Microprocessor System Data Transfer Interface Design:
An Expert System Approach Using Signal Timing
Behavioral Patterns
by

BENEDIKT THEODOR HUBER

M.Sc., University of Victoria, 1986
B.Sc., University of Victoria, 1983

A Dissertation Submitted in Partial Fulfilment of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY
in the Department of Electrical and Computer Engineering

We accept this dissertation as conforming
to the required standard

Dr. K. F. Li, Supervisor, Dept. of Electr. & Comp. Eng.

Dr. N. J. Dimopoulos, Member, Dept. of Electr. & Comp. Eng.

Dr. E. G. Manning, Member, Dept. of Electr. & Comp. Eng.

Dr. M. H. Van Emden, Outside Member, Dept. of Computer Science

Dr. A. J. Al-Khalili, External Examiner, Dept. of Electr. & Comp. Eng.,
Concordia University

© BENEDIKT THEODOR HUBER, 1998
University of Victoria

All rights reserved. This dissertation may not be reproduced in whole or in part by
photocopy or other means, without the permission of the author.

Supervisor. Dr. K. F. Li
Abstract

DAME (DesignAutomation ofMicroprocessor-based systems usindzapert sys-
tem approach) is an expert system for configuring and designing a customized micropro-
cessor systems from original specifications. This work deals with the development of the
data transfer interface design module in DAME: the Interface Designer.

The automated Interface Designer is developed by extracting common features,
functions and behavior of microprocessor components and representing them using
knowledge representation techniques. The design is accomplished through pattern match-
ing, by performing actions and procedures based on recognition of the standard behavior
patterns of microprocessor component signals.

The development of the Interface Designer production system is divided into three
parts: a hierarchial network of frames that represents the components, a hierarchial net-
work of frames that represents the interface and a set of forward chaining rules that repre-
sents the design expertise. Equivalent abstraction levels are developed for the component
model, interface model and design rules, allowing the design process to proceed using a
top-down methodology.

The component behavior is abstracted at several levels. At the more abstract behav-
ior level, the data transfer behavior is divided into a set of fundamental information trans-
fers, namely the address, data, request, direction, type, delay, size and width information
transfers. At the more detailed level, each information transfer is divided into state and
timing information transfers, where state information represents the conceptual meaning
of the state of a signal, and the timing information specifies when the state information is
usable. Finally, the timing information is represented using a set of propagation delay
invariant timing patterns. Only a limited number of timing patterns is required, thus allow-
ing a limited number of design rules to accomplish the interface design.

Interface design is carried out by sub-dividing the interface into progressively more
detailed interface sub-blocks, until eventually the interface is built up from a set of param-
eterized primitive circuits that represents the lowest level basic building blocks of an inter-
face. The set of primitive circuits developed gives the Interface Designer the ability to
connect signals based on the timing patterns. The timing behavior of the output of the
interface is determined as a function of the primitive circuit parameters and the timing
behavior of the input of the interface. Once the interface design is complete, the output

i
timing behavior of the interface is verified to assure that all component input timing con-
straints are satisfied.

Each of the primitive circuits developed is also given using VHDL. This allows the
complete interface to be generated using VHDL code once the design is complete, permit-
ting simulation for verification and synthesis for implementation of the interface. Several
small test systems are designed and simulated to check the validity of the Interface
Designer.

Examiners:

Dr. K. F. Li, Supervisor, Dept. of Electr. & Comp. Eng.

Dr. N. J. Dimopoulos, Member, Dept. of Electr. & Comp. Eng.

Dr. E. G. Manning, Member, Dept. of Electr. & Comp. Eng.

Dr. M. H. Van Emden, Outside Member, Dept. of Computer Science

Dr. A. J. Al-Khalili, External Examiner, Dept. of Electr. & Comp. Eng.,
Concordia University

Table of Contents

N 153 1 = (o ii...
TaDIE Of CONTENLS ..u et et e e r e e e e M.,
LIST Of FIQUIES ...t e et e e e e e e e e e e e e e e e s e s IX.....
TS o 0 1= o1 L= Xill......
ACKNOWIEAGMENTS. ... it e et e e e e e e e e e e e e et e e e e e eaaaaa s XV
GIOSSAIY ...ttt et ettt a e e e e e e e e e XVi....
(@4 aF=T o] (=3 g A 11 0o [T 1 0] o SRR 1
1.1 Rationale Behind Microprocessor System Design Using an Expert System Approach......... 1
1.2 Work Covered in thisS DiSSEIMAtIONcevuiiiiieeeiiiie e e e et e e e e e aab s 1
1.3 Dissertation Organizationuuuiiiiiieeeeie i e e e e s e e e e e e e e e s e e eeeeena 5.
i I = 1o [4 T T 6.
(@4 gF=T o] (=] g2 == Tod 1 [10 U o T S 7
2.1 MIiCrOPrOCESSOI SYSIEMSiiiiiiiiiiieiiiiiiee e ettt e ettt e e st e e s e e e s abba e e e s enbbe e e e e e Y AT
2.1.1 Microprocessor System Interface Protocols...........ccccoovvieiiiiiiiiiiiiiiiiece e 10
2.1.2 Microprocessor System Component Propertiesccocuveveeiiiieeeeniiiieee e 11
2.1.3 Microprocessor System COMPONENTScceiiiuriieeiiiiiiee ettt e et e e 12
2.1.4 Capabilities of Microprocessor System COMPONENES.........cccovuvrereriiiireeeenniiieeens 13
2.1.5 Microprocessor SYSIEM SUMMAIYcocuurireiiiuieieeiiiireeesariieeeessirreeesesnreeeeseeene 14
2.2 Digital SYStEMS DESIGN......uuuiiiiiiieeeie ittt e e e e e e e s e s rerrrrrrrereee e e e s aasaraarrrrraaaeeeenn 14.......
2.3 Knowledge Based EXPert SYSEMScooueiiiiiiiiiiia ettt e e e 16
2.3.1 Knowledge RepreSENtatiONuuiiiiiiii ittt 16
2.3.2 ProduCtioNS SYSIEIMS. ...ttt e e e e e e e e e e e s s rnnb e e e eeaeas 19
2.3.3 EXpert SYStem ShellS........ou i 20
P2 S =Y o T o I AU | (o1 =i o) o PSP 21.....
2.4.1 High-Level Synthesis of Digital SYStemMS...........ccvivveeiiiiiiiieeee e 21
High Level Description of Digital CirCUItSc.uuviiiiieieeeeee e 22
High Level Synthesis of Microprocessor Systems and HDL............ccccccveviieeeeeiinnnes 23
2.4.2 Expert Systems and Artificial Intelligence for Design Automation.................... 24
The XCON Configurer of Computer SYStEMScc.uviiiiiiiiiieeeie e 24
The DEMETER Design ENVIFONMENT...........uuiiiiiiiiiiee e n e e e 25
The MAPLE and PECOS Hardware Synthesis SyStemscccccccevvviiiiiiiiiienieeeeeeenne 25
The KDMS Hardware/Software Synthesis SYStem.........cccccvvviieeeiiiiiiiiiieieee e 25
The MICON Single Board Computer DEeSIGNENevevieieeeiiriiiiiiiieieeeeeee e e e 26
The DAME Microprocessor SYStem DESIGNETuuuiiiieeeeieiiiiiiiieieeeeeee e e s eeeneeeeeeeeeeas 26
A T U 1 o] 0 = 1Y/ PP 21
Chapter 3: Interface Design Expert System Development ISSUEScvveeciieiiiieeeeeennnn. 29
3.1 T g0 [0 T3 1o o T 29
3.2 Data Transfer INterface EXAmMPIEuuuiiiiiiiiiiii e a e e 29
3.2.1 The MC68000 System Interface EXamplecccccceeeeiiiiiiiiiiiiieeeee e, 30
3.2.2 The Timing Diagram of the Example COmMpoNeNts..........cccccveeeeeeeeeeesviccvnvnennen. 31
Interface of the AdAress SIgNaAISueeiiiiiie i 33
INterface Data SIGNAIScccvviiiiiiiiie e e e e e e a e 33
Other Control SIGNAIS........ccciiiieiie e e e e e s eeeaae s 34
3.2.3 Observations about the Interface Design Example............cccccovveeveeeeeeiiiiicinnnnn, 34
3.3 Approach Used for Development of the Design Automation System............ccccceveeeiiiiiinnns 37
3.3.1 Imitating @ HUMAN DESIGNET ...ttt e e e e e e e 37

3.3.2 Partitioning of the Interface Design System Knowledgeccccccoeeiiiiiininnee. 37

3.3.3 Abstraction of the Design Knowledge Representation..............cceeeeeeeeeeiiinniinns 37
3.3.4 Design Based on Recognizable Patternscc.eeeeieiiiiiiniiiiiiiiiieeceeee e 38
3.4 Representing Components and their BENAVIOr ... 39
3.4.1 Modelling Capabilities of COMPONENES.........uviiiiiiiiiiieiiiiie e 39
3.4.2 Modelling the Capability ProtoColcooiiiiiiiiiiiiiiee e 40
Synchronizing the Protocols between COMPONENTS..........ccooiiiiiiieiriiiiiee e 40
Overall Control of a Capability ProtoCol ..o 41
3.4.3 Modelling Information TranSfErsoiiiiiiiiiiiii e 41
3.5 Representing the INterfaceovociiiiiiiiiie e 42.........
3.5.1 Partitioning the INtEIrfaCeceuviiie i 42
3.5.2 Hierarchy of the Interface Digital SyStem..........ccocouiiiiiiiiiie i 43
3.6 Representing the Interface Design KNOWIEAQE............ueiiiiiiiiiiiiiiiiiiii e 44
3.7 Frame Representation of the Components and Interface.........cccooveiiiiiiiiiie, 46
G T U | o] = Y/
Chapter 4: Microprocessor System Component Model............oviiiiiiiiiiiiiie, 52
o R [11 (oo [0 T 1o o PSPPSR 52
4.2 SIONAIS. .. ettt e e e b b e e e e et b et e e s et s em—— 53
4.3 The State 0f @ SigNaAl.....ccccoiiiiiiii e e e e e e ————— 5.
4.3.1 COMPALIDIE STAIES ... e a e e 55
4.3.2 Representing the States of @ SigNalS.........cccuviiiiiiii 56
4.4 Using Signal States to Describe SItUALIONS..........ccuuiiiiiiiiiiee e 57
4.5 State Changes iN SIGNaAIS........ccoiiiiiiiiiiice e e e e e e e e eanes 88........
I R I - 1 1] 1T L PP PRP 58
A.5.2 EVENTS oottt et e e e e e et e et e e e e e e aaaaae 59
453 Detectable EVENLSc..vviiiiiieiiee e 60
454 Complementary EVENTSooiiiiiiiiiiiiiiee et 60
4.6 Modeling Time Relationships BetWeen EVENTS..........coooiiiiiiiiiiiiiieieeee e 61
4.6.1 The Timing Link BEtWeen EVENLS............uuvuiiiiiiiiiiiiiiie i eeeeeeeee e eeee e 61
4.6.2 Repeated Event Sequences in Timing Diagrams...........ccccuvveieeeiieieeenininiiiiieeeeen. 62
4.6.3 Properties of TIMING LiNKS.......coouiiiiiiiiiiie e 63
4.6.4 Timing LINKS BEtWEEN EVENLS........ccooiiiiiiiieeee st e e e e e e e e e e e aeaaaens 65
Causal TIMING LINKScooeiiieiiiiieeess st e e e e e e e aaaaeas 66
Non-Causal TIMING LINKS........oooiiiiie e s 67
4.6.5 Timing Links Between Complementary EVeNntsS.........ccccccccviiiiiiiiiiiies 68
4.6.6 TiMIiNG LINK SUMMATYccoiiiiiiieieeeeeeire s s eeeaeanerrenenrananas 70
4.6.7 Notation Used to Represent Timing Links Between Events............ccccccceeeeeeenn. 71
4.7 Modeling Signal TIMINGSc.cvveieiiiiiie e 1.........
4.7.1 Developing the Concept of Timing Templates...........cccvvviireeiniiiee e, 71
4.7.2 Propagation Delay Invariance of Timing Templatescccoocvvvveiiiiiieeeiniinnenn, 73
4.7.3 Developing Propagation Delay Invariant Timing Templates.............ccccvveernnnne. 75
4.7.4 The Component Model TiIMINGS........uueiiiiiiiiieiiiiiee e 77
4.7.5 Two Reference Event Timings for Data Transfer..........cccoccvveiiiiiene i, 78
4.8 The Data Transfer Signal TiIMINGS.. ... r e e e e s e e e e e e e e e 79
4.8.1 Interactive Timings and the Initiate to Terminate Time Interval......................... 82
4.8.2 Multiple Reference Signal TImMiNGS......ccuueeeiiiiiiiiiiiiiriiee e e e e e e e 84
4.8.3 Signal TimiNg SUMMAIYuuuiiiiiieieeeeeeiiisitiereeereeee e e e ssssssrnrrerreeeeeeesessnnsnneeeeeees 86
4.9 Modeling INnformation TranSTerooviiiiiie e 87
4.10 Modeling the Data Transfer Capabilitycueeiiiiiiiiiii e 88
4.10.1 Organization of Data Transfer in a MiCroprocessor SyStems..........ccccevcvveeeennnne 88
4.10.2 Classification of the Data Transfer Information Transfers............ccccovicciivinennn. 89

