
connection when not currently executing a procedure. This is a problem faxgdre
class, which needs to simultaneously act as a client as well as a server. To overcome this, a
client thread is created within the agent process which can asynchronously collect data.
The server thread communicates information between this client thread as necessary
through a shared cache protected by critical sections. This concept is illustrated in Figure

4.3. Standard POSIX threads were used for this purpose.

/ Agent

Client Thread Data Server

— -

7_Cache D

!

Data Client Server Thread

Figure 4.3: Threads used in agent data transfer.

4.1.3.3 Debugging

Since multiple threads are used in each process, and since processes are forked by
servers (as described in Section 2.4.3) to avoid deadlock, the complexity of the resulting
system is significant. Furthermore, agents are mobile and can move autonomously (e.g., to

rendezvous with a client), meaning programs can effectively move between hosts during

72

execution. This makes traditional means of debugging the distributed network data system
difficult. Standard debuggers which expect a program name as a command line argument,
or which attach to a running process, have limited usefulness in this system since pro-
cesses tend to have relatively short lifetimes. For this reason, a special multi-threaded,
multi-process debug library was developed to facilitate creation of the DNDS. The header

file describing the interface of this debug library is given in Appendix D.

This debug library provides primitives to print out debugging statements to the console
and/or to a file. For clarity, indentation of these statements is done in a manner propor-
tional to the depth of the call stack. Semaphores are used to prevent undesired mixing of
statements between threads. This allows related logical groups of threads and processes to
send their output to one or more common destinations, greatly assisting in debugging. The
overhead incurred through use of these routines is small, however, all debugging can be
disabled through removal of a single compile time option. Finally, since migration of
agents can be difficult to visualize in debugging, an option is provided to dispatch them

within a terminal window, to capture and isolate their output.

4.1.3.4 RPC Program Numbers

In ONC RPC, use of program numbers is regulated by a global authority, Sun Micro-
systems. These program numbers are implemented as long integers (unsigned 32-bit num-
bers), and divided into several ranges, as shown in Table 4.5. Typically, servers will be
assigned a unique value in the user-defined range. However, since their lifetimes are

expected to be limited, agents are assigned RPC program numbers in the transient range.

Table 4.5:ONC RPC program numbers

Minimum value Maximum value Description
0x00000000 Ox1FFFFFFF Defined by Sun
0x20000000 Ox3FFFFFFF User-defined
0x40000000 OX5FFFFFFF Transignt
0x60000000 OXFFFFFFFF Reserved

73

4.1.4 Performance Characteristics

Some testing of the DNDS prototype was performed in order to determine whether use
of the system is feasible and whether it gives adequate performance for use in large-scale
information retrieval. Initial tests were accomplishing by sending files from an FTP server
to a client. The first set of tests consisted of varying the file size while keeping the block
Size constant at a reasonable value. This was done in order to determine how transfer times
compared to built-in system commands. The second set of tests kept the file size constant,
but varied the block size. These tests were made to determine the best block size to use.
Since the nature of the network has a large effect on these tests, all of these tests were per-
formed on both a local area network and the Internet. Finally, further tests were done in

order to evaluate performance in a real-life application.

4.1.4.1 \Varying the File Size

Initial performance characteristics of the prototype DNDS on a 10 Mbps Ethernet seg-
ment using a fixed 256 KB block size are given in Figure 4.4. In this test, the client
machine was a dual 400 MHz Pentium Il based machine running Linux 2.2.3, while the
servers resided on an UltraSPARC 5 running Solaris 2.6. Agents were dispatched to the
same machine as the servers were executing on. File sizes were varied from 0 MB to 10
MB, in steps of 1 MB. Each sample was averaged over the result of three independent tri-

als.

Notice how the use of an agent adds a fixed overhead (averaging 3.1283 seconds, in
comparison with DNDS without agent) which is independent of the data size. This extra
time is a result of the overhead incurred in dispatching the agent, which requires remote
authentication and execution. Throughput for all techniques was similar, averaging 0.686

MB/s. A summary of these results is given in Table 4.6.

74

Table 4.6: Summary of file transfer timings in Figure 4.4 using least-squares
linear interpolation.

Technique Throughput [MB/s] Initial overhead [s]
FTP 0.7373 0.6918
Remote copy (rcp) 0.6860 1.6460
DNDS without agent 0.6266 1.1764
DNDS with agent 0.6941 4.3047

Tests across the Internet were also conducted, but initial transfer times were inconsis-
tent using the same independent trial approach used for the local area network tests. To
achieve meaningful results in this non-deterministic packet-switched network, an inter-
leaving technique was used for the tests. Rather than performing and completing a test,
then moving on to another test, each test was interspersed amongst all other tests in a man-
ner similar to time-division multiplexing. This technique helped average out changes in

network state over the duration of the experiment, and is illustrated in Figure 4.5.

75

DNDS: LAN Test [From 1999/03/23 16:51:49 to 1999/03/24 14:43:46
I T T T T T T

20

I
= FTP
— Remote copy (rcp)
18- —O- DNDS without agent
x - DNDS with agent

16l E P
s

i
1.
P | I |

i
=)

Transfer time [s]

0 I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

File size [MB]

Figure 4.4: Comparison of file transfer timings between two machines on a LAN using
the distributed network data system (DNDS) prototype and common system commands.
The block size for the DNDS server was 256 KB. Each data point is calculated as the
average of three independent trials, with error bars showing the standard deviation.

76

DNDS with agent DNDS with agent
DNDS with agent FTP
: DNDS without agen

—t

Remote copy (rc
m— py (rcp)
FTP DNDS with agent
o . FTP
% - DNDS without agent
DNDS without agent
- Remote copy (rcp)
DNDS without agent -
\J

Remote copy (rcp)
Remote copy (rcp)

(@ (b)

Figure 4.5: Consecutive execution of programs (a), in comparison with program
interleaving (b) used in DNDS performance testing. This technique helps to reduce the
effects of indeterminate network behaviour for making performance comparisons.

The resulting performance characteristics using the same block size as the previous
LAN example are given in Figure 4.6, with a corresponding summary provided in Table
4.7. In this experiment, the client machine was the same dual Pentium Il machine as
before, located in Victoria, British Columbia. However, the UltraSPARC 10 server
machine was located in Toronto, Ontario, while agents were dispatched to a Pentium 100
MHz based system in Richmond, British Columbia. To reduce the time taken for these

tests, file sizes were varied from 0 MB to 1 MB, in steps of 128 KB.

From these results, we see that an interesting phenomenon has occurred - the through-
put provided by the DNDS with agent transfer (51.8175 KB/s) is much higher than the
throughput of any other method (others average 4.3504 KB/s). This is because the location
of the intermediate agent (Richmond, British Columbia) has forced packets to be routed
through different network paths than the paths chosen by routers alone in the other tech-

niques.

77

In fact, a trace of the route taken by these techniques indicated the packets were being
inadvertently routed through San Francisco. This discrepancy caused latency times of
approximately 100 ms for the agent-assisted transfer in comparison with 500 ms for the
other techniques. This low traffic niche discovered in the network made the initial over-
head of dispatching the agent less evident than in the previous example. Although in this
case it was merely a coincidence that this low cost path was found, it does demonstrate the
possibility for high level servers and agents to use heuristics in order to adapt to network
conditions on their own. For example, a network server could compare network latency
times between a set of remote machines before dispatching an agent. In fact, the niche

found was short lived, emphasizing the fact that network conditions change over time.

DNDS: Internet Test [From 1999/05/06 14:03:04 to 1999/05/06 18:23:49

T T T T T T T T T

T
= FTP
300 | — Remote copy (rcp)
—O~- DNDS without agent

x- DNDS with agent 4

250

200

150

Transfer time [s]

100

50

0 C L L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000
File size [KB]

Figure 4.6: Comparison of file transfer timings from a machine in Toronto, Ontario to a
machine in Victoria, British Columbia using the distributed network data system (DNDS)
prototype and common system commands. Intermediate agents were dispatched to a host
in Richmond, British Columbia. The block size for the DNDS server was 256 KB. Each
data point is calculated as the average of ten interleaved trials, with error bars showing the
standard deviation.

78

Table 4.7: Summary of file transfer timings in Figure 4.6 using least-squares
linear interpolation.

Technique Throughput [KB/s] Initial overhead [s]
FTP 4.0175 7.8536
Remote copy (rcp) 4.294(7 8.1412
DNDS without agent 4.7389 24.5374
DNDS with agent 51.8175 25.6200

These results show that the DNDS prototype gives transfer times which are compara-
ble to their system counterparts for a reasonable range of file sizes. All of these tests were
conducted using a fixed 256 KB block size, which is relatively large. Due to the caching
and client recovery features of the intermediate agents used, it is desirable to minimize this
block size, as long as doing so does not significantly degrade performance. Therefore, in
order to determine the effect of varying the block size itself, additional tests were per-

formed.

4.1.4.2 Varying the Block Size

In these tests, the file transfer size was fixed at 1 MB, and the block size was varied
from 32 bytes to 1 MB, in incremental powers of two. Since a 1 MB file was transferred,
the largest block size used corresponds to complete transfer of this file in a single block. In
this case, no segmentation is being done at the application layer, meaning that the only
packetization taking place is by TCP/IP itself. Results of these tests on a local area net-
work are given in Figure 4.7. Specific machines chosen for these tests were the same as
those used to obtain Figure 4.4. Note that the horizontal axis shown uses a logarithmic

scale in order to accommodate the wide range of block sizes tested.

79

DNDS: LAN Test [From 1999/06/19 12:07:08 to 1999/06/19 15:03:34

350 7 T T T LA A
—O— DNDS without agent
i x- DNDS with agent
3001 .
250 % |
», :
» 200 . -
£ '
8
(2]
c
g 150 -
|_
& :
\ N 1 —_
100l -~ Block size =1 KB i
\
\- .
3 Block size = 4 KB
\ "
50} . ’/ i
. .
o
AT Jotie. et - SIS SLETY SUEN ‘SPUS STV SUpUy TS JULNY SIS
0
10 10° 10* 10° 10°

Block size [bytes]

Figure 4.7. Comparison of time to transfer 1 MB file between two machines on a LAN
using the distributed network data system (DNDS) prototype and varying block sizes.
Each data point is calculated as the average of ten interleaved trials, with error bars
showing the standard deviation.

These results show that with very small block sizes (less than 1 KB), use of an inter-
mediate agent on a LAN results in transfer times that are several times greater than trans-
fers without an agent. This is because of the very high overhead involved in the use of
these impractical block sizes. With more reasonable block sizes of 4 KB or greater, the
agent only incurs a constant dispatch overhead, and provides comparable throughput to
direct transfers. However, as mentioned previously, intermediate agents are typically not

required on a LAN, emphasizing the need for Internet performance tests.

Transfer times on the Internet using various block sizes are shown in Figure 4.8. These
tests were performed with a client in Victoria, servers in Toronto, and intermediate agents
dispatched to Richmond, as in previous tests. As in the case of a LAN, very small block

sizes give inefficient results for both direct and agent-assisted transfers, but these methods

80

approach one another as the block size is increased. Since the transfers times shown differ
in several orders of magnitude, a sub-plot is needed to distinguish between these transfers

using larger blocks.

DNDS: Internet Test [From 1999/06/15 21:59:17 to 1999/06/19 11:24:33
18000 ———7 T T —

—— DNDS without agent
x- DNDS with agent
16000 | T

14000 1t .
12000 .
10000 - .

80001 ¥ .

Transfer time [s]

6000 N .

4000 {t 5 i

N
2000 = %\ x N
~ .

Lol e
=& T
M| A - Ty LS SERTEY S W S NUID S S VD Y
O v V A

10 10° 10* 10° 10

Block size [bytes]

Figure 4.8: Comparison of time to transfer 1 MB file from a machine in Toronto, Ontario

to a machine in Victoria, British Columbia using the distributed network data system
(DNDS) prototype and varying block sizes. Intermediate agents were dispatched to a host
in Richmond, British Columbia. Each data point is calculated as the average of ten
interleaved trials, with error bars showing the standard deviation.

A close-up of Internet transfer times using block sizes greater than or equal to 1 KB is
shown in Figure 4.9. Itis noted that at block sizes 32 KB and above, use of an intermediate
agent adds approximately constant overhead. Once again, this overhead is primarily due to

the initial dispatch time required for agents.

81

DNDS: Internet Test [From 1999/06/15 21:59:17 to 1999/06/19 11:24:33
350 - —————7 - —————7

—— DNDS without agent
x- DNDS with agent

300} .

250 .

N
o
o
T
|

Transfer time [s]
=
(o)
o
T
|

wof L Block size = 32 KB |

N\ .
N\
$.
~
50 N .
N
-~ teel,
i i i i i PR i i i i i i i i AAA7

Block size [bytes]

Figure 4.9: Close-up of the transfer times shown in Figure 4.8 using block sizes greater
than or equal to 1 KB.

The conclusions of these tests are that transfer times for DNDS transfers are compara-
ble to those obtained with built in system commands for both local area networks and the
Internet, with a slight overhead for initial dispatching of intermediate agents. Use of the
DNDS on a LAN is efficient using block sizes of 4 KB or greater for either direct or agent-
assisted data transfers, although intermediate agents are typically not required on a LAN.
For the Internet, use of block sizes greater than or equal to 32 KB provides a reasonable

compromise in terms of performance, caching, and recovery purposes.

4.2 Test Application - Status Monitoring Data

The described server hierarchy and intermediate agents have been applied to a
research application for field testing - retrieving stored status monitoring information and
topology of the cable amplifier networks described in Section 1.2. Signals from these

cable amplifier networks are collected and archived daily. The resulting databases are

82

made available through status servers shown in Figure 4.1. In addition, the structure of a
cable amplifier network at various instants in time is provided by a topology server.
Increased dependence on cable amplifier networks in recent years makes the fault determi-

nation schemes described in [49] useful when applied to this data.

The following assumptions are made in applying the described server hierarchy to the

status monitoring application:

» A cable amplifier network is a group of cable amplifiers providing service to a spe-

cific geographic area. Cable amplifier networks do not overlap.

* A network object represents a cable amplifier network and is made up of one
topology object and one or more status objects. This network object stores the

changing state of a cable amplifier network over time.
» Status monitoring information is never split topology-wise amongst status objects.
» Status monitoring information may be split time-wise amongst status objects.