4.10.3 The Request INfOrMationccoiiiiiiieiiiiiiee et 90

4.10.4 The Delay INfOrmMationiiiiiiiiii i e e e 91
Overall ASynchronous CONIOlooviviiiiiiiiiccre e 91
Overall SYnchroNOUS CONEIOL.........uuiiiiiiii i e e e e e e ae e 92
4.10.5 Summary of Information Transfer between Master and Slave............................ 92
e 5 @0 o [od [V =y o 1 T OO 93
Chapter 5: Microprocessor System Interface Model ..., 94
5.1 The Interface BIOCKouuiiiiiiii e e e e e e e s 9....
5.2 The Information Connection Interface Sub-BIOCKS.........c.ccoovvviiiiiiiiiiiiiiceeeee e, 94
5.3 Partitioning the INfO ISBSuuiiiiiiiiiie e 95......
5.3.1 The TIMING ISBS ..eeiiiiiiii ittt e e e e e e e e e s e nae s 97
B5.3.2 The STAE ISBS ...cvitiiiititiicice ittt ettt ettt e e e e e e e e e aaeaaaeees 98
5.4 Interface Sub-Block Primitive CirCUILS..........couuiiiiiiiiieiic e 100
5.4.1 Common ISBPs and their BENAVIOF...........cccooeiiiiiiiiiieiiiiec e 101
CombiINALOMAI ISBPcvviiieeeec e e 102
D-Flip-Flop Clocked MemOory ISBPcociiiiiiiiiiiee et 103
(O] (g1 A £S]] = 104
ISBP Timing SIMUIALIONccoiiiiiiiieeeeere s eeaeerer e 106
5.5 Interface Representation SUMMEAIY.........coooiiiiiiie ittt et e e 107
Chapter 6: The Interface DeSigN PrOCESS........cccoovviiiiiiiiiiieiee e 108
6.1 [a1 g0 o [¥Tex 1 o] o FUU OO PUPO 108
6.2 Abstraction of the Interface Design TASKScc.uuuiiiiiiiiieii e 109
6.3 Overview of the Interface Block Design Terminology and Process.........ccccceeeeeeveincvvvnnnn. 111
6.4 Creating the Interface BIOCKuuuiuuiiiiiiiiiiieie e 13........ 1
6.5 Partitioning the IB iNt0 INfO ISBSccuiiiiiiiiiiie e 114
6.5.1 Rules Used for Connecting Information Signals of the Same Class................. 116
6.5.2 Rules for Generating Internal Information POIS............ccooviiiiiieiiiiecee e 117
6.5.3 Rules Used for Utilizing Extra Informationccccooiiiiiiiniiiie e 119
6.5.4 Rules Used for Generating Missing INformationccccocvveeeiiiiinerenninnnnen. 120
6.5.5 Generating the Goal Information of an INfo ISB............ccccceiiiiiiiiiniie e, 121
6.6 Creating the State and TiMING ISBS......ccuiiiiiiiiiicieee e e e rrrrr e e e e ae s 125
6.7 Generating the Combinatorial ISBP for the State ISBccooooviriiiiieeeen 126
6.8 Designing the TiMiNg ISB USING ISBPuuiiiiiiiiiiaei e 127
6.8.1 Overview of the Timing ISB Design ProCess..........ccccuiiiiiiiiieieeiiiiiiiieeeeeeennn 128
6.8.2 Choosing the ISBP to build up the TIming ISB ..ot 130
6.8.3 Timing ISBP Timing Propagationccceeeiiiiiiiiiiiiiiieeee e 133
D-Latch ISBP Timing Propagationooioiiiiiiiiiieeiieee e 134
Leading Edge Delay ISBP Timing Propagationccccuuviiiiiieeeeniniiiiiieeieeeee e 136
Summary of Timing ISBP Timing Propagation...........ccccceeveiiiiiiieeiiiieee e 137
6.8.4 Combinatorial ISBP Timing Propagation..........ccccceeeiiiiiiiiiieiieeeee e 138
Example of Strobe Input Timings for Combinatorial ISBPccccccceiiiiiiiiiiiinnee. 139
Example of Logic Timing Inputs Mixed With Strobe Timing Inputs........................ 142
Summary of Combinatorial ISBP Timing Propagationccccccevvieeeeniiiiiiiiiieee, 144
6.9 IB TiMiNg VENfICAIONuvieiiiiiee e r e e e e e e 145.....
6.9.1 The Connection Timing Constraint Extraction Processccccccvvvvvvvvereeeenn. 146
Extracting the Timing CONSLIAINTSoocciiiiiiiiiieeee e 150
Constraint EXIraction RUIESooovviiiiiiiiiiiccciis it ee e 151
6.9.2 Choosing an Implementation Technology..........ccccovvviiiieei e, 152
6.9.3 Calculating the Initiate-Terminate Delaycccccccoevviiiiiiiiieeieee e 153
6.9.4 Timing Constraint Evaluation and Verificationcccccccccoiiiiiiiiiiieiniee e 154

6.10 Generating the VHDL COUEuuuiiiiiiiciiie i e e a e a e e e e e 158

6.11 Controlling the DESIGN PrOCESSccciiiiiiiiiiiiiee ettt e e e e e e e e e nneees 159
6.12 Summary of the Interface Design Process and Representationocceeveevnevieeeniiinnenn. 160
Chapter 7: Data Transfer Interface Design Implementation and Results........................ 161
7.1 COMPONENT LIDIAIY....coiiiiiiiiieeeeee ettt e e e e e e st e e e e e e e e eme 161.....
7.1.1 PrototyPe FramesS ... oo e e e e e e e e e e e e e e eeeeeeneennnnees 162
7.1.2 DEVICE FIAMESeeiiiiiiiiiiiietee ettt e et e e e e e e e e e e s aebbeeee e 162
7.1.3 Components REPIESENTEMcccuiiiiiiiiiiiiiiie ettt 164
7.1.4 Component ENtry GUIAEINEScooiiiiiiiiiiiiiiie e 164
7.2 DESIGN RUIBS ...ttt e et e e e b mneeas 166.
7.3 Interface DesigNer OULPUL........ccoiiiiiiieiiiiie et 167........
7.4 Interface Design Example: 68000 t0 6116ccovviiuiiiiiiiiieiieaeeee it e e 168
7.4.1 Problem Specification: 68000 t0 6116c..euvviiiiiiiieeiiiiiiiiiiieee e 168
7.4.2 Execution: 68000 t0 BL16.........uueieeiiirrireiiiiiiieeeiiiieeeessiieeeessnnaee e e s eesanaeees 169
7.4.3 System Schematic: 68000 t0 6116cceeiiiiiiiiiiiieir e 173
7.4.4 Timing Constraint Verification: 68000 t0 6116..............ccceoviiviriiirieiiiiiin, 175
7.4.5 VHDL Code Output: 68000 t0 6116ceeeiivriireeiiiiiieeeiitiieeessiieeeeeeeieeee e 175
7.4.6 VHDL Simulation: 68000 t0 6116c..ceeeiiiiiieeeiiiiieeeeiiiiee e siiee e e 176
7.4.7 \Validation of the Interface: 68000 t0 6116cceeviiiiiiriiiiiiieiieeee e 179
7.5 Timing Verification FailUreS ...t 0....... 18
7.6 SUMMANY Of DESIGNS. ...ttt ittt e e e e e s e e e ae e e e s e e nnnrerrnneeeeeean 181.......
Chapter 8: Conclusions and FUtUre WOIK.............couuiiiiiiiiiiiiii e 184
8.1 CONCIUSIONS....uuttitititicieee et e et et e e e et s s e s e e e e eeaeaaaaaaeeeesss mmmmn 184
8.2 FULUIE WOTK ...t et e e et mnes 188
BIDlOGrapRy ... 191.....
Appendix A: Timing Templates for Modeling Data Transfer............ccccvvvvvvvvveeiiiennnnnnnn. 197
A.l NON-INtErACtVE TIMINGS ...uuvvviiiiiiiie e e e e e es s e e e e e e s s s e e e e e e e s e s ssasnrbn e rreaaeeeeseaanns 197
N0 0 R 1 (o] o YT T 0211 T PR 197
N - (o] o 1 I 01V SRR 198
N0 0 T o]| (o112 T 11 o SRR 199
A.1.4 PulSE-LatCh TIMING ...ccoceeiiiiiieiieee e e e e e s e e e e e e e e s s e eeeeeees 200
A.L5 FOOWS-LAtCh TIMING ..cceeveiiieiiiiie e e e e e e s e e e e e e e e e e nnneaeeeee e 200
N0 L T Mo To 1 To I o 11 o o PSP PPP 201
A.2 L1 =T = Vo 1Y/ T T T TSRS 202.....
A.2.1 Handshake TimiNg.......cccooiiiiiiiii eeeeararnrane 202
A.2.2 WA TIMING oottt e s e s e e e e e e aaeaeaaaaaeaearaeanes 203
N T U | Y= T 111 o o SRR 205
Appendix B: The Component and Interface Frame Hierarchy............cccccvvvvvvviiniiinnnnnn. 206
B.1 The COMPONENE FrAMES....uiiiiiii et e e e e e e s e s e e e e e e e e e e s s nnnerenneees 206
B.1.1 The Capability DeVICe Frame..........cccoiiiiiiiiiiiiiiieee e 206
B.1.2 A Note About Choosing the Name of a Framecccccccevvvviiciiiiieieee s 208
B.1.3 The State-Timing Specification Device Frame............ccccvvevcviviiieireeee e 209
B.1.4 The State Specification DeviCe Frame...........coccvvvieiiieiie e e e 209
B.1.5 The Timing Specification DeViCe Frame..........cccccveeerieeeeiiiiiiiiiieeeeee e e 210
B.1.6 The Signal DEVICE Framecccoiiiiiieiiiiiiiei e e e e e e e e s nene e e e e e e 211
B.1.7 Overview of the Component Organization............cccccveeiereeeeeeiisncciieeere e 212
B.1.8 Examples of Component Frame HierarcChyccccovveeeveeeeeiiiiccciiieeeeeeee e 213
B.1.9 Examples of COMPONENt FramMES.......ccceeeeiiiiiciiiiieieeeeee e s sesiee e e e e e e e e e nnenes 213
Example of a Timing Information Frameccccccveeeiiiiicciiieeece e 214

Example of a State Information Framecccovveeeiiee e 218

B.2

Appendix C:
c.1
C.2

Appendix D:
D.1

D.2

Appendix E:
E.1
E.2
E.3

Appendix F:
F.1
F.2
F.3
F.4

Appendix G:

The INterface Framesoooiiiiiiiiie e 19....... 2
B.2.1 Frame Representation of the Interface BIOCK...........cccccccriiiiiiiiiiiis 220
B.2.2 Frame Representation of an ISBPccoiiiiiiieeeeee e 222
VHDL COde fOr ISBPS......eeiiiiiiiiieiee et e e e e e e e e e aeeeeeennnnnes 224
Package Declaration fOr ISBPS........uuuuiiiieeiiiiiiiiie e e s e s s e e e e e e e s s s s naneeeeeeee s 224
Entity and Architecture Declaration for ISBPS............uiiiiiiiiiiii e, 225
C.2.1 2INPUL AND ENILY ..ottt 225
C.2.2 21INPUL OR ENLLY .vtiiiiiiiiitiieiiee ettt ettt e e e 225
C.2.3 21INPUL XOR ENLILY ..ttiiiiiiiiiiiiieiiie ettt 225
O 101V o (=T gl = o] 1SR 225
C.2.5 D-LatCh ENtItY ...eeiieiiie ettt 226
C.2.6 D-Flip-FIOP ENLILY c.coeiiiieee et 226
C.2.7 PUre Delay ENLILYcoovveiiiiiiiiiiiiicieis st e e e e e et e 226
D-Flip-Flop Implemenation of 50 NS Pure delay ... 227
C.2.8 Leading Edge Delay ENtityuuuuummiiiiiiieieiiie e 227
C.2.9 Trailing Edge Delay ENtity.........ccuuuiuiiuimiiiiiiiiiiei e eee e 228
C.2.10 Tri-Sate Buffer ENLitYcoooiiiiiiie s e e e e e e e e e e e ee e 228
C.2.11 Open Collector BUffer ENLILYcooiiiiiiiiiieiiieece e 229
CRL Frames for Design Example from Section 7.4ccccccceviiiiiiininne 230
CRL Frames for the Motorola MC68000 MiICrOPrOCESSOrccccevvvevrrrieirereeeeeeeiessnrnneens 230
D.1.1 CRL Frames MCB8000 BOAY........cuuuririeeeiiiiiiiiniiiieeeieeeeeesssssiinneeereeaeeesssannnnnes 230
D.1.2 CRL Frames MC68000 Timing (BMNZ).........ccooiiciiiiiiiiieiee e ccceeeee e e 234
CRL Frames for Component Instances and the Connection Request..............cccvvvveeeeen. 236
VHDL Code for Design Example from Section 7.4..........cccccuvvvveveeeeeennnnn. 238
VHDL ISBs for Design EXamPIeccooiiiiiiiiiiie et 238
VHDL IB for Design EXAmMPIEccooo ittt 250
VHDL Test Bench for Design EXample ... 254
Other Interface Design EXamples...........ooovvviiiiiiiiiiiiiieeeeeeeeeeeee 259
Interface Design EXample: i8086...........cocuuuiiiiiiiiiieaee et 259
Interface Design EXample: B8020..........ccuuiiieiiiiiieiiiiie et 260
6809 INterface EXAMPIEuuiiiiiiiiieiee e e e e e e s e s rr e e e e e e e e e e e ananes 264
t32020 INterface EXAMPIEuiiiiiiiiieiee et 266
The MOdel Frame.........uueiiiiie et 268

FIGURE 1-1.
FIGURE 1-2.
FIGURE 2-1.
FIGURE 2-2.
FIGURE 2-3.
FIGURE 2-4.
FIGURE 2-5.
FIGURE 3-1.
FIGURE 3-2.
FIGURE 3-3.
FIGURE 3-4.