* The topology object includes the evolution of the topology of the cable amplifier

network over time.

» All of the information needed to describe a given cable amplifier network’s topol-

ogy will be stored in a single topology object.

» Each status object contains a time series of status monitoring data for a period

specified by start and end times.

4.2.1 Comparison of Direct and Agent-Assisted Transfers

Timing comparisons for the remote retrieval of status monitoring data using the DNDS
prototype are shown in Table 4.8. Direct DNDS transfers are compared to the times taken
for each step in an intermediate agent’s lifetime. These tests were performed with a client
in Victoria and servers in Toronto, as in previous tests. Agents were initially dispatched to
the server machine so they could retrieve data locally, but were subsequently requested to

relocate and rendezvous with the client machine in Victoria. Two runs were performed, the

83

second consisting of twice as much data as the first. Block sizes used varied slightly, since
for status monitoring data it is convenient to split byte streams on day boundaries. For the

Mississauga plant, doing so results in block sizes of approximately 50 KB.

Table 4.8: Comparison of transfer times for remote retrieval of status
monitoring data for amplifier SMT_100 from the Rogers cable amplifier
network in Mississauga, Ontario. The first run consists of three and a half weeks
of data while the second run consists of seven weeks of archived data, both
starting from May 6, 1999. DNDS servers were executed on a machine in
Toronto, Ontario while the client was in Victoria, British Columbia.

Method Times for Run 1 [s] Times for Run 2 [s]
Direct DNDS retrieval 57.97 129.16
Request for new remote 4.29 4.21
agent
Agent data collection at 35.62 75.40
remote host
Agent relocation and 22.87 51.96
rendezvous to local host
Retrieval from local 3.65 5.99
agent
Total agent life-span 66.43 137.56
Required time on-line 7.94 10.20

It is noted that direct DNDS retrieval requires times roughly proportional to the data
size - taking approximately one and two minutes to retrieve three and a half and seven
weeks worth of data, respectively. These runs correspond to byte streams containing
1,049,096 and 1,996,560 bytes. Agent request times for both runs is essentially constant at
a few seconds, due primarily to network latency and remote shell invocation. Remote data
collection by the agent and rendezvous times consist of a constant overhead plus a multi-
ple of the total transfer size based on throughput. It is expected that larger retrievals would
scale similarly, as indicated by previous performance tests. Total agent life-spans and

required connection times for clients are also given.

84

Although the total agent life-span is longer than the time taken for direct retrieval of
remote data by a client, this is in part due to the fact that data collection by the agent and
retrieval by the client were not happening concurrently, as they normally could if the client
was on-line. However, using an agent the total time a client is required to be on-line is sig-
nificantly lower (approximately one tenth) than that of a direct remote transfer, which
requires the client to be on-line for the entire duration of the transfer. This is especially

useful for mobile clients with intermittent network connectivity.

4.2.2 Visualization

A client interface designed for the status monitoring application has been developed as
a Java applet, as shown in Figure 4.10. The Java applet consists of a series of text fields for
user input and two plotting windows to display signals. The intent behind this was to pro-
duce a mobile, platform independent client. Since web browsers are available for almost
every platform, this provides us with a good framework with which to test the mobility

and fault tolerant features of the system.

firpkss
IHersins Fesbaoad Hlal
- |
W F® Rame fmp iame St Tme End Tim= Cache P 4 Pl 2
RECHEORD T34 35|31 i 0 SRl a4 1] _—— Formigrd P llcd Tes i L@ 6 rE 1
1]
F
i3 Sl ™
rn | W E
1" O Lid
(T 1 g
Farm ©

LE D)
L]

|

LR - |

L i

1 -0a i 10 14 i [£-] 1] 1B in (5 10 - - L] [B T

Tima jHasi
Termgerature illl

Tag i e 1 | Sgmim
[) | FoEaul &
- 5 L 'y e o Cpn Lid
Pdl il - ".. | I I"-\.- I_--" -I."% = RH..W =
I"“ N et s e T B) eyl E A : 3 e
L]

128

u

ML |

L . -

=i s an 13 in LS ad 15 in [%] 50 - B o HE I
Timi j2apH

Ak 5 mmed

Figure 4.10:Visualization of status server data using Java applet.

85

4.2.3 Parameters

The user must enter a valid username and passvitte fields allocated for them in
order to be granted access to any data. They must also enter sufficient parameters to for-
mulate the query that will be sent across the network - in the case of status monitoring data
for cable amplifier networks, this consists of the site name of the cable amplifier plant, the
requested amplifier name, and the start time and end time of the desired interval. Minimal
error checking is done on all fields locally by the applet to minimize erroneous requests. If
an incorrect value is entered, the faulty field is highlighted until the user enters a correct

value.

4.2.4 Mapping to DNDS

Once a set of valid parameters have been entered, a connection is made to a Java server
known as the status mapper to interpret the request, as illustrated by the communications
overview in Figure 4.11. Due to security reasons, applets are typically restricted by the
Java security manager to only open socket connections back to the machine they were
served from. For this reason, in order to run the status mapper on a machine other than the
web server, a proxy can be used which redirects communication from the status mapper to
make it appear to come from the same machine as the web server. This circumvents the

security limitations imposed by the Java virtual machine.

L The echo character for the password field is set to an asterisk to avoid having the password dis-
played on the screen.

86

Web Browsel|

A A
controlidata T Proxy 4| Status Mapper
(optional)
Machine 1
applet
control/data - — — =

_ Proxy <—| Status Mappef
(optional)
Machine 2

DNDS

Figure 4.11: Communications overview of the interface between the status monitoring
visualization applet and the distributed network data system.

Since the web servers illustrated only need to serve applet code and perhaps a few
small supporting documents, they generally do not require advanced features such as
caching. This means use of a full featured web server suahazbe is not strictly neces-
sary. Therefore, to avoid adding unnecessary third party software, a simple multi-threaded
web server was written in Java. Use of a small footprint web server means proxy servers
can be avoided, since individual web servers can be run on the same machines as their cor-
responding status mapper servers. This Java web server implementation performed ade-
guately for all prototyping and testing purposes. However, if the illustrated system is
adopted on a wider scale, it may be more suitable to consider using a more advanced web

server.

The status mapper server is also written in Java and provides the necessary mapping
between requests made by the Java applet and the distributed network data system
(DNDS) described in Chapter 2. The status mapper server listens on a socket, waiting to

accept the username, password, site name, amplifier name, start time, and end time fields

87

from a Java applet. Once a connection is made and the required fields are received, it con-
verts them into a suitable call for the DNDS, executes this command, and returns the
results to the calling applet. For performance reasons, some buffering is done locally for
both input and output so that reasonable amounts of data are sent across the network at the

same time.

4.2.5 Caching

The Java applet contains a local cache in order to switch between displays and store
data from multiple queries locally. However, this cache persists only as long as the Java
virtual machine, and hence, the web browser, is active. Therefore, the mobility option is
also specified by the status mapper when making the initial request to the DNDS. This
results in an agent being dispatched in the DNDS which provides mobility and fault toler-
ance features to the client. With respect to the Java prototype, this means a user can switch
from one machine to another, reboot, or quit and restart their web browser either during or

after downloading of status signals.

Provided the user makes the same query again and the agent dispatched for them has
not timed out, the applet can retrieve an agent’s cached data without incurring the expense
of computations necessary to obtain the data - in this case, uncompressing stored status
monitoring signals. Theoretically, any subsequent queries which intersect with an agent’s
available data could make use of the cache, but in the initial prototype the query must be
an exact match to the query made previously. Furthermore, the user could also request that
the agent be moved to a specified acceptor site using the rendezvous option - typically, to a
host closer in proximity to a current or future destination. Although this functionality has

been implemented in the DNDS, it has not yet been extended to the applet interface.

4.2.6 Results

Authentication, retrieval of data, and caching abilities of the agent all worked as
expected when tested from the applet and status mapper system shown in Figure 4.11. An
agent was successfully dispatched upon successful authentication and network server

request by the Java applet. Uninterrupted retrieval and display of status monitoring data at

88

this point was also successful. Furthermore, disconnection and reconnection functioned
properly, as the Java applet was able to re-establish a connection with the originally
launched agent. Upon reconnection, retrieval of data by the Java applet was noticeably
faster, because the agent had time to asynchronously retrieve and cache additional data
while the client was off-line. In this scenario, data extraction becomes network bound
rather than computationally bound due to the required decompression of the requested sta-

tus monitoring signals.

The Java applet was then used to retrieve data in directed maintenance. During investi-
gation of a fault event in the cable amplifier network located in Richmond, British Colum-
bia, several sets of additional data were successfully retrieved using the Java applet at time
intervals near the event in question. From these successful trials, it is envisioned that the
described system could prove useful in on-site maintenance. Rendezvous capabilities also
worked as expected, as an agent was able to meet client at a given acceptor site. Although
it is not possible to issue this command from the Java applet, this functionality was tested

manually through a simple command line version of the client.

The only drawback found with the Java applet for visualization was that performance
was slightly slower than natively compiled C++ code, possibly due to the run-time excep-
tion checking in Java’s input and output stream classes. Java virtual machines (JVM)
which were tested include Sun Appletviewer in JDK 1.1.7, Netscape Communicator 4.6,
Microsoft Internet Explorer 5.0, and Apple MRJ 2.1.2. Platforms on which these JVMs
resided include Linux, Solaris, HP-UX, and MacOS.

89

Chapter 5

Conclusions and Recommendations

5.1 Conclusions

Throughout this thesis, the design and implementation of an agent architecture for
mobile network services was presented. This architecture is specifically tailored for data
retrieval in a distributed network data system. A number of techniques were illustrated
which assist in supporting authentication, control, mobility, and fault tolerance within this
system. The techniques used include a server hierarchy to support scalability and interme-

diate agents to support mobile clients.

Initially, distributed computing paradigms were discussed, including client-server and
mobile agent systems, and how these systems can be implemented using remote procedure
calls. Subsequently, cable amplifier networks were introduced, in which a coaxial cable is
used to provide a number of services to subscribers, the most prominent of these services
being television and Internet data transfer capabilities. In order to provide reliable service
within these networks, status monitoring on a number of key signals can be performed.
This monitoring data can be regularly collected from each amplifier. Doing so results in
large amounts of generated data to be archived at storage locations. Retrieval of this infor-

mation is useful in post-processing and visualization upon client request.

In order to meet the storage and dissemination requirements of this cable network
application, as well as to accommodate the distributed and heterogeneous nature of data
sources, storage locations, and client requests, a distributed network data system (DNDS)
was proposed. This data system uses a server hierarchy to achieve scalability and fault tol-
erance. High-level servers are used for control and authentication, while low-level servers,
such as data servers, exist to handle client requests for data. No logical restriction is placed

on the number of data server types that can exist within this hierarchy.

90

However, the assumption made is that hosts do not move during or between data trans-
fers. While this is generally the case for server machines, it is not necessarily true for the
client side of communications. In order to support client mobility, a mobile agent can be
dispatched to act as an intermediary between client and data server. Although incurring a
slight overhead - primarily a constant offset for its initial creation - this agent can provide
several benefits including caching and recovery support, as well as rendezvous capabili-
ties. Several agents can also be combined to provide additional features, such as fault tol-
erance of agents themselves, and partial application level control over routing. Many of
the security problems traditionally associated with mobile agents are avoided in this sys-

tem by only sending state information, and not code.

These techniques have been incorporated in a prototype subsystem and graphical user
interface tailored to a specific industrial application, and are currently undergoing field
testing. A prototype of the distributed network data system and accompanying mobile
agents has been implemented using a subset of the original server hierarchy. This code
was written on Unix platforms using C++ and remote procedure calls. Status and topology
servers have been written to provide data for the discussed cable network application, as
well as an FTP server for handling arbitrary file requests. A graphical interface for plotting
status monitoring signals has also been developed as a Java applet. A total of over 12,400
lines of C++ and 1,500 lines of Java code were written for this implementation, excluding
third party software, which further increases these totals to 16,100 and 9,000 lines, respec-
tively. Numerous Perl scripts, shell scripts, and build routines were also developed to

assist in compilation, testing, and support.

Several tests were done in order to analyze the performance of this prototype system.
Conclusions of these tests are that transfer times for DNDS transfers are comparable to
those obtained with built in system commands for both local area networks and the Inter-
net, with a slight overhead for initial dispatching of intermediate agents. Use of the DNDS
on a LAN is efficient using block sizes of 4 KB or greater for either direct or agent-
assisted data transfers, although intermediate agents are typically not required on a LAN.
For the Internet, use of block sizes greater than or equal to 32 KB provides a reasonable

compromise in terms of performance, caching, and recovery purposes.

91

Further tests showed that retrieval of status monitoring data using this system provides
reasonable performance for both direct and agent-assisted data transfers. Rendezvous
capabilities of intermediate agents were also exercised. These initial results are encourag-
ing in that the system works as expected and has promising performance characteristics. It
is envisioned that this agent architecture will be used to retrieve data on a country wide

basis, simplifying access to monitoring information used in directed maintenance.

5.2 Recommendations and Future Work

Although initial results using the current prototype have been encouraging, there is
still some future work that could be done to improve upon the agent architecture described
in this work. In particular, in order to achieve the country-wide scalability the system was
designed for, the remainder of the server hierarchy described in Chapter 2 would have to
be implemented. In the prototype code, some functionality was temporarily moved into
the network server layer - for example, storage of usernames and encrypted passwords.
However, these routines were originally designed to reside in higher level servers, such as
the directory server and directory master. In addition, these servers assist in the propaga-

tion of network information and improve the overall fault tolerance of the system.

The intermediate agent extensions to conventional client-server communications, as
described in Chapter 3, could also be improved. For example, dispatching heuristics could
be considered for initial selection of acceptor sites. Currently, a host is chosen randomly
from a provided list, although a combination of load average, estimated throughput, and
available disk space on a given set of hosts has been proposed. Furthermore, although
serial chaining of agents is supported, this is primarily due to a common interface between
agent and data server. Parallel agents and an accompanying stand-by sparing technique
have also been proposed to improve redundancy, but have not yet been implemented.
Autonomous execution abilities of the agent could also be enhanced, by allowing an agent
to migrate between hosts on its own rather than only when specifically requested by a cli-
ent - either to rendezvous with a client at an acceptor site, or to migrate to a given site fol-

lowing retrieval of data.