FIGURE 3-5.
FIGURE 3-6.

FIGURE 3-7.
FIGURE 3-8.
FIGURE 3-9.

FIGURE 3-10.
FIGURE 3-11.
FIGURE 3-12.
FIGURE 3-13.
FIGURE 3-14.

FIGURE 4-1.
FIGURE 4-2.
FIGURE 4-3.
FIGURE 4-4.
FIGURE 4-5.
FIGURE 4-6.
FIGURE 4-7.
FIGURE 4-8.
FIGURE 4-9.

FIGURE 4-10.
FIGURE 4-11.
FIGURE 4-12.
FIGURE 4-13.

FIGURE 4-14.

List of Figures

Data Transfer Interface DeSIgNc.uviiiiiiiiiiiii e 2
Interface Design EXpert SYStem........ccoooiiiiiiiiiiiiiiccires e 4
Block Diagram of a Simple MIiCroCOMPULET...........ccccuvvviiiiiiiiiieeieeeeeeeeeeenn 8
Digital System Design Phasescccooviiiiiiiiiiiiiiii e 15
Semantic Network for JONNuuiiiiiiiiiiiiie e 17
Structure of a Production SYStEMccooieiiiiiiiiiiiiiieeeee e 19
Abstraction Levels for Digital SyStemsc.cceeiiiiiiiiiiiiiececiiiee e 22
Interface Between MC68000 CPU and MK6116 Static RAM............... 30
Timing Diagram of the MC68000 Read Cycle...........ccccceeviiirinieeennnnnne 32
Timing Diagram for the MK6116 CMOS Static RAM Read Cycle....... 32
Example lllegal Glitch Transitions for MK6116 CMOS
Static RAM REAA CYCIE.......ccoviiiieiiei it 33
Structure of the Interface DeSIgNEercooiiiiviiiiiiiieceeece e, 38
Information Embedded in the State of Signals and its Time
RETEIENCE ... s 41
Partitioning a Digital Systems into Sub-systems.........cccccooeevvviiiiiiieenenns 43
Interface HierarChy ... 44
X2000 DEVICE FrameS.......cccvviiiiiiiiiiiiiiiaaee e e ettt e e e e e e e e e 46
Device and Prototype Framesccooooiviiiiiiiiiiici e 46
Prototype HIerarChyueeoiiiiiie e 47
Example Device Framescoooiiiiiiiiiiiiieeeeee e 48
Component INStaNCe FramesS........cooviuviiiiiiiiiec e 49
Interface Designer Knowledge Representation............cccceeeeeeiieeeeeeeeeeen. 50
Outline of the Component Model Presentationcccceeevvvvevveiiiiinnnnns 52
LogiC State HIErarChyccooiiiiiiieieecee e 54
Voltage Levels Associated with Sates..........ccccceeeeeeiiiiiiveeeeiicc e 55
Timing Diagram of the MC68000 Read Cycle...........ccccevvviirivieeennnnne 61
Example of Event Time Relationshipcccoovvviiiiiiiiiiie e, 62
Repeated Event Sequence Representation...........cccceeeevveeeeeeeeeeeeeeeennnnnnnns 63
Possible Event Relationships ... 65
Example of the Always-Accompanied-by Linkccccoeeviiiiieeennnnnnn.e. 67
Example of the Accompanied-by LinK..........ccoovvvvviiiiiiiiiiii e, 68
Typical Data Write Operation Timing Diagramccooeeeiiiiiinnnnee. 68
Typical Data Write Operation Timing LiNKSviiiiiiiiiiieeeeeeeeee, 69
Representation of Signal Timing of Non-Multiplexed Signal A3 72
Propagation Delay Invariance of Timing Template (Signal
IS DEIAYEA) ... ————— 75

Propagation Delay Invariance of Timing Template (Reference
IS DIAYEA) ... 76

FIGURE 4-15.
FIGURE 4-16.
FIGURE 4-17.
FIGURE 4-18.
FIGURE 4-19.
FIGURE 4-20.
FIGURE 4-21.
FIGURE 4-22.
FIGURE 4-23.
FIGURE 4-24.
FIGURE 4-25.
FIGURE 4-26.
FIGURE 4-27.
FIGURE 4-28.
FIGURE 4-29.
FIGURE 4-30.
FIGURE 4-31.

FIGURE 5-1.
FIGURE 5-2.
FIGURE 5-3.
FIGURE 5-4.
FIGURE 5-5.
FIGURE 5-6.
FIGURE 5-7.
FIGURE 5-8.
FIGURE 5-9.

FIGURE 5-10.
FIGURE 5-11.
FIGURE 5-12.
FIGURE 5-13.
FIGURE 5-14.
FIGURE 5-15.
FIGURE 5-16.
FIGURE 5-17.

FIGURE 6-1.
FIGURE 6-2.
FIGURE 6-3.
FIGURE 6-4.
FIGURE 6-5.
FIGURE 6-6.

Simple Setup and Hold Time Example.........ccccoiiiiiiiiiiiiiiiiiiceeeeeee e 76
Updated Non Multiplexed Signal Timing Template..............cccoeeeeereeeee. 77
Non-interactive Timing Example.............ooooviiiiiiiiiieeeeeeeeeeees 78
Interactive TiMiNg EXamPple.........oooiiiiiiiii e 79
Theoretical TImiNg Relations.............uuiiiiiiii e 79
Non-Interactive Timing Templates - Part 1.............cccceevvvvvvvviviiiinicieeenn. 80
Non-Interactive Timing Templates - Part 2...........cccccovvviiiiieiieiiiiiieeeeeen, 81
Interactive Timing TeMPIAtES...........ooeviiiiiiiiii e 82
MC68000 Read Data TranSfer.........coooviiiiiiiiiiiiiiiiiiiieceeeeee e 83
Initiate to Terminate Timing Link Examplecccccoiiiiiiiicnnn, 84
Data Access Timing for a Typical Slave DevicCe..........ccccceeeviiiieeeiiiiienee. 85
AND-FOIOWS TiMING ...uuiiieiieieeeeeeeeeeeeeee e e e 85
Information Transfer EXample.............oeveee 87
Request Information EXample ... 91
Overall Asynchronous CONLrol..........ccovvvviieiiiiiiiieiee e 92
Overall Synchronous CONMIOlcoooviiiiiiiiiiii e 92
Information transfer between master and slavecccccceeeeiiiniinnn. 93
Interface BIOCK (IB)ccooiiieeeeeiceeeeeee et 94
Information Connection Interface Sub-Blocks (ISB)ccccceeiiiiinnee 95
Timing and State Conversion Order............oouuuuviiiiiiiinieee e 96
Details of Information ConNection ISBuuuviiiiiiiiiiiiiiieieeeeeees 97
Effect of Pure Delay and Clocked Memory Device on a Timing............ 98
Combinatorial Stateooeeeiiiiiii 99
Tri-State BUTEI ... 99
Interface Block Organizationc..eueviiiiiiiiiiiiiiieee e 100
Behavior Model of Combinatorial ISBP..............cooviiiiiiiiiiiiiieeeeeee, 102
Behavior Model of Edge Triggered D-Flip-Flop ISBP..........ccccvvveenne. 103
Behavior Model of D-Latch ISBPcccoooeiiiiiiieecee e 104
Behavior Model of Pure Delay ISBP ..., 105
Behavior Model of Leading Edge Delay Primitive.............cccccceeeeeenn.n. 105
Behavior Model of Trailing Edge Delay Primitive.............ccccccoeviinnes 105
Behavior Model of Tri-State Buffer Primitiveccoooeeiiiiiiiiiiiiinnn, 106
Logical Model of Open Collector Buffer Primitive.............ccccceeeeeennnn. 106
Simulation of PrMILIVESeevviiiiiiiiiieee et 106
INterface DeSIgN PrOCESS.......oii i i 108
Interface Design Task Abstraction Levelscccccovvvvvveiiiiiiciceneeennn. 110
Design Process Overview and Terminologycccccuvvviviiimiireeeeeneeeenn. 112
Capability Connection IB Creation............ccoovvviiiiiieeeeiiiiiie e eeaeens 114
Example Microprocessor / Memory Interface Info ISBs.............cc....... 115

Example Extra Address Information Merge using three ISBs.............. 117

FIGURE 6-7.
FIGURE 6-8.
FIGURE 6-9.

FIGURE 6-10.
FIGURE 6-11.
FIGURE 6-12.
FIGURE 6-13.
FIGURE 6-14.
FIGURE 6-15.
FIGURE 6-16.
FIGURE 6-17.
FIGURE 6-18.
FIGURE 6-19.
FIGURE 6-20.

FIGURE 6-21.
FIGURE 6-22.

FIGURE 6-23.
FIGURE 6-24.
FIGURE 6-25.
FIGURE 6-26.
FIGURE 6-27.
FIGURE 6-28.
FIGURE 6-29.
FIGURE 6-30.
FIGURE 6-31.
FIGURE 6-32.
FIGURE 6-33.

FIGURE 6-34.

FIGURE 6-35.

FIGURE 7-1.
FIGURE 7-2.
FIGURE 7-3.
FIGURE 7-4.
FIGURE 7-5.
FIGURE 7-6.
FIGURE 7-7.

Strobe Input Timing Specification Goal TimiNgScveeciiieneeennn. 123
State and TimING ISB Creation ... 125
State ISB Primitive Circuit Creation............ccuuvvviiiiiiiiiieieeeeeeeeeeeesennnnns 126
TIMING ISBP DESIGN ...coiiiiiiiiiiiite ettt 127
INfo ISB With TIMING ISBSoiiiiiiiiiiieeee e 128
Interface Sub-Block example............ouiiiiiiiiiii 129
Example for Info ISB Timing Propagation..............cccccuvviiiiiiiiieiieinnennn. 129
Follows Input to Strobe Output Timing Templatecccooeeeeeeeeeeennne. 131
Model Of D-LatCh ISBPuuuviiiiiiiiiiiiieeeieee e 134
Timing for Latch Output if Input is Latch Timing..............ccccccivvvnnneee. 135
Model of Leading-Edge Delay ISBP ... 136
Logic input and Handshake Output TiMiNg.........ccccceeviiieieeeeeeeieieeeiiniens 137
Model of Combinatorial ISBPccccooiiiieieiiiiiieeeeeies e 139
Timing for Combinatorial ISBP Output for all Strobe
T 0T A 0T T RSP 140
Overview of Input and Output Timings for Combinatorial ISBP......... 142
Timing for Combinatorial Output for Logic and Strobe
T 0T 1 A 0T T RSP 144
The Interface Output to Component Connection...............ccccvvvveeeevnnnnns 145
Example Interface for an Address Signaloeuiiiiiiiiiiiiieeiieeeeee, 147
Relative Timing Relationships for Example Interface..............cccccuuee.. 147
Finding Timing TX of AL’ relative t0 CE’ ... 148
Contains Interval OPerator............uuiiieeeiiiiiiiie e 150
Constraint Output and Input Specification.............c....uvviiiiiiiieiie e, 151
IB Constraint EXtraction RUIESccoovviiiiiiiiiiiiieeee e 152
Example Handshake Delay Timing of a Microprocessor 153
Delay of a Signal Relative to a Referencecccovvvvvviciiiiiiiieeeeee, 155
Delay of a Reference Relative to a Signalooooiiiiiiiiiiiiiiiieee, 155
Example of Addition of a Timing Parameter and a
Propagation Delay.......cccooeeeeiiiiiiieeeeeie e 156
Example of Subtraction of a Timing Parameter and a
Propagation Delay ... 157
Design Phases used for Contexts LIimitingccccovvvvvveevviviincnneennn. 159
Class Network of Prototype Frames for Signal Timings...................... 162
Motorola 68000 Microprocessor Frame Networkccccceeeeeeeeennnnnn. 163
Interface Designer OULPUL............ooeveiiiiiiiiiiiie e 167
68000 to 6116 Design Example Specification..............cooeeeviiiivvnnnnnnne. 169
The Example Interface After 8 Rules Have Fired.........c..cccooovvviiiennn. 170
Request Interface Information Schematic..............cccovvvvviiviiiicieieeeeenn. 171

Completed Interface Design Example Frame Network........................ 172

FIGURE 7-8.
FIGURE 7-9.
FIGURE 7-10.
FIGURE 7-11.
FIGURE A-1.
FIGURE A-2.
FIGURE A-3.
FIGURE A-4.
FIGURE A-5.
FIGURE A-6.
FIGURE A-7.
FIGURE A-8.
FIGURE A-9.
FIGURE A-10.
FIGURE A-11.
FIGURE A-12.
FIGURE B-1.
FIGURE B-2.
FIGURE B-3.
FIGURE B-4.
FIGURE B-5.
FIGURE B-6.
FIGURE B-7.
FIGURE B-8.
FIGURE B-9.
FIGURE B-10.
FIGURE B-11.
FIGURE B-12.
FIGURE B-13.
FIGURE B-14.
FIGURE F-1.
FIGURE F-2.
FIGURE F-3.
FIGURE F-4.
FIGURE F-5.
FIGURE G-1.
FIGURE G-2.