92

It is felt that further evaluation and performance tests of the DNDS implementation
should be undertaken, particularly with respect to client recovery from errors, agent cach-
ing, and block sizes used in data transfers. Following any necessary refinements estab-
lished by these in-house tests, release of a beta version to Rogers’ technical staff would
provide useful wide-scale testing and user feedback for further finalizing the eventual
release of the system. For example, users may request changes to the graphical user inter-
face, in order to make it easier to use. As well, this would provide a useful scenario for

testing the full scalability and security of the system.

Future technologies may also play a role in the development of the agent architecture
described in this work. For example, application-aware routers or an equivalent technol-
ogy could be used to improve performance, possibly making use of blocks at the applica-
tion layer obsolete. Existing protocols such as UDP, although less reliable than the TCP
protocol currently used, could also be considered. Other areas in which performance could
be improved include the compression of byte streams and the initial dispatching of agents.
Since the majority of the time involved in a client-server data transfer is dependent on the
network latency, compression/decompression of data before and after transfer could be
performed. In order to maintain application transparency, this could be implemented
within the DNDS. For this technique to be useful, the computational overhead incurred
must be offset by the network transmission time saved. However, in modern computer sys-
tems this is likely to be the case, particularly with scaling processor performance. Further-
more, agent dispatch overhead could likely be reduced by implementing a custom
authentication and execution facility at each acceptor site, rather than using the built in
Unix remote shell capabilities. However, this would require a special server to be run at

each acceptor site.

Finally, although the target platforms for the DNDS prototype are Linux and Solaris,
the implementation is written using standard Unix programming paradigms. It is expected
that the C++ code developed would be relatively simple to port to other varieties of Unix,
particularly those which conform to the POSIX standard. One restriction is that multi-
threaded support and ONC RPC are required, though these are common to many plat-

forms. In addition, the C++ standard template library (STL) was used for container classes

93

such as hash tables and linked lists. However, this only involves installation or upgrading
of a compiler, since current versions of the GNU C++ compiler provide built-in support
for STL. Although all of the aforementioned requirements are common to several plat-
forms, certain portions of the implementation are unavoidably platform dependent - for
example, determination of the MAC address of the ethernet adapter, for use in the node ID
field of UUIDs. These routines would have to be modified or re-written for any other
potential platforms. Obviously, the Java applet and servers developed for visualization of
status monitoring signals are naturally platform independent, due to the interpreted nature

of Java itself.

94

Bibliography

[1]

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

D. C. Anderson, J. S. Chase, S. Gadde, A. J. Gallatin, K. G. Yocum, “Cheating the
I/O Bottleneck: Network Storage with Trapeze/MyrinelSENIX 1998 Annual
Technical Conferengdew Orleans, Louisiana, Jun. 1998.

A. Antoniou, “Digital Filters: Analysis, Design and Applications”, Second Edi-
tion, McGraw-Hill Inc., Jan. 1993.

A. Bakre, B. R. Badrinath, “I-TCP: Indirect TCP for mobile hostBtoceedings of
the 15th International Conference on Distributed Computing Systems (ICDCS)
May 1995.

J. Bloomer, “Power Programming with RPC”, O’Reilly & Associates Inc., 1991.

Cabletron Systems, “Application-Aware Switch Routing: Next Generation Net-
working For The Manufacturing Enterprise”, White paper, Nov. 1998.

D. Carlier, D. Donsez, “Permanent Network Representation for Mobile User”,
Proceedings of the International Conference on Principles of Distributed Systems
(OPODIS’97) Chantilly, France, Dec. 1997.

C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke, S. Beattie, A. Grier, P.
Wagle, Q. Zhang, “StackGuard: Automatic Adaptive Detection and Prevention of
Buffer-Overflow Attacks”,Proceedings of the 7th USENIX Security Conference
1998.

P. E. Chung, Y. Huang, S. Yajnik, D. Liang, J. C. Shih, C.-Y. Wang, Y. M. Wang,
“DCOM and CORBA Side by Side, Step By Step, and Layer by Lay€r¥;+
Report MagazineSep. 1997.

E. W. Dijkstra, “Co-operating Sequential Processdafpgramming Languages
Academic Press, 1965.

J. T. Dorocicz, “Asymptotically Stable Recurrent Neural Networks: Theory and
Application”, M.A.Sc. Thesis, University of Victoria, 1997.

S. A. Ehikioya, T. Walowetz, “A Formal Specification of Transaction Systems in
Distributed Multi-Agents SystemsISCA 14th International Conference on Com-
puters and their Applicationg\pril 7-9, 1999.

E. N. Elnozahy, D. B. Johnson, Y. M. Wang, “A survey of rollback-recovery proto-
cols in message-passing systems”, Tech. Rep. No. CMU-CS-96-181, Dept. of
Computer Science, Carnegie Mellon University, 1996.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

95

S. Franklin, A. Graesser, “Is it an Agent, or Just a Program?: A Taxonomy for
Autonomous Agents"Proceedings of the Third International Workshop on Agent
Theories, Architectures, and Languagésstitute for Intelligent Systems, Univer-
sity of Memphis, 1996.

M. T. Goodrich, R. Tamassia, “Data Structures and Algorithms in Jat|d
Wide Series in Computer Sciendehn Wiley & Sons, Inc., 1998.

R. Green, S. Pant, “Multiagent Data Collection in LycoS§gmmunications of the
ACM, Vol. 42, No. 3, Mar. 1999.

C. Guilfoyle, J. Jeffcoate, H. Stark, “Agents on the Web: Catalyst for E-Com-
merce”, Ovum Ltd., London, Apr. 1997.

P. B. Hansen, “Concurrent Programming Conceptgmputing Surveys/ol. 5,
No. 4, pp. 223-245, Dec. 1973.

C. G. Harrison, D. M. Chess, A. Kershenbaum, “Mobile Agents: Are They a Good
Idea?”, Technical report, IBM T.J. Watson Research Center, Mar. 1995.

J. M. Hart, B. Rosenberg, “Client/Server Computing For Technical Professionals:
Concepts And Solutions”, Addison-Wesley Publishing Company Inc., Aug. 1995.

V. Hadzilacos, S. Toueg, “Fault-Tolerant Broadcasts and Related ProblBiss”,
tributed System2nd ed., S. Mullender, ed., ACM Press, 1993.

C. Huitema, “IPv6: The New Internet Protocol”, Prentice-Hall Inc., Oct. 1997.
P. Jalote, “Fault Tolerance in Distributed Systems”, Prentice-Hall Inc., 1994.

B. W. Johnson, “Design and Analysis of Fault Tolerant Digital Systems”, Addison-
Wesley Publishing Company Inc., 1989.

D. B. Johnson, “Mobile Host Internetworking Using IP Loose Source Routing”,
Carnegie Mellon University, CMU--CS--93--128, Feb. 1993.

A. D. Joseph, A. F. deLespinasse, J. A. Tauber, D. K. Gifford, M. F. Kaashoek,
“Rover: A toolkit for mobile information accessRroceedings of the Fifteenth
ACM Symposium on Operating System Princip&spper Mountain Resort, Colo-
rado, pp. 156-171, Dec. 1995.

A. D. Joseph, J. A. Tauber, M. F. Kaashoek, “Mobile Computing with the Rover
Toolkit”, IEEE Transactions on Computers: Special Issue on Mobile Computing
M.L.T. Laboratory for Computer Science, Mar. 1997.

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

96

J. L. Kim, T. Park, “An Efficient Protocol for Checkpointing Recovery in Distrib-
uted Systems”]EEE Transactions on Parallel and Distributed Systeisl. 4,
No. 8, pp. 955-960, Aug. 1993.

F. C. Knabe, “An overview of mobile agent programmingtpceedings of the 5th
LOMAPS Workshop on Analysis and Verification of Multiple-Agent Languages
Stockholm, Sweden, Jun. 1996.

N. P. Kourounakis, “Improved Fault Detection in Cable Television Networks”,
M.A.Sc. Thesis, Department of Electrical and Computer Engineering, University
of Victoria, Apr. 1998.

D. B. Lange, M. Oshima, “Seven Good Reasons for Mobile Age@sifpnmunica-
tions of the ACMVol. 42, No. 3, Mar. 1999.

D. B. Lange, M. Oshima, “Programming and Deploying Java Mobile Agents with
Aglets”, Addison Wesley Longman, Reading, Massachusetts, 1998.

K. Lim, Y.-H. Lee, “Virtual Cell in Mobile Computer Communications”, Com-
puter and Information Sciences Department, University of Florida, Technical
report 020-1994, 1994.

T. A. Longstaff, J. T. Ellis, S. V. Hernan, H. F. Lipson, R. D. McMillan, L. H.
Pesante, D. Simmel, “Security of the Internéfhe Froehlich/Kent Encyclopedia
of Telecommunications/ol. 15., Marcel Dekker Inc., New York, pp. 231-255,
1997.

J. J. Marciniak, “Encyclopedia of Software Engineering”, John Wiley and Sons,
1994.

D. Marwood, “Extending Applications to the Network”, M.Sc. Thesis, Department
of Computer Science, University of British Columbia, Aug. 1998.

R. Milner, “The Polyadic pi-Calculus: A Tutoriall,ogic and Algebra of Specifica-
tion, Springer-Verlag, 1993.

B.J. Nelson, “Remote Procedure Call”, Ph.D. Thesis, Department of Computer
Science, Carnegie-Mellon University, Pittsburgh, Pennsylvania, 1981.

P. G. Neuman, “Computer Related Risks”, Addison-Wesley, 1995.

S. W. Neuville, “Early Fault Detection In Large Scale Engineering Plants”, Ph.D.
Dissertation, University of Victoria, Mar. 1998.

Odyssey white paper, General Magic Corp., Cupertino, California, 1998.

97

[41] E. Panagos, A. Biliris, “Synchronization and recovery in a client-server storage
system”,International Journal on Very Large Database&3pringer-Verlag, Vol. 6,
Issue 3, pp. 209-223, 1997.

[42] F. Panzieri et al., “Rajdoot: A Remote Procedure Call Mechanism Supporting
Orphan Detection and Killing"lEEE Transactions on Software Engineeridgn.
1988.

[43] S.-J. Pelletier, “Architecture multi-agent pour la recherche d’information a partir
de sources hétérogenes reliées en réseaux”, Mémoire de maitrise, département de
génie électrique et de génie informatique, Ecole polytechnique de Montreal, 1997,
pp. 252.

[44] M. Mira da Silva, “Mobility and PersistenceJecond International Workshop on
Mobile Object Systems (MOS'9&)nz, Austria, Jul. 1996.

[45] Y. Rekhter, C. Perkins, “Optimal Routing for Mobile Hosts Using IP’s Loose
Source Route Option”, T.J. Watson Research Center, IBM Corp., Oct.1992.

[46] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, B. Lyon, “Design and Imple-
mentation of the SUN Network File SystenProceedings of the Summer Usenix
Conference1985.

[47] M. Satyanarayanan, M. R. Ebling, J. Raiff, P.J. Braam, “Coda File System: User &
System Administrator’'s Manual”, School of Computer Science, Carnegie Mellon
University, Jul. 1995.

[48] A.P.Schoorl, N. J. Dimopoulos, “Client Mobility and Fault Tolerance in a Distrib-
uted Network Data System1,999 IEEE Pacific Rim Conference on Communica-
tions, Computers and Signal Processing (PACRIM®toria, B.C., Aug. 1999.

[49] A.P. Schoorl, N. P. Kourounakis, C. D. A. Somers, N. J. Dimopoulos, “Using Sta-
tistics and Neural Networks in Fault Determination999 IEEE Canadian Con-
ference on Electrical and Computer Engineering (CCECE'9&dmonton,
Alberta, May 1999.

[50] M. D. Schroeder, “A State-of-the-Art Distributed System: Computing with BOB”,
Distributed System$econd Edition, S. Mullender, ed., ACM Press, 1993.

[51] R. Srinivasan, “Open Network Computing RPC: Remote Procedure Call Protocol
Specification”, RFC 1831, Version 2, Aug. 1995.

[52] J. W. Stamos, D. K. Gifford, “Remote evaluatio®dCM Transactions on Pro-
gramming Languages and Systewmd. 12, No. 4, pp. 537-565, Oct. 1990.

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

98

A. S. Tanenbaum, A. S. Woodhull, “Operating Systems: Design and Implementa-
tion”, Second Edition, Prentice-Hall Inc., Upper Saddle River, New Jersey, 1997.

L. Taylor, “Client/Server Frequently Asked Questions”, Aug. 1998.

J. M. Tenenbaum, T. S. Chowdhry, K. Hughes, “Eco System: An Internet Com-
merce Architecture”lEEE Computer\Vol. 30, No. 5, pp. 48-55, May 1997.

F. Teraoka, M. Tokoro, “Host Migration Transparency in IP Networks: The VIP
Approach”, ACM Computer Communication Revjexwl.23, No. 1, Jan. 1993.

C. R. Tsai, V. D. Gligor, “Distribution Systems and Security Management with
Centralized Control”’Proceedings of the Spring 1992 EurOpen/USENIX Work-
shop Apr. 1992.

J. Vitek, C. Bryce, “Secure Mobile Code: The JavaSeal Experiment”, Technical
report, University of Geneva, 1999.

Voyager white paper, ObjectSpace Corp., Dallas, Texas, 1998.

J. Waldo, G. Wyant, A. Wollrath, S. Kendall, “A Note on Distributed Computing”,
Technical report SML 94-29, Sun Microsystems, 1994.

D. Walsh, B. Lyon, G. Sager, J. M. Chang, D. Goldberg, S. Kleiman, T. Lyon, R.
Sandberg, P. Weiss, “Overview of the SUN Network File Systdndceedings of
the Winter Usenix ConferencE985.

A. Watkins, N. J. Dimopoulos, S. W. Neville, K. F. Li, E. G. Manning, “The Archi-
tecture of the Distributed Server Environment”, Department of Electrical and
Computer Engineering, University of Victoria, Report ECE95-4, Oct. 1996.