Schematic for Interface Design EXampleccccceeeiiiiiiiiiiiiiiiiiinnnee, 174
68000 Design Example VHDL Simulationcooviiiiiiiiiiiinnnneenn. 177
Simulation Timing Diagram States.............ccovvviiiiiiiiiieieee e, 178
IB Signal Naming for Simulation ... 178
Srobe TIMING ..o 198
0= 1 (o 1 T 1 o 198
FOHOWS TIMING ...ttt e e 199
Pulse-LatCh TIMING......ouuuiiiieiiiii e 200
FOIloOWS-LatCh TimMINg........uuuuiiiiiiiee e e e e e e e e eeeaaenaees 201
LOGIC TIMING ..t e e e e e e e e e e e e 201
Logic TimiNng EXamMPIEcooiiiiiiiiei e 202
Handshake Timing (Information Signal is Output)cccceceeeieeeennnn. 203
Handshake Timing (Information Signal is INpUt)ceeevvviiiiinnnnnn. 203
Wait Timing (Information Signal is Output)............cceevviiiiiiiiiiiiienneenn. 204
Wait Timing (Information Signal is INput)cccceeeeiiiiiiiiiiiiiiiiiieeinns 204
PUISE TIMING .. e e e 205
The MC68000 Component Device Frame...........cccoeeeeeiiieeeieiiiiniiinnn, 206
The MC68000 Capability Device Frame..............uvvvveiiiiiiieeieeeeeeeeeeee, 207
State TimiNg SPECITICALIONvviiiiiiiiiieiie e 209
State Information for Address Information Transfer...........cccccceeeeeennn. 210
State Information for MC68000 Type Information Transfer................ 211
Example Strobe Timing Information Frame..............cccccviiiiiiiiiiiinnnnnn. 212
Event Names for Strobe Timing ... 212
Example Signal Frame............ooouiiiiiiiiiiie e 213
Prototype, Device and Instance Hierarchy............cccccooiiiiiiiiiiiiiiinnnen. 214
Component Hierarchy for MC68000............cccooeeviiiiiiiieeeeeeiiieee e, 215
Component Hierarchy for MKG116..............cuvvviiiiiiiiiiiiiieeeeeeeeeeeeeeeiinnns 216
Strobe Timing for MC68000 Address Signals..............eeeeeveeeeviiiinnnnnnnn. 217
Interface Block Organization.............coovuuiiiiiiiiiiiiie e 220
Schematic Representation of Example ISBP Frame.............cccccccnnn. 223
IB086B SYSTEM.. ..ttt 259
18086 Design - VHDL Simulationccooovviiiiiiiieeiiiiee e 261
68020 Design - VHDL Simulationcccoovviiiiiiiiiiiciiciee e 263
mM6809 Design - VHDL Simulation ... 265
t32020 Design - VHDL Simulationccooviiiiiiiiiiiii e 267
The Model HIerarChyccoooiiiiii e 270

Prototype, Model, Device and Instance of Device frames.................... 271

TABLE 2-1.
TABLE 4-1.
TABLE 4-2.
TABLE 4-3.
TABLE 4-4.
TABLE 4-5.
TABLE 5-1.
TABLE 5-2.
TABLE 6-1.
TABLE 6-2.
TABLE 6-3.
TABLE 6-4.
TABLE 6-5.
TABLE 6-6.
TABLE 6-7.
TABLE 6-8.

TABLE 6-9.
TABLE 6-10.

TABLE 6-11.
TABLE 6-12.
TABLE 7-1.
TABLE 7-2.
TABLE 7-3.
TABLE 7-4.

TABLE 7-5.
TABLE 7-6.
TABLE 7-7.
TABLE 7-8.
TABLE 7-9.
TABLE B-1.

TABLE B-2.
TABLE B-3.
TABLE B-4.
TABLE B-5.
TABLE B-6.

Xiii

List of Tables

Semantic Network Frame for JONN ... 18
Compatible STAEScevveeieieiiieie e —————- 56
OPPOSITE STALES. .. .ottt e e e e e e aeeas 59
Component TIMING LINKSuuuiiiiiiiie e 70
Output Specification TIMINGSccoooeeeeeeeiieeeeeeeeirrr e e e e e e e 86
INput REQUIrEMENT TIMINGS ..vvveeeeieiiieeeeeee e e e 86
VHDL Behavior Model of 2 Input AND ISBPccooooiiiiiiiiiiiii 103
VHDL Behavior Model of D-Flip-FIop ISBPoovvvvviiiiiiiiiieeeeeeeee 104
Connections Rules for the Same Information Classccccoeevviiinnee 116
Internal Information Generation RUIEScooiiiiiiiiiiiiiiii e, 119
Extra Information Manipulation RUIEScoovvvviiiiiiiiiiiiiie e, 119
Missing Information Generation RUIES.............cccuviiiiiiiiiiiiiieeee 121
Internal Information ISB Goal Information...............ccevvviiiiiiiiiiiiinnnenn. 122
(€70 = | I 0011 o 1SR 124
Permitted Input / Output Timing Templates for Info ISB........................ 130
Intermediate Timing Templates for Input / Output Timings

OF INFO ISBS ... 132
Steps for Timing ISBP Timing Propagationcccccvviiiiiiiiiiiiiieeeeenn. 138
Possible Input Timing for each Output Timing Template for

CombINALONAI ISBPccoiiiiiiieiiie e 138
Steps for Combinatorial ISBP Timing Propagation................ccccccvvvvveneee. 145
Steps for Timing Constraint EXtractionccoooevvviiiiiiiieeeciiieeeeeeeeiiinnn 152
List of Components in Component Library.........ccoovvviiiiiiiiiieeeeee, 165
Rule Design FUNCHION SUMMANYcoviiiiiiiiiiiaiiiiiiee e 166
Example Rule for Timing Constrl0int Extraction................ccccceeeeeeeeennn.. 166
Component Instances and Connection Request for

DeSIgN EXAMPIE ... 169
Rules fired for Request Information ISB design............cccceeeeiiieeiieeeeenenn. 170
Internal Request Generation Frame for Design Example........................ 171
VHDL Request Generation Entity for Design Example...........cccccccoee... 176
68000 Interface TIMING Marginsuuueiiiiiiiiiieeeeeee e 180
SUMMArY Of DESIGNS.....cccoiiiieieeeee e e e e e e e e e 182
Relations Used to give the State-Timing Frames for

Data Transfer Capability.............oooorriiiiiiiiii e 208
Example Frame for MC68000 Address Timing Information Frame........ 217
Frame for Strobe TimMiNg........ooooiiiiiiiii e 218
Example Frame for the MC68000 Type State Information 219
Interface BIOCK Frame.............oiiiiiiiii e 221

VHDL Representation of Example Interface Block Frame..................... 221

TABLE B-7. Combinatorial ISBP

TABLE B-8. VHDL Representation of Example ISBP Framecccccoeviiiiiiiiiiinnneee. 223

XV

Acknowledgments

| would like to thank Dr. Kin. F. Li for his help and guidance throughout the course
of this work. | would also like to thank NSERC for providing financial support for this
research.

ALU
ASCII
ASIC
CAD
CMOS
CPU
CRL
CRT
DAME

XVi
Glossary

Arithmetic Logic Unit

American Standard Code for Information Interchange
Application Specific Integrated Circuit

Computer Aided Design

Complementary Metal Oxide Semiconductor

Central Processing Unit

Carnegie Representation Language

Cathode Ray Tube

Design Automation of Microprocessor-based systems using an Expert
system approach

Dual In-line Package

Direct Memory Access

Digital Signal Processor

Erasable Programmable ROM
Hardware Description Language
Input / Output

Interface Block

Interface Sub-Block

Interface Sub-Block Primitive
Lead-less Chip Carrier

Large Scale Integration

Medium Scale Integration

N-Type Metal Oxide Semiconductor
Order of Magnitude Propagation delay
Programmable Array Logic

Pin Grid Array
Program-Memory-Switch

Random Access Memory

Reduced Instruction Set Computer
Read Only Memory

Small Scale Integration
Transistor-Transistor Logic
Universal Asynchronous Receiver/Transmitter

XVii
VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit
VLSI Very Large Scale Integration

Chapter 1

Introduction

1.1 Rationale Behind Microprocessor System Design Using an Expert
System Approach

Microprocessor based systems (also called microcomputers) are designed and con-
structed using off-the-shelf components according to application specific requirements.
The explosive growth of the range of applications for microprocessor systems, from
household appliances such as microwaves to scientific instrumentation such as the Mars
Rover, indicates there is a high demand for customized microprocessor system design.
Despite the increasing complexity of today’s 32 and 64-bit microprocessors, embedded
system design has remained largely as it was 20 years ago when 8-bit microprocessors
were state of the art. Some industry analysts predict a looming complexity crisis due to a
lack of trained engineers and a lack of good automation tools [61], which will slow down
the much heralded explosion of consumer products using sophisticated microprocessors.

The high demand for customized designs and the complexity of new components
make a synthesis tool for microprocessor system design very attractive. Such a tool would
allow rapid development of new products, reducing the time to market and lowering devel-
opment cost. It would relieve the designer of some of the routine drudgery of a design
task, while at the same time reducing the number of errors in the design since automatic
design verification could be performed. It would allow a design engineer not familiar with
the latest components, or a novice designer, to produce a design with those components.

The lack of a comprehensive theory of system integration and design choices has led
to a more or less empirical set of rules for microprocessor system design, which an experi-
enced system designer can draw upon to give a solution to a design problem. A synthesis
tool using an expert system approach would allow the categorizing and codifying of an
expert's knowledge so that a microprocessor system can be generated automatically.

1.2 Work Covered in this Dissertation

A design engineer with interface design expertise uses information provided by
component data sheets and knowledge about previous microprocessor system designs to
build the data transfer interface as shown in Figure 1-1. To automate the design process,

Microprocessor System
Component Componen
#1 »> Interface for #2
> Data Transfer
Microprocesso1 (Designed by Memory
Design Expert)

Design Engineer
with
Interface Design Expertise

Requirementg

FIGURE 1-1. Data Transfer Interface Design
the interface design engineer is replaced with an expert systexpgert systens a com-

puter program that relies on a body of knowledge to perform a task normally performed
only by a human expert.

Microprocessor system design has many aspects, from the design of the general
architecture of the system, component selection, component interconnection and interface
design to system implementation. To limit the scope of this work, the proof of concept
expert system developed was confined to the design of the data transfer interface given a
set of microprocessor system components. It is assumed that components have been
selected and the overall architecture of the microprocessor system has been determined.
This system is called tHaterface Designer

The design process is not as straight forward as it initially seems. As a human
designer proceeds, she will make design decisions based on experience of previous
designs and build upon hidden, underlying assumptions. The automation of the interface

design developed for this work requires detailed analysis and representation of these expe-
riences and assumptions.

To fully automate the interface design process, a functional analysis and representa-
tion of all signals involved in microprocessor interfaces is required. If a signal is present,
what is its function? (Often a signal will serve several functions, even though it appears to
only serve a single function). Why must it be connected? How does the signal interact

3

with other signals to carry out the function? How can its function and interacting behavior
be represented so that design automation can proceed?

Even though most of the interfaces used by the various microprocessors and related
peripherals are fairly standardized, subtle variations exist [52]. Therefore a brute force
approach to automated interface design, where signals having the same function are con-
nected directly, will often fail.

This work postulates that an automated Interface Designer can be developed by
extracting common features, functions and behavior of components and attaching concep-
tual meaning to these features through abstraction and inheritance, and representing the
components using standard expert system knowledge representation techniques. Further-
more, design can be accomplished through ‘pattern matching’ by performing actions and
procedures based on recognition of the standard behavior patterns.

Central to this work is the development of a limited number of representative timing
patterns which can be used to represent the timing behavior of component signals, and a
set of pattern matching rules used to capture the human designer’s expertise for intercon-
necting signals with different timing patterns using a set of pre-designed primitive circuits
(elementary building blocks). The primary advantage of this approach is a reduction in the
level of detail, and hence the complexity, of the design process and the information that
must be modeled and represented by the Interface Designer: The level of detail needs only
be sufficient to allow the pattern matching rules to select one of the pre-designed primitive
circuits.

Figure 1-2 gives an overview of the interface design expert system developed for
this work. The central part in the development of an expert system is the representation of
the body of knowledge in a form usable by the expert system. This work is organized by
dividing the body of knowledge into three distinct partscdmponent modehat repre-
sents all aspects of a component,aterface modethat represents the interface that will
be designed and thaesign expertisén the form of rules, which represents the design
methodology and techniques.

Specifically this work makes the following contributions:

» It develops a set of standard timing patterns that can be used to represent the timing
behavior of signals in a data transfer interface.

» It develops a set of primitive circuits that can be used to interconnect signals which
have timing behavior based on the standard timing patterns.

Microprocessor System

Component Component
#1 o Interface for «—> #2
.] Data Transfer J¢__»
Microprocessor (Designed by Memory
Expert System)

X

Expert System
Interface Designe
(Production System)

— Inference

Engine

Body of knowledge
For Components:
Component Librar

Body of knowledge
For Design Expertisg:
Design Rules

\ System

Requirements

FIGURE 1-2. Interface Design Expert System

It develops a representation of the data transfer protocol in terms of information trans-
fers, where each information transfer is based on one of the timing patterns.

It develops a simple and complete representation of the component incorporating the
standard timing patterns.

It develops a representation of interface that will be generated.

It develops a representation of the design expertise required for interface design in the
form of rules.

It develops a method of generating the output timing behavior of the designed interface,
and it develops a technique that can be used to verify that the timing behavior of the
designed interface satisfies the timing behavior of the components being connected.

It develops a method to allow implementation and testing of the interface in real-world
applications.

It implements and tests the Interface Designer using real-world interface design exam-
ples.

1.3 Dissertation Organization

This dissertation contains eight chapters, including this introduction, followed by a
Bibliography and an Appendix.

Chapter Two gives some background information for the disciplines involved in the
development of an expert system for microprocessor system design: microprocessor sys-
tems, digital system design and expert systems. The chapter concludes with a description
of several other microprocessor system synthesis tools that have been developed.

Chapter Three discusses the approach used to develop the automated microproces-
sor system designer. It first gives a simple example to illustrate some of the issues involved
in microprocessor system design. It then outlines the techniques used to represent the
component, the interface and the design rules.

Chapter Four develops the model for representing microprocessor system compo-
nents. The model covers all aspects of a component, such as the behavior of a component,
its signals and the timing relationships between signals. It presents the methods used to
model the signals themselves, the different states signals can attain and the timing rela-
tionships between state changes. It develops a method of representing the protocol of the
signals using information transfers based on a limited number of timing patterns.

Chapter Five presents the model for representing the interface that connects the
microprocessor system components. The hierarchy of the interface model is developed
from the high level interface blocks to the low level primitives which are used to eventu-
ally build up the interface. A representation of the primitives is given using VHDL to facil-
itate the eventual testing and implementation of the interface.

Chapter Six discusses the method used to perform interface design. The design
expertise is developed in the form of pattern matching rules. The rules perform specific
actions depending on the recognized patterns at the different component and interface
hierarchy levels.

Chapter Seven presents the Interface Designer implemented in the Knowledge Craft
expert system shell. It discusses the components entered into the Interface Designer com-
ponent library. This is followed by a step by step description of a 68000 microprocessor to
6116 memory interface design example, showing some of the data structures produced,
including the VHDL representation of the interface. A VHDL simulation is used to verify
the correct operation of the interface. The chapter concludes with a summary of the micro-
processor system design problems solved with the automated Interface Designer.

Chapter Eight provides conclusions and discusses future work.

The Appendix includes various material that supplements the main body of this dis-
sertation.

1.4 Trademarks

Several software packages were used in the development of this work:
Knowledge Crafts a trademark of Carnegie Group Inc.

Mentor Graphicdgs a trademark of Mentor Graphics Corporation

QuickHDL, QvhconandQhsimare trademarks of Mentor Graphics Corporation
XACTis a trademark of Xilinx, Inc.

UNIX is a trademark of AT & T Technologies

SunOSs a trademark of Sun Microsystems Inc.

Chapter 2

Background

This work is concerned with the automation of the design of microprocessor sys-
tems and brings together the three areas of investigation: microprocessor system design,
digital system design and expert systems. This chapter provides background information
for these areas. The first section presents the fundamentals of microprocessor systems and
their organization. This is followed by an introduction of the digital system design tech-
niques that are needed for microprocessor system design. The next section presents expert
system and knowledge representation techniques that can be used to model the design pro-
cess. The chapter concludes with an overview of other design automation systems in the
literature and their relevance to this work.

2.1 Microprocessor Systems

The microcomputer era started in the early seventies after technologies had been
developed to fabricate a simple 4-bit CPU, callethiroprocessomwon a single chip. A
microprocessor is an entieentral processing unfgCPU) and is useless without support
circuits such as memory components, interface components, timing and control circuitry
and a power supply. Anicrocomputeralso called amicroprocessor systens a stand
alone, complete computer system capable of functioning without any additional equip-
ment[18].

The basic microprocessor system consists of the CPU, memory in the fdrRANf
(read/write random access memory) &@dM (read only memory), antD (input/outpuj
components for external communication. Special purpose 10 interfaces allow the micro-
processor to receive data from input components such as keyboards and floppy disks, and
to transmit data to output components such as displays and printers. If the microcomputer
is a single entity that has all memory, CPU and 10 included on the same chip, it is often
called amicrocontroller[65]. Microcontrollers are often limited in terms of speed, amount
of memory and 10 capability: thus the need to design custom microcomputer systems has
not been eliminated with the introduction of microcontrollers.

In general terms a microcomputer consists of a number of modules that are linked
together by a bus. Ausis a collection of parallel conductors designed to transfer informa-
tion between separate modules within a microprocessor systarardAs a collection of

8

one of more modules on one physical printed circuit board that can be inserted into a con-
nector that has a series of signal wires that connectdgstem busAlthough the terms

card and moduleare sometimes used interchangeably, in this work a card represents a
printed circuit board with a bus connector, whereas a module is a partition of a micropro-
cessor system that performs as certain function in the same sense as in the concept of
“modular design and modularity”. A card that has several modules on it may have a con-
nector that connects to the system bus, and may also Haealdusthat connects the dif-

ferent modules on a card.

I I I I I
ks

o 0| |
£ = 3 S Peripheral
& 8 I O Module
@ 3 > &

a Local
I I I Bus
System
Bus
Local
n Bus
2 RAM Memory
S Module
m
Interrupt Control ROM
%) I CPU
Q Module
5 | Local
o0 Bus
CPU

FIGURE 2-1. Block Diagram of a Simple Microcomputer

In Figure 2-1[18], the three modules could be separate printed circuit boards in
which case they could be called cards, or they could be modules that all reside on a single
printed circuit board, in which case the whole system would be caltdghe board com-
puter.

9

All communication between components takes place over the microprocessor sys-
tem bus. To facilitate error free communication, interface design requires three major con-
siderations: purpose/function of the interface, voltage levels and current levels, and timing
requirements. In the microprocessor system design literature, three types of bus are usu-
ally identified: the address bus, the data bus and the control bus [9][18][35][53][65]. A
typical microprocessor uses a data bus to transfer information, and an address bus to indi-
cate the external location where this information should be transferred. Four functions are
typically provided by the control bus: memory and 10 synchronization, CPU scheduling
involving interrupts, bus arbitration allowing other components to use a bus, and utilities
such as system clock and system reset. All microprocessors have essentially similar
address and data bus structures [6][48]. The differences are usually found in the control
bus and it is normally the control bus signals that make peripheral components compatible
or incompatible.

With the advancement of semiconductor technology, faster and more architecturally
powerful microprocessors are available every few months. For the end users however, it is
often important for the new microprocessors to be both software and hardware compatible
with the older components. Software backward compatibility allows the software devel-
oped for older microprocessors, a sizable investment, to be reused with the newer proces-
sors. Hardware backward compatibility allows microcomputers to be upgraded to newer,
faster microprocessors by simply replacing the microprocessor chip, and it allows the
reuse of peripheral expansion boards that were designed for systems using the older
microprocessors.

The desire of manufacturers to provide users with hardware and software backward
compatibility resulted in an evolution of microprocessor components over time [65]. The
first 8-bit microprocessor, the Intel 8008, was followed by the Intel 8080 and 8085. Intel
next developed the 8086 16-bit microprocessor which evolved into the 32-bit Intel 80386,
80486 and the Pentium processor. The Motorola processors follow a similar stream. The
8-bit 6800 was developed into the 16-bit 6860&hich evolved into the 32-bit 68020,
68030 and 68040 microprocessors.

Many other processor families exist today such as the PowerPC series developed
jointly by Motorola, IBM and Apple, the Alpha series developed by Digital Equipment
Corporation and the SPARC series developed by Sun Microsystems. Many microproces-
sors were also developed for specific applications requiring certain types of arithmetic

1. This work uses both 68000 and MC68000 when referring to the Motorola 68000 microprocessor.

10

operations. Microprocessors that are optimized for digital filtering and fast fourier trans-
forms are calledSPs (digital signal processors). DSP components are usually optimized

to perform operations such as multiply and accumulate in a single clock cycle. They often
have separate memory for program and data space and are very fast when used for an
application that uses the optimized operations. Such components include the Motorola
56000 and 96000 series, the Texas Instruments 32020 series and the Intel 1860 series. The
DSPs have similar interfaces to the general purpose microprocessors, and therefore the
results of this work are directly applicable to DSP systems.

New and novel uses of microprocessors are discovered on a daily basis, requiring
the design of custom microprocessor systems to fit the specific applications. The explosive
growth of microcomputer applications coupled with the rapid release of new and
improved microprocessor system components places a high demand on skilled custom
microprocessor system design engineers. A design system that can help to reduce the cost
and decrease the development time of a custom microprocessor system would be very
valuable— a major motivation of this work is to build such an automated design system.

2.1.1 Microprocessor System Interface Protocols

A signal protocolrefers to a set of conventions that describes the correct etiquette
and precedence of interactions between the signals of one or more components to accom-
plish a specific task. When developing the Intel 8086 series (8088, 8086, 80186, 80286,
80386, 80486, etc.) and the Motorola 68000 series (68000, 68008, 68010, 68020, 68030,
68040, etc.) microprocessors, the component manufacturers made the devices hardware
backward compatible in part by using similar signal protocols to move information on and
off the microprocessor. Connecting two components that have an identical signal protocol
is a simple process since the signals involved in the protocol can be connected directly.
Unfortunately, when making a device hardware backward compatible, often only parts of
the signal protocol were preserved. This resulted in subtle but important variations of the
signal protocols that make interface design more difficult, since the signals often can not
be connected directly.

A human interface designer can recognize and manipulate the signals, even if small
variations are present in the signal protocol between components, while a simple software
based automated designer that was programmed to handle only specific signal protocols
may be unable to complete the design. For example, the 68000 and the 68020 both use
non-multiplexed address and data buses, and a data strobe to indicate a data transfer is in
progress. In both microprocessors, signals are provided to indicate that the data transfer

11

will be completed, in the form of an acknowledge signal. For the 68000 a IDACK*

signal is provided, which must be used to acknowledge every data transfer, while for the
68020 theDTACKO* andDTACK1*signals are provided, one or both of which must be
used to terminate the data transfer depending on which signals on the data bus are used for
the data transfer. A human designer who is familiar with interface design for the 68000
would recognize that taken together, A8 ACKO* and DTACK1* signals are similar to

the DTACK* signal, and therefore can complete the 68020 interface design based on his
previous experience with the 68000. One important aspect of this work is the development
of expert system techniques to capture the essential features of signal protocols so that
design of such systems can proceed based on the similarities between protocols.

For this work, several major families of components were analyzed, and the similar-
ities and differences in their signal protocols were extracted. These families included the
Motorola 6800 and 68000 series, the Intel 8086 series, and the Zilog Z80 series. Other
microprocessors and microcontrollers were also examined to determine the similarity in
their signal protocols to the above families of components. These components include the
Motorola 56000, 68HC11, 6800, 6809, the Intel 8051 and the Texas Instruments 32020.