J. E. White, “Telescript technology: The foundation for the electronic market-
place”, White paper, General Magic Inc., Mountain View, California, 1994.

D. Wong, N. Paciorek, D. Moore, “Java-based Mobile Agen@3mmunications
of the ACM Vol. 42, No. 3, Mar. 1999.

D. Wong, N. Paciorek, T. Walsh, J. DiCelie, M. Young, B. Peet, “Concordia: An
Infrastructure for Collaborating Mobile AgentsiMobile Agents: First Interna-
tional WorkshopLectures Notes in Computer Science, Vol. 1219, Springer-Verlag,
Berlin, Germany, 1997.

M. Wooldridge, N. R. Jennings, “Agent Theories, Architectures, and Languages: a
Survey”, in Wooldridge and Jennings Eds., Intelligent Agents, pp. 1-22, Berlin:
Springer-Verlag, 1995.

Appendix A

Sample Cable Amplifier Network Topology

99

Table A.1: Portion of the topology from the cable amplifier network in
Newmarket, Ontario on April 14, 1997.

Amplifier Location Type Children Parent
Name
SMT_100 Headend NULL NULL NULL
SMT_109 SN3 Launch Low SMT_411 NULL
SMT_207 | Bristol High SMT 211 | SMT 208
SMT_2210 | SN5 Launch NULL SMT_210 NULL
SMT_2417 | SN4 GW1 Launch NULL SMT_417 NULL
SMT_2423 | Leslie High SMT_423 SMT_424
SMT_2424 | SN11 Launch NULL SMT_424 NULL
SMT_2519 | New Const. NULL SMT_2520 SMT_516
SMT_392 HWY #11 Low SMT_393 SMT_291
SMT_398 Sherwood High NULL SMT_397
SMT_425 SN11 Launch High SMT_426 NULL
SMT_431 Site 431 Low SMT_432 SMT_430
SMT 434 | Farend High SMT 435| SMT 433
SMT_510 millard and ea NULL SMT_511,| NULL
SMT_528
SMT_524 Alex Donner Dr. High SMT_525 SMT_523
SMT_801 Sanford High SMT_831 SMT_713
SMT_815 19 Foxtail Rid High NULL SMT_808
SMT_ 831 | Hodgson High NULL SMT_801
SMT_941 Ivesbridge High SMT_942 SMT_728
SMT_100 Headend NULL NULL NULL

100

Appendix B

Network Server Interface Definition

[* Server runs in foreground */
const RPC_SVC_FG =1;

/* UUID structure definition, if not already defined */
%#if RPC_XDR || !defined(UUID_T_DEFINED)
%#tdefine UUID_T_DEFINED

struct uuid_t

{
u_int time_low;
u_short time_mid;
u_short time_hi_and_version;
u_char clock_seq_hi_and_reserved;
u_char clock _seq_low;
u_char node[6];
2
%#endif

/* Enumeration of byte stream control field */
enum bs_control

{
BS_NORMAL =0,
BS LAST =1,
BS_ERROR =2
h

[* Byte stream definition */

struct byte_stream

{
bs_control control;
u_long byte count;
opaque data<>;

101

/* Client attributes */

struct client_attr

{

string hostname<>;

/* Enumeration of supported server types */
enum svr_type

{
NULL_TYPE =0,
NS_TYPE = 100,
DS_TYPE_AGENT = 200,
DS_TYPE_FTP = 301,
DS_TYPE_STATUS = 302,
DS_TYPE_TOPOL = 303

3

/* Server attributes */

struct svr_attr

{
svr_type type;
string hostname<>;
u_long prog_num;
u_long vers_num;
2

[* Server request */
struct svr_request

{

uuid_t uuid;

Svr_attr server;

byte stream param;
3

/* Connection attributes */

struct conn_attr

client_attr client;

svr_attr server;

/* Connection request */
struct conn_request
{

uuid_t uuid;

conn_attr conn;

/* Enumeration of server control field */

enum svr_control

{
SVR_DENIED =0,
SVR_VALID =1,
SVR_RECONNECT = 2
h

/* Request */
struct request_rc

uuid_t conn_uuid;
svr_control control;
svr_attr server;

/* Client options, can be OR'ed together */
enum cl_options

{

/* Standard client, no extra options */
CL_NORMAL =0,

/* Originator is an agent */
CL_AGENT =1,

/* Request mobility */

102

103

CL_MOBILITY = 2,

/* Request rendezvous */
CL_RENDEZVOUS = 4,

/* Request reconnect */
CL_RECONNECT =8

/* Network server request */
struct ns_request_attr
{
/* User access control */
string username<>;

string password<>;

/* Connection options e.g. mobility */

cl_options options;

/* Previous connection identifier if known */

uuid_t conn_uuid;

/* Requested server type */
svr_type type;

/* Additional parameters for specific server */
byte stream param;

/* Network server interface definition */
program NS_PROG

{
version NS_VERS

{
/* Clients */

/* Initial request */
request_rc NS_REQUEST(ns_request_attr request) = 1;

=1
} = 0x30000825;

104

/* Data Server */
bool NS_REGISTER(svr_request svr) = 100;
bool NS_DEREGISTER(uuid_t uuid) = 101;

bool NS_CONNECT(conn_request conn) = 102;
bool NS_DISCONNECT (uuid_t uuid) = 103;

Appendix C

Data Server Interface Definition

[* Server runs in foreground */
const RPC_SVC_FG =1;

/* Data server program numbers for known types */
const DS_PROG_FTP = 0x30000827;

const DS_PROG_STATUS = 0x30000828;

const DS_PROG_TOPOL = 0x30000829;

/* Inter-header dependency */
%f#include "ns_rpc.h"

/* UUID and byte stream grouped together in single structure */
struct bs_request
{

uuid_t uuid;

byte stream bs;

/* Data server interface definition */
program DS_PROG

{
version DS_VERS

{
/* Mobility */
bool DS_RECEIVE_STATE(byte stream state) = 200;
bool DS_MIGRATE(svr_attr svr) = 201,

/* Network Server */

bool DS_RECEIVE_CONN_UUID(uuid_t uuid) = 300;

bool DS_RECEIVE_REQUEST(ns_request_attr request) = 301;
byte stream DS_QUERY_AVAIL_DATA(byte stream query) = 302;

105

106

/* Clients */

/* Initial request */
request_rc DS_REQUEST (uuid_t uuid) = 400;

[* Start a transfer */
bool DS_OPEN(bs_request query) = 401,

/* Transfer and acknowledgement of data */
byte stream DS_GET_DATA(bs_request ack) = 402;
bool DS_ ACKNOWLEDGE(bs_request ack) = 403;

[* Transfer complete */
bool DS_COMPLETE(uuid_t uuid) = 404;

/* Graceful degradation */
bool DS_HANGUP(uuid_t uuid) = 405;
=1
} = 0x30000826;

Appendix D

Debug Library Header File

#ifndef AS_DEBUG_H
#define AS_DEBUG_H

/*

Define DEBUG as a compiler flag in all source files to enable

debugging messages. For example:

gcc -DDEBUG -c debug.cc

Provided macros are:

ASSERT - assert replacement with debug support

STREAM - used for writing to ostream with debug

DB

support
- used for printing messages to cerr

DB_ASSERT - same as ASSERT, but only included in DEBUG

mode

DB_ENTER - call this when entering a function
DB_REDIRECT - redirect debug output to file and/or cerr
DB_SET_EXIT_DEPTH - override exit level for subsequent calls
DB_SET_PRINT_DEPTH - override print level for subsequent calls

DB_STAT - useful for printing values of
variables/functions

DB_STREAM - same as STREAM, but only included in DEBUG
mode

DB_TIME - print out the current date and time accurate

to the hundredths of a second

DB_WARN - similar to DB_ASSERT but does not exit

107

Typical usage might be something like:
#include "debug.h"
void main(void)
{
inti=22;
DB_ENTER(main);
DB_SET_PRINT_DEPTH(2);

DB_SET_EXIT_DEPTH(10);

DB("Hello world, i =" <<'i);

If DEBUG is not defined, default is no debugging and macros with DB_
prefix are expanded to nothing, meaning no code is included. Macros

without this prefix such as ASSERT expand to code in both cases, but

will not include debugging support unless DEBUG is defined.