2.1.2 Microprocessor System Component Properties

Microprocessor system design requires the analysis of several aspects of micropro-
cessor system components. These aspects include properties such as the component pack-
aging, component power, meaning of the binary information flowing onto and off the
component and the characteristics of the electrical signals that are used to send informa-
tion off and onto the component. This work develops a model that allows representation of
all these aspects of a component in a knowledge base.

The fragile microprocessor component die is usually embedded in a plastic or
ceramic package which brings the signals to metallic leads cplfeson the outside of
the package so that they can be connected to the system through soldering or by insertion
into a socket. Power is supplied to various pins on a component. LSI/VLSI microprocessor
components typically require 5V to operate. Some older CMOS (Complementary Metal
Oxide Semiconductor) families can tolerate voltages from 3V to 12V. The latest high
speed microprocessor components (usually CMOS) sold commercially usually operate
using 2.3V-3.3V power.

A Binary Digit is called abit and represents a binary choice of 0 or 1. This binary
choice is implemented as two voltage levels on a signal wire, a high is usually 2.3V-5V,
and a low is usually 0V-0.5V. For a collection of bits, each bit usually is associated with a

12

weight, with the most significant bit having the highest weight, and the least significant bit
the lowest. The weight of the bit is11_2k], where n is the symbol 0 or 1, and k is the bit
position. For example, a byte has k=0 for the least significant bit and k=7 for the most sig-
nificant bit.

A microprocessor communicates with the outside world through its external bus sig-
nals connected to either a local bus or a system bus. The microprocessor bus is usually
divided into data, address and control buses. The information present on the buses must be
interpreted with knowledge of the purpose or function of the bus. For example, the infor-
mation on the address bus indicates a location in the memory space of the microprocessor,
while the information on the data bus can represent a floating point number, an integer
number, a CPU instruction or a text character.

Component manufacturers usually provide two types of specifications for micropro-
cessors signal®C characteristicspecify DC voltages that are observed at device inputs
and outputs during operatioAC characteristicspecify the dynamic behavior of a com-
ponent. AC characteristics include the rise and fall time of signals, the signal propagation
delay and signal setup and hold times. Tise and fall timegjive the time taken by a sig-
nal to change voltage levels. Tipgopagation delayis the amount of time taken for a
change on an input signal to produce a change on an output sRgtap and hold times
specify the times during which a signal is not allowed to change [85].

2.1.3 Microprocessor System Components

Several different types of components are used to build up a microprocessor system.
Memory components are used to store information. Memory is organized in blocks of
varying size callegpages The description of which component occupies which page is
called amemory mapA circuit called anaddress decodds built to generate a signal to
activate the proper memory page. The speed of memory in general is specified in terms of
access timeAccess timas usually defined as the time elapsed from the moment that a
memory device is told to provide some data (i.e. the memoagtessey] to the moment
when memory provides the data [65].

IO components have been developed to allow information input or output from the
microprocessor system. These components come in many forms including analog to digi-
tal and digital to analog converters, timers, synchronous and asynchronous serial transmit-
ters and receivers, keyboard and disk controllers. The signals used to communicate
between the 10 component and the microprocessor are similar to the signals used to com-
municate between the microprocessor and memory.

13

Many microprocessors families have special components that can be “attached” to
the main CPU and that can perform specific tasks more efficiently than the CPU. These
components are callembprocessorsCoprocessors are usuatlghtly coupledto the main
microprocessor. Tightly coupled means the coprocessors were specifically designed to
work with a specific microprocessor, having many interface signals that must be con-
nected directly to the main microprocessor without any interface circuitry.

Additionally, manufacturers often provide some components that are needed for the
design of an operational microprocessor system. These components can be divided into
two classes:

1. Components required for clock generation.

2. Components required to interface the CPU and memory or |0, called bus interface cir-
cuits.
These components are usually designed to work specifically with a component and
are tightly coupled to that component. One such example is the Intel 8288 bus controller
that must be used with the 8086 microprocessor [41].

2.1.4 Capabilities of Microprocessor System Components

Microprocessor system components have the ability to perform operations such as
moving data over the data bus signal wires, or they can respond to external stimuli such as
an interrupt signal. An operation a component can perform is cakagbability of a com-
ponent. A detailed analysis of component capability is required to allow modeling of the
component for an automated design system. There are three types of capabilities that are
commonly found in microprocessor systems: data transfer, bus arbitration and interrupt
capability. What follows is a brief description of these capabilities.

The data transfer capabilityencompasses all operations whose task it is to move
somespecificinformation from one component to another. This information can be data in
memory, which is transferred to a microprocessor register, or data such as an interrupt vec-
tor which is transferred during a CPU interrupt procedure.

A bus is a collection of signal wires which are used to accomplish some capability,
such as data transfer. Often more than one compbitetite microprocessor system may
want to use the bus for some purpose such as data transfer, and requires exclusive control

1. ‘Component’ as used here refers to both single components such as microprocessors and to modules of
components such as printed circuit cards containing complete sub-systems.

14

of all the signals on the bus. In such a case the bus must be shared between components.
The ‘sharing’ process is calldaus arbitration If a component has the ability to share a
bus, it hasus arbitration capability

A microprocessor component may have the ability to be notified by an external com-
ponent needing attention. The ability of a microprocessor to interrupt its current process-
ing and execute program code that services the component needing attention is called
interrupt capability For interrupt capability there must be a method of altering the instruc-
tion execution path of the microprocessor, using a signal going into the microprocessor.
Often the method of how the execution path is altered is done using an interrupt vector: the
interrupting component supplies an indirect address (interrupt vector) pointing to the code
to be executed for the specific interrupt. In such a case the interrupt vector transfer can be
considered a data transfer. This shows that a capability can have other capabilities embed-
ded within: i.e. for the example here the interrupt capability will have a data transfer capa-
bility embedded within it.

2.1.5 Microprocessor System Summary

Microprocessor systems are built up of various components such as microproces-
sors, RAM, ROM and 10 components. Each component has well defined capabilities that
allow it to perform specific operations, such as data transfer, bus arbitration and interrupt
capability. The components within the microprocessor system communicate over specific
system buses. Specific tasks within a capability are performed by the component’s bus sig-
nals interacting in a protocol specified by the component manufacturers.

A successful microprocessor system designer, and hence the microprocessor system
design expert system, requires expertise in various areas such as microprocessor system
architecture, the evolution of the different microprocessor families, the capabilities of a
component and the signal protocols used to transfer information between components.
The design process used to generate the functional microprocessor system uses the digital
system design techniques discussed next.

2.2 Digital Systems Design

Digital systemsinclude all types of information processing machines which are
designed to store, transform and communicate information in digital form. Digital systems
can be viewed and designed at different levels of abstraction from a complete system, such
as a microcomputer connected to a laser printer, to the most detailed small building
blocks, such as transistors, resistors, diodes and capacitors. The formal design of a digital

15

systems involves several hierarchial tasks called design phases as shown in Figure 2-2.
Each design phase is used to refine information obtained or generated at the higher
abstraction levels until, at last, a completely implemented design is obtained [25].

More Abstract// L \
Specification Phase

/Efiguration Fm
mor Descriptm

/Fumm Block Design%
Mand Implemse More Detail

FIGURE 2-2. Digital System Design Phases

During the specification phase the system responsibilities, design constraints, and
operating environment are established. In the configuration phase, the system is parti-
tioned into functional blocks, such as microprocessors for processing information, mem-
ory for storing information and IO functional blocks for communicating with the world
outside the digital system. Interface requirements between functional blocks are estab-
lished at this design phase in terms of the functionality of the component. In the behavior
description phase, the individual functional blocks are described in more detail. Typically
the bus size, speed and more precise function of each functional block are determined.
During the functional block design phase an available component or group of components
is selected which most closely fits the specification from the behavior description. During
the integration phase of microprocessor system design, the functional blocks are con-
nected to produce the final design. During the implementation phase, the actual digital
system is built.

This work is primarily concerned with the automation of the interface design
between functional blocks during the integration phase of system design. Intuition and
experience play a far greater role in the design process than is generally recognized [86].
The successful digital system designer, and hence an automated digital system design
expert system, must be familiar with system design techniques from circuit boards, VLSI
components, MSI/LSI gates to elementary building blocks of digital system at the transis-
tor level. Digital system design techniques are analyzed in detail in this work, to allow rep-
resentation using expert system techniques.

16
2.3 Knowledge Based Expert Systems

A general definition of an expert system from a functional point of view can be
given as: “An expert system is a [computer] program that relies on a body of knowledge to
perform a somewhat difficult task usually performed only by a human expert. The princi-
pal power of an expert system is derived from the knowledge the system embodies rather
than from search algorithms and specific reasoning methods. An expert system success-
fully deals with problems for which clear algorithmic solutions do not exist” [66]. This
includes the problems of machine vision, natural language processing, pattern recognition,
game playing, machine learning and system synthesis.

2.3.1 Knowledge Representation

We define knowledge as information about the world that allows an expert to make
decisions [66]Knowledge representatiois the process of representing this information
formally. Knowledge can be classified according to the degree to which fundamental prin-
ciples and causal relationships are taken into accdimallowknowledge is only con-
cerned with the information required to solve a particular type of problem, vaaép
knowledge represents the internal and causal structure of a system and the relationships
between its underlying components. For microprocessor system design, we must be able
to represent both shallow and deep knowledge. Shallow knowledge is required to repre-
sent the overall input-output behavior of the intended system, while deep knowledge is
required to represent the internal structure of the fundamental components and their inter-
action.

Since knowledge varies greatly in terms of content and appearance, many different
knowledge representation schemes have been developed. Some of the general knowledge
representation techniques include semantic networks, inclusion hierarchies, frames, sche-
mata and production rules [79].

The termsemantic networkas been used by many different people to mean many
different things [66]. The earliest definitions of semantic networks reflected the psycho-
logical models of human memory and built structures that represented the meaning of
words. In general, semantic networks rely on two fundamental concepts:

» Nodes which are used to represent concepts, objects or events
» Links(also calledelationg, that represent relationships between the nodes

For a graphical representation, relations are drawn as arrows and nodes are drawn as
rectangles, ovals or boxes. The nodes in a semantic network can be given as sub-classes of

17

other nodes using ths-arelation as shown in Figure 2-3. The is-a relation demonstrates

FIGURE 2-3. Semantic Network for John

the concept oinheritancesince it links a class with its super-class, where the super-class
represents a typical member of the class. Trstance-ofrelation identifies a specific
physical instance of a class. For example, Camry_no_123 inherits the property that it is a
Toyota through the Camry super-class.

Humans’ knowledge about the world seems to be often organized hierarchially by
grouping items we know of into classes, superclasses and even bigger super-superclasses.
An inclusion hierarchyrepresents this class structure by relating classes with the “is-a”
inclusion relation. Inclusion hierarchies are important for knowledge representation since
they provide a framework that allows properties from a superclass to be inherited by all its
child classes. Figure 2-3 shows a graphical representation of a semantic network.

The basis for inheritance is the concept that objects or concepts form groups whose
members tend to share common properties. Inheritance allows us to find information that
is not stored where we look initially. This leads to what is sometimes calbgghitive
economywhere information is stored in only one place, but can still be retrieved from
many places [66]. Inheritance reduces storage requirements, simplifies maintenance and
provides a method for reducing the complexity of the representation of an object through
abstraction and information hiding.

A frameis a collection of knowledge relevant to a particular object, situation or con-
cept given in terms of attribute names cal#otsand values for the attributes call@liiers
[79]. Frames provide an effective method of organizing knowledge as simple, easily

18

implemented data structures for information entry and retrieval. Default values and/or
information associated with a slot are callgldt attachmentsAttachments can be con-
straints that must be satisfied by the filled in value, a procedure that can be used to deter-
mine the value of the slot (called aRneededprocedural attachment), or a procedure
called after a slot has been filled in (calledfeaddedprocedural attachment).

A frame that is associated with a class of objects or a category of situations is some-
times called achemaor template frameA schema is a general frame that can be used as
a template or plan for creating a specific instance of a framedtgntiatingthis general
frame. A schema provides a simple method of representing inclusion hierarchies: each
class in the inclusion hierarchy is represented by a schema frame.

The concepts of inclusion hierarchies, frames, schema and semantic networks are
brought together in thtrame based semantic networttsveloped for this work. In frame
based semantic networks, the slots represent the relations of the inclusion hierarchy, while
the frames represent the nodes. An example frame for John from Figure 2-3 is shown in

FRAME: John

Slot Filler
instance_of Homosapiens
owns Camry_no_123

TABLE 2-1. Semantic Network Frame for John

Table 2-1. For this work, a specific relation will be givenaslation_namewhile a frame
will be given asframe_name . For example, the fram&ohn shown in Table 2-1 is an
Ainstance_othe frameHomosapiens .

A frame based semantic network was chosen for this work to represent all aspects of
the components and interface. The frame based method was necessitated by the diversity
and repeatability of the information and made it possible to represent the components and
the interface in a hierarchial fashion.

Production rules also sometimes called productions, are condition-action rules
developed in the human modeling world. Whereas frames represent knowledge about the
objects or concepts, production rules represent knowledge about how to manipulate and/or
use the information found in frames. The action of a production rule specifies what the
rule should do, while the condition specifies when the action should be performed.

19
2.3.2 Productions Systems

A production systenms a program that consists of a series of production rules, a

Interpreter Inference Engine

Yad

A L S
Knowledg
Base
Production Rules
.) Database
Condition Action of
Condition Action State
Information

Condition Action

FIGURE 2-4. Structure of a Production System

database of state information and a method of invoking the production rules called the
inference engine as shown in Figure 2-4. Knowledge is encapsulated in both the produc-
tion rules and the database of state information.

The database of state information is stored in what is frequently callesddHeng
memory while the production rules are stored in theduction memoryThe inference
engine takes the production rules and tests if any of the conditions are satisfied by check-
ing the database of the state information and then modifies the database of state informa-
tion according to the said action. The state information is sometimes ¢atiewhile the
production rules are sometimes simply caltates The facts can be dynamic or static: as
the inference engine matches conditions and executes actions, some parts of the database
of state information will be modified (dynamic), while other parts of the state information
will never be modified (static).

A production system is a powerful tool that provides a reasoning process that can be
used with the frame based semantic networks used in this work. Two different reasoning
processes are possible with a production system, forward or backward chaining.

A rule such as “If the timing belt has cracks, then replace timing belt” can be viewed
as either dorward rule

If the timing belt has cracks
Then replace the timing belt

20

Or as aackward rule
replace the timing belt
If the timing belt has cracks
For inference using the backward rule, the goal is taken as a hypothesis. A series of
sub-goals are derived which are required to prove the original goal. If these new sub-goals
are not immediately available in the form of facts, they are treated as new hypothesis that
must be proven correct. Reasoning of this type is cdiletkward chaining inferencgnce
it proceeds from the hypothesis to the data.

For inference using the forward rule, available facts are used to deduce new facts
that hopefully will lead to the eventual deduction of the final goal. This is calfedvweard
chaining inferenceln a forward chaining production system, when all conditions in a rule
are satisfied, the rule is said to tseggered All rules that are triggered make up then-
flict set When actions of a rule are performed, it is said to have lfiesth The determina-
tion of which of the triggered rules should be fired is calledadbeflict resolution strategy
Several conflict resolution strategies exist, such as specificity ordering (the most specific
rule triggered will be fired), recency ordering (the most recently triggered rule will be
fired) or context limiting (only a rule active in the current context will be fired) [87].

The choice to use forward or backward chaining inference depends on the situation.
In general, if the solution space is large a forward chaining approach is more efficient,
while a backward chaining system is more efficient for a more restricted solution space.
Microprocessor system design has a very large solution space: a large number of different
possible systems can be designed. The possible number of hypothetical solutions is too
large to be checked against the available facts collected from the input specification. For
the interface design application, the more efficient forward chaining inference method was
therefore chosen.

2.3.3 Expert System Shells

By separating the knowledge of an expert system from the inference engine, expert
system tools can be developed which provide a generic inference engine and knowledge
base management functions. Such an expert system development tool is also called an
expert system shellhe use of a commercial expert system shell allows the knowledge
design engineer to focus on fundamental problems of knowledge representation and orga-
nization, and the rapid prototyping of new ideas and concepts.

21

The expert system shell chosen for this work is Knowledge Cratft, since it was avail-
able in the laboratory and provides all the required facilities. Knowledge Craft is a sophis-
ticated expert system shell that provides access to its knowledge engineering facilities
through a graphical user interface calleark center{16]. The work center provides a
knowledge base editor to allow easy entry of frame based semantic networks, user defined
relations and production rules. It also provides access to the forward and backward chain-
ing inference engines and includes debugging facilities that assist in the expert system
development process.

2.4 Design Automation

The development of computer aided design started in the 1960s with the develop-
ment of simple design programs used to assist in the layout of engineering drawings, pri-
marily for printed circuit boards. As the evolution of CAD systems continued it was
realized that the design program could actually relieve the user of some of the design deci-
sion and perform some of the design and design verification tasks automatically, and not
just act as drawing aids. With the advent of microelectronics, the complexity of designs
increased to such an extent that CAD with increasingly sophisticated design capability
became a necessity. The manual design of integrated circuits of more than 10,000 gates
has been found to be almost impossible [7]. The tremendous growth of ASIC (Application
Specific Integrated Circuit) designs in the late 1980s, in the form of gate arrays and cus-
tom silicon designs, necessitated the development of automatic synthesis tools which
could be used by designers inexperienced in the art of VLSI layout. The automatic synthe-
sis tools were able to translate a design entered into a CAD schematic capture program
into a PC board layout [36], while others were used for the programming of programma-
ble logic devices using a language such as PLASM [33]. Silicon compiler tools were
developed that were able to translate designs represented using hardware description lan-
guages into low level silicon designs [15].

2.4.1 High-Level Synthesis of Digital Systems

Designs can be described at various levels of abstraction detail as seen in Figure 2-5.
At the top level is thd>-M-S(Processor-Memory-Switch) system description which gives
the behavior in terms of communicating processors and the structure in terms of proces-
sors, memory and switch descriptions. This level is followed byitis&uction Setevel,
also called the algorithmic level, which describes the system’s behavior in terms of input
and output and the structure as memory ports and processors.

22

More Abstract// P-M-S Levh

A /Tstruction Sem
/?gister Transm
/, Logic Level\
v /, Circuit LeveI\

More Detail

FIGURE 2-5. Abstraction Levels for Digital Systems

The next lower detail level is thRegister Transfelevel which gives the behavior in
terms of information transferred between registers in the system and the structure in terms
of registers, multiplexors, ALUs and buses. The next level idtbgic level which gives
the design behavior in terms of logic equations utilizing structures such as gates and flip-
flops. The bottom level is th€ircuit level which gives the design in terms of network
equations and a structure of transistors and their connections. For this work, high level
synthesis refers to automated design covering all abstraction levels from the P-M-S level
to Circuit level.

High level synthesis promises several advantages for system design:

» The design cycle is shortened

» The number of errors is reduced

 Different design options can be considered.

» Documentation about the design process can be generated automatically.
» The number of people able to use custom IC technology is increased.

2.4.1.1 High Level Description of Digital Circuits

To generate the interface between two components, digital design techniques have to
be used. Several techniques have been developed for the automatic design of digital cir-
cuits, though not specifically for microprocessor system design. Most of these techniques
work with a high level description of the digital circuits required and translate the design
into a logic level description of the circuit which can be directly implemented in VLSI cir-
cuits or gate package designs. Some of the models are based on high level design descrip-
tion languages. For example ASP (A circuit Synthesis Program) is a system based on a

23

high level design description language which uses both expert-system based and algorith-
mic methods to accomplish the design [4].

VHDL (Very high speed integrated circuivVKSIQ Hardware Description Lan-
guage) [1][32][2] andVERILOG[81] are standardized hierarchi@mrdware description
languageqHDL) which can represent components from the system level, to the compo-
nent level, and to the gate level.

A sophisticated hardware description language such as VHDL usually provides the
following[85]:

* A method for decomposing the design hierarchially.

» A well defined interface for each design element, to allow elements to be connected to
each other.

» A precise behavioral specification to allow the element to be simulated.

* A behavior specification that can be given as either an algorithm or a hardware structure
to define an element’s operation. This makes it possible to initially describe an element
using an algorithm, and to allow higher level elements that use it to be verified. Later,
once the hardware structure has been designed, the element can be replaced with the
actual hardware structure.

* A method for modeling concurrency, timing and clocking of both synchronous and
asynchronous structures.

» Compilers that allow hardware structures to be directly synthesized from algorithms.

2.4.1.2 High Level Synthesis of Microprocessor Systems and HDL

The design of the interface between components is one step of the microprocessor
system design process. If a representation of the component interface can be generated in a
HDL format, HDL synthesis tools can then be used to directly translate the interface
design into hardware at the gate level. Since HDL synthesis tools can not be used to gener-
ate the HDL description of the interface itself, even if a HDL representation of the compo-
nents is available [52], other techniques have to be used to design the interface and
generate a HDL description of the interface.

This work develops a microprocessor interface design expert system using a rule
based production system. High level synthesis languages are inconvenient to use for the
state information database of such a system, since the knowledge must be represented as
frame based semantic networks, which is impossible with a HDL. However, the output
from the Interface Designer is best given using a HDL such as VHDL, since it then is pos-

24

sible to use synthesis tools to translate the interface into hardware designs using various
implementation technologies.

This work uses VHDL to represent the designed interface between components.
VHDL uses some unique terminology to describe circuits. A design with input and output
signals is called aentity The inputs and outputs to an entity are calpedts. An architec-
ture describes the function of an entity. The architecture can be given either behaviorally
or structurally. A behavior description is given algorithmically using processes, which can
be sequential or concurrent.structuraldescription is given usinigstancef other enti-
ties and by specifying how their ports are connected. An instance of an entity is called a
component

2.4.2 Expert Systems and Artificial Intelligence for Design Automation

Knowledge-based expert systems have been integrated into CAD design synthesis
tools to automate the design process of VLSI systems including logic synthesis, layout
synthesis, system behavior simulation, circuit behavior simulation, chip behavior simula-
tion and so forth [15]. However most of the individual tools are not integrated with each
other, requiring manual intervention at many stages of the design process. In the field of
computer systems design some expert systems exist which can produce designs automati-
cally, but they are often restricted in terms of flexibility and sophistication.

2.4.2.1 The XCON Configurer of Computer Systems

A successful commercial system for the configuration of computer systems is the
rule based XCON [51] (originally called R1 before commercialization). It was developed
to configure Digital Equipment Corporation’s (DEC) VAX computers. XCON takes a list
of components on an order and constructs an acceptable configuration of the components
by determining if any modifications have to be made to the order for reasons of system
functionality. It will produce a diagram of the system layout to show how the different
components will be associated. It will check for items such as correct cable length and
adequate power supplies. The XCON system is not capable of performing system synthe-
sis, only system verification. The verification in the XCON system occurs at the P-M-S
level of abstraction.

Initial attempts by DEC using conventional programming languages to build a pro-
gram to configure VAX computers failed due to the lack of algorithmic solutions claimed.
The R1 system developed at Carnegie Mellon University in cooperation with DEC used

25

the ‘do whenever’ style of forward chaining rules and succeeded in the task of configuring
VAX systems [66].

2.4.2.2 The DEMETER Design Environment

One experimental expert system to perform system design is DEMETER [76].
DEMETER integrates a series of separately developed tools into one coherent design envi-
ronment with emphasis on the highest levels of system design. It performs designs above
the Register Transfer level. It provides tools to enter complete system specification, check
for consistency and perform optimizations.

2.4.2.3 The MAPLE and PECOS Hardware Synthesis Systems

Two different experimental systems developed to perform microprocessor hardware
design at the component level are MAPLE [77] and PECOS [77]. Both are expert hard-
ware synthesis systems which will produce a component list from an input specification.
The system interacts with the designer to produce system specifications which will facili-
tate the selection of chips which satisfy the design at the P-M-S level of abstraction. They
have a natural language interface and are able to explain the selection of components from
a library of components. These systems do not provide information about how to connect
the components together.

The MAPLE and PECOS systems contain databases with information about compo-
nents of microprocessor systems (memories, microprocessors and peripheral compo-
nents), about pre-designed boards that can be used to assemble a system, and about reports
of past designs. MAPLE emphasizes the case based reasoning approach by searching a
case history database for a case matching the input specification. If none is found, it modi-
fies a similar case to meet the input specification.

2.4.2.4 The KDMS Hardware/Software Synthesis System

The KDMS expert system is a tool under development that can be used for the inte-
grated design of hardware and software of microprocessor systems [45]. KDMS synthe-
sizes a system by invoking a sequence of problem solvers. Problem solvers are provided
from the high abstraction P-M-S level to the detailed circuit levels. A problem solver’s
responsibility is to find a path from some problem state to a solution state.

Besides synthesizing the microcomputer hardware, the KDMS system also gener-
ates a control program that directs the activity of the entire machine that has been
designed, in a unified high level language. The high level language program is then trans-

26

lated into processor specific assembly language. KDMS uses a top down design approach
to implement a microprocessor based system from the initial specification by recursively
breaking the system down into a frame based set of sub-modules. When the system
encounters a circuit function too specific to be realized in an existing device, the user must
provide the HDL description and timing specification before proceeding.

2.4.2.5 The MICON Single Board Computer Designer

MICON [10][11] is a knowledge-based single board computer designer which can
produce complete designs from original specifications. It accomplishes the low level
design by connecting modules together which have compatible interface signals. Compat-
ible interface signals are assured by manually designing a standard interface for each com-
ponent in the component library, whose signals can be connected directly to other
components. The predefinition of interface logic limits the flexibility of the MICON sys-
tem since incompatible interface signals cannot be connected together. It also may
increase the maintenance costs of the system because the interface logic must be prede-
signed for each new component that is entered into the library. The MICON system covers
all aspects of the design abstraction levels from the P-M-S level to the circuit level.