#ifndef DEBUG

#include <assert.h>

#define ASSERT(X) \
assert(X)

#define STREAM(S, X) \
S<<X

/I Debug mode off, so disable all DB macros
#define DB(X)

#define DB_ASSERT(X)

#define DB_DELAY()

#define DB_ENTER(X)

#define DB_REDIRECT(X, F)

#define DB_SET_EXIT_DEPTH(X)

*/

108

109

#define DB_SET_PRINT_DEPTH(X)
#define DB_STAT(X)

#define DB_STREAM(S, X)

#define DB_TIME()

#define DB_WARN(X)

t#else

/I Compile time options
#define DEBUG_THREADS
#define DEBUG_TIME_ACCURACY

#include <iostream.h>

#ifdef DEBUG_THREADS
#include "critsec.h"
#endif

class Debug
{
private:
char *func_name;
int prev_exit_depth, prev_print_depth;

public:
static int exit_depth, indent_depth, print_depth;

static bool cerr_enable;
static ostream *os_ptr;

#ifdef DEBUG_THREADS
static Mutex mutex;
#endif

Debug(char *_func_name);
~Debug();

static void _assert(char *expr, char *filename, int line);
static void delay(int num_seconds = 5);
static void indent(void);
static void preline(void);
static void print_time(void);
static void redirect(char *_filename = NULL,
bool _cerr_enable = true);
static void set_exit_depth(int _exit_depth);
static void set_print_depth(int _print_depth);
static void warn(char *expr, char *filename, int line);

/I Private helper macros

#define DB_STREAM_PRINT(S, X) \

S<<X

#ifdef DEBUG_THREADS
#define DB_ACQUIRE_CRITSEC() \

Critical_Section critsec(Debug::mutex)

#define DB_STREAM_PRINT_THREAD(S) \

#else

DB_STREAM_PRINT(S, “," << pthread_self())

#define DB_ACQUIRE_CRITSEC()
#define DB_STREAM_PRINT_THREAD(S)

#endif

#define DB_PRINT(X) \

N

DB_ACQUIRE_CRITSEC(); \

if (Debug::cerr_enable) \
DB_STREAM_PRINT(cerr, X); \

if (Debug::os_ptr) \
DB_STREAM_PRINT(*Debug::0s_ptr, X); \

110

#define DB_STREAM_INDENT(S) \
{\
DB_STREAM_PRINT(S, getpid()); \
DB_STREAM_PRINT_THREAD(S); \
DB_STREAM_PRINT(S, ": "); \
for (int i=0; i < Debug::indent_depth; i++) \
{\
DB_STREAM_PRINT(S, " ");\
Ja

#define DB_INDENT() \
Debug::indent()

/I Macros defined in both debug and normal modes

#define ASSERT(X) \
if (X)==0)\
Debug::_assert(#X, __ FILE_ , _LINE_)

#define STREAM(S, X) \
0\
DB_STREAM_INDENT(S); \
DB_STREAM_PRINT(S, X); \

/I Macros defined only if debugging is enabled

#define DB(X) \
if (Debug::print_depth > 0) \
{\
DB_INDENT(); \
DB_PRINT(X << endl); \

#define DB_ASSERT(X) \
ASSERT(X)

111

112

#define DB_DELAY() \
Debug::delay();

#define DB_ENTER(X) \
Debug debug(#X)

#define DB_REDIRECT(X, F) \
Debug::redirect(X, F)

#define DB_SET_EXIT_DEPTH(X) \
Debug::set_exit_depth(X)

#define DB_SET_PRINT_DEPTH(X) \
Debug::set_print_depth(X)

#define DB_STAT(X) \
DB#X << " =" << (X))

#define DB_STREAM(S, X) \
STREAM(S, X)

#define DB_TIME() \
Debug::print_time()

#define DB_WARN(X) \
if (X)==0)\
Debug::warn(#X, _ FILE_ , _LINE_)

#endif

#endif // AS_DEBUG_H

Vita
Surname: Schoorl Given Name: André

Place of Birth: Victoria, British Columbia, Canada.

Education Institutions Attended:

University of Victoria 1992-1999

Degrees Avarded:

B.Eng. in Computer Engineering, University of Victoria 1997

Honours and wards

B.C. Advanced Systems Institute GRAP Award 1997
University of Victoria Fellowship - Master’s Level 1997-1999
Research Assistantship 1997-1999
Norman Yarrows Scholarship in Engineering 1996
Engineering Institute of Canada Scholarship 1993
Canada Scholars Program, Government of Canada 1992-1994
President’s Regional Entrance Scholarship, UVic 1992
B.C. Government Provincial Scholarship 1992
Fletcher Challenge Canada Scholarship 1992
International Wood-Workers Association Bursary 1992
Victoria Rotary Club - Harbourside Scholarship 1992
Publications:

André P. Schoorl, Nikitas J. Dimopoulos, "Client Mobility and Fault Tolerance in a
Distributed Network Data System1999 IEEE Pacific Rim Conference on Communi-
cations, Computers and Signal Processing (PACRIM'9®}toria, B.C., Aug. 1999.

André P. Schoorl, Nicolaos P. Kourounakis, Caedmon D. A. Somers, Nikitas J.
Dimopoulos, "Using Statistics and Neural Networks in Fault Determinati®@99
IEEE Canadian Conference on Electrical and Computer Engineering (CCECE’'99)
Edmonton, Alberta, May 1999.

John M. Boyd, André P. Schoorl, "Near-Global Planarization using Chemical
Mechanical Polishing for Shallow Trench IsolatioBlectrochemical Society 994.

114

Partial Copyright License

| hereby grant the right to lend my thesis to users of the University of Victoria Library, and
to make single copies only for such users or in response to a request from the Library of
any other University, or similar institution, on behalf or for one of its users. | further agree
that permission for extensive copying of this thesis for scholarly purposes may be granted
by me or a member of the University designated by me. It is understood that copying or
publication of this thesis for financial gain shall not be allowed without my written per-

mission.

Title of Thesis:

An Agent Architecture for Mobile Network Services: Design and Implementation

Author:

André P. Schoorl

17 August 1999

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Trademarks
	Glossary
	Acknowledgements
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Vita
	Partial Copyright License