2.4.2.6 The DAME Microprocessor System Designer

The DAME (Design Automation of Microprocessor-based systems using and
Expert Systems approach) system [22] [23] [24] [25] [38] [39] [40] is aiming to produce a
customized microprocessor system from original input specifications. There is an ever
increasing number of components available for microprocessor system design. Often,
components from different manufacturers or even components from the same manufac-
turer can not simply be connected directly since they have different interface specifica-
tions. None of the microprocessor design systems discussed above is capable of
automatically generating the interface for two components that can not be directly con-
nected. The automatic generation of interface logic is one of the primary goals of the
DAME system, which sets it apart from other microprocessor design expert systems. This
work focuses on the interface design aspect in the Integration phase of the DAME system.
The complete DAME design system will eventually cover system abstraction levels from
the P-M-S level to the circuit level.

One of the main difficulties in the automated design of the interface occurs for the
interconnection of components that do not have identical signal protocols. Variations of
the details in the signal protocols are numerous and often specific to a component. This

27

work solves the problem at a fundamental level by analyzing and modeling the protocols
of the signals used in the interface and designing an interface based on the protocols.
Abstraction is employed to extract similarities between protocols, allowing a limited num-
ber of design rules to be developed that can generate the interface.

2.5 Summary

Microprocessor system design is the process of constructing a microprocessor sys-
tem that satisfies a given specification. The microprocessor system design process requires
domain knowledge or expertise in the architecture of microprocessor systems and their
components. A microprocessor system designer must be familiar with every aspect of a
component, be it the component’s capabilities, packaging, power requirements, organiza-
tion and interpretation of the information sent via the component’s signals.

A microprocessor system is a sophisticated digital system, which requires the
microprocessor system designer to have expertise about digital system design techniques
from the specification and configuration phases to the integration and implementation
phases.

The development of an expert system requires the storage of an expert's domain
knowledge. This can be done by representing the domain knowledge as hierarchial, frame
based semantic networks and production rules. A production system consisting of an
inference engine, a database of state information and production rules is then used to
accomplish the automated design.

Several expert systems have been developed that automate the microprocessor sys-
tem design process. The main differences between the different automated design systems
is the detail to which the design process is automated. The MAPLE hardware synthesis
system uses information about microprocessor system components and pre-designed
boards to modify a previous design found in a case history database. The MAPLE system
can not design a complete system, it can only modify an existing system. The KDMS sys-
tem requires the user to enter the HDL timing description of any undefined functional
interface blocks. This requires the user of the system to have expertise in microprocessor
design techniques. The MICON system uses standard component building blocks as tem-
plates to assemble a system starting with high level requirements. The MICON system
requires the manual pre-design of a standard interface for any component that is entered
into the MICON component database. This work, which is part of the DAME system,
solves the problem of interface design by abstracting the often complex protocols of the

28

signals as a limited number of timing patterns. Because of the abstraction, it is possible to
develop a limited number of rules that can accomplish the interface design. The next chap-
ter presents an overview of the Interface Designer of the DAME expert system.

29
Chapter 3

Interface Design Expert System Development Issues

3.1 Introduction

The goal of this work is the development of a proof of concept expert system that
can automatically design an interface between microprocessor system components. This
expert system is referred to as theerface Designem this work.

Interface designs the process of interconnecting several microprocessor system
components using a digital circuit that enables them to operate corr€otlsect opera-
tion means all components in the microprocessor system operate within the specification
provided by the component manufacturers. Correct operation is the primary design goal,
while secondary design considerations are speed, cost, power consumption, size, weight
and the time to market of the final product.

The dominant problem encountered in interface design is the large number of design
possibilities, that may operate correctly or incorrectly, that exists in the design space. Fur-
thermore, the design space is problem specific and therefore there is no guarantee that a
particular design methodology will work in all cases [52]. This work emphasizes a well
structured, hierarchial organization of the design space to make the complex design prob-
lem more tractable.

This chapter gives an overview of the organization of the Interface Designer. A sim-
ple example of a data transfer interface is given to put the microprocessor interface design
process in perspective. Next, the general approach and methodology of the system devel-
oped are discussed. The Interface Designer’s structure is divided into three partgpa-
nent modefepresenting the components to be connectednteeace modetepresenting
the circuitry used to connect the components anddésgn knowledgeepresenting the
design expertise to build the interface.

3.2 Data Transfer Interface Example

This section gives a simple data transfer interface design example to illustrate
important concepts, the problems encountered, the issues to be considered in interface
design, and how a human interface designer resolves them. A similar design problem was
considered by the Interface Designer and is presented in Chapter 7.

30
3.2.1 The MC68000 System Interface Example

Figure 3-1 shows a typical interface between a MC68000 CPU and a memory bank
made up of two MK6116 2K by 8 static RAM components [18]. The MC68000 is a

1V
DO o
. Data Bus > D1 | D1
A2 Al
Address Bus _ .
D14 |1 . .
> il
215 Low during RAM1 ALO I A9 Bg Dl Bg
ow during access
A2 - Al whenLDS* low (CS1¥) All »— ALO
. ———— A2 WR*
OE* MK6116
™A +» RAM1
CE Odd Byte
AlQ0 —p——4A10 Low when
AL AL range AL AO DO |1 O°
N D9
Al2 —p] (Address_Seleq A2 D1 =1
Al .
Address jo— ' .
. Decoder .
A23 —p : : D14
Low during A10 D6 ¥
Low during Read | Write when A1l > A9 D7 & D15
(OE¥) AS* low 1 A10
AS* (WR¥) &
¢ >-—o WR*
R/W* ™ :[EI; \ s OE* MK6116
> MKRAM2
MC68000) CE* Even Byte
R Cst '\
LDS*—» .
Low during RAM2 access
whenUDS* low (CS2)
. CSZ
UDS*—»
DTACK* |-——— (D;-elz—ﬁ(e:r};:or Low when RAM1
_ | I or RAM2 selectedBank_Selecy
\ Delays Bank Select

DTACK* signal: signal to insert
Delayed Bank Select signal wait states if required

FIGURE 3-1. Interface Between MC68000 CPU and MK6116 Static RAM

microprocessor with 32-bit internal registers, but has an external 16-bit datdDbus (

31

D15). The MK6116 static RAM contains 2048 internal 8-bit wide storage locations acces-
sible over an 8-bit data patBQ-D7). The two memory components are arranged in paral-
lel to provide 8 or 16-bit data to the MC68000.

The MC68000 provides a 23-bit address b&%-A23), to address individual mem-
ory locations. TheAS*! signal is activated whenever the address signals are valid and con-
tains usable information. The least significant address signal on the MC68000A4 the
signal, addressing data on a 16-bit boundary. Two sighd)S* (Upper Data Strobe) and
LDS* (Lower Data Strobe) are used to indicate which 8-bit half of the 16-bit wide data
path ©0-D15) is used for data transfer: an actid®S* indicates that8-D15) is used,
while an activeLDS* indicates that[@0-D7) is used. TheR/W* (Read/Write) signal is
used to indicate if the data transfer is a read or write operationDITAeCK* (Data Trans-
fer Acknowledge) signal is used to terminate the data transfer cycle: data transfer is con-
sidered in progress until an acti@ ACK*signal is received by the MC68000.

The MK6116 provides an 11-bit address b#®{A10), which is used to address
individual memory locationsAO is the least significant address signal. T8E* (Chip
Enable) signal must be activated whenever the MK6116 is accessedHEhEOutput
Enable) signal must be activated during a read, whileAtire(Write) signal must be acti-
vated during a write. Data is transferred over the data sigpa®7).

3.2.2 The Timing Diagram of the Example Components

Thetiming diagramgives the voltage state of signals as a function of time: it shows
when a signal is at a high or low voltage, when the signal voltage changes or when the
voltage present on a signal can be used for some purpose. For example, a timing diagram
of a read data transfer cycle for the MC68000 can be seen in Figure 3-2 [18] while a tim-
ing diagram for the MK6116 data transfer read cycle is shown in Figure 3-3 [18].

Timing diagrams also provide important information related to the overall operation
of a device. Important signals suchl@d®S* LDS* andAS* in Figure 3-2 andCE* and
OE* in Figure 3-3 are used to activate and terminate the data transfer cycle. These signals
must be asserted and negated once and only once for each required operation. Any state
change of these signals during a read or write cycle, even for a short period of time, is ille-
gal and may cause malfunction of the component. A short, unwanted transition of a signal
is often called alitch. Figure 3-4 shows some illegal glitch transitions for the MK6116

1. A atthe end of a name indicates that the signal is active low: the asserted state is represented by a sig-
nal at low voltage level.

32

one data transfer read operation

- >
S S Sy
ck) [] L
A1-A23 >< Address Valid Out ><
RW* / __
AS* | B
UDS*, LDS* | B
DTACK* B
DO-D15 —4< Data Valid In >——

FIGURE 3-2. Timing Diagram of the MC68000 Read Cycle

one data transfer read operation
»

Address >< Address Valid In ><

CE*

OE*

WR*

Data .Data Valid Out——+—

FIGURE 3-3. Timing Diagram for the MK6116 CMOS Static RAM Read Cycle
input signals that can cause device malfunction. As shown in the next sections of the
detailed analysis of the example interface, human designers take several precautions to
assure that the required signals are glitch free.

Timing diagrams provide knowledge about interrelationships between signals, the
meaning of information found on signals and relation of signals to the overall operation of
a device. For example, in Figure 3-2 the timing diagram provides information that an
address is required for data transfer and when the address is valid relative A&*the
UDS*andLDS* signals. Knowledge and understanding of the timing diagram of a com-
ponent is therefore one of the most important requirements to interface design. This work

33

one data transfer read operation
»

Address >< ><:‘>C—
e T\ AL [T
oer | W\ AR

lllegal glitch transitions:
May cause device malfunction

FIGURE 3-4. Example lllegal Glitch Transitions for MK6116 CMOS Static RAM Read Cycle

develops an efficient method that encapsulates the important aspects of a timing diagram
in a data structure that can be used by a pattern matching, rule based expert system.

3.2.2.1 Interface of the Address Signals

Figure 3-1 shows some of the address signals on the MC6&IDAL1) are con-
nected to address signals on the MK61A64A10). Since the MK6116 has 2K locations,
11 address signals are requirAd.of the MC68000 is connected A® on the MK6116.

An address decoder is used to determine where in the MC68000's address space the
memory is located. The decoder ensures that the MK6116 memory components are
mapped to a specific range of locations in the MC68000's address space. The address
decoder uses théA(2-A24) signals to produce thAddress_Select signal, which
will be asserted (low) whenever the MC68000 requires access to the MK6116 memory
components. ThAddress_Select signal is then used in combination with other con-
trol signals to generate t@S1* (Chip Select 1) an€S2* (Chip Select 2) signals, which
are used to enable each of the memory components.

3.2.2.2 Interface Data Signals

The interface data signals in Figure 3-1 are connected so as to allow 16-bit word
access to the memory from the MC68000. This meansfab7 from the odd memory
byte MK6116 are connected 1©0-D7 on the MC68000, whildD0-D7 from the even
byte MK6116 are connected Bi8-D15 of the MC68000.

34
3.2.2.3 Other Control Signals

The address decoder in Figure 3-1 generates a signal that is low when the correct
address for the MK6116 RAM components is present on the address bus by decoding the
high order address bits. Th&ddress_Select signal is combined using a logical
AND with either theLDS* or UDS* and theAS* address strobe to generate (b81*
andCS2* signals which are connected to t6&* inputs of the MK6116s. TheDS* and
UDS* signals are used to indicate data transfer ovei@eD7 andD8-D15 signals of
the MC68000 respectively. By ANDing théDS* or UDS* signals with the
Address_Select signal, theCE* signal is generated for the appropriate RAM com-
ponent. From the timing diagram provided by the manufacturer of the MC68000 shown in
Figure 3-2, it can be seen theDS* LDS* andAS* are activated only when the/W*
signal and the address signals are stable and/or valid. This means, that after ANDing the
AS*, LDS* or UDS* andAddress_Select signals together, the resulti@S1* and
CS2* signals will be glitch free signals activating once and only once for every read or
write operation.

The CS1* and CS2* signals in turn are logical ORed to generate a
Bank_Select signal, which will be active when either of the two memory components
is selected. The teripankis used to indicate a collection of memory components that are
addressed as one block. TBank_Select signal is also used to generate DEACK*
signal by passing it through a delay found in the DTACK Generator. A memory cycle is
not terminated until th& TACK* signal is received. Thus by inserting a different delay,
memory with different access times can be used for the design. For memory with longer
access time, a longer delay will be provided.

3.2.3 Observations about the Interface Design Example

The end product of data transfer interface design is an interface similar to the one
shown in Figure 3-1. This work is concerned with the automation of the design process,
which requires a fundamental understanding of what needs to be done, why it must be
done and how it is done. This section discusses some concepts used, the steps taken and
the reasoning behind the steps taken in the data transfer interface example. The summary
points in italic, following each bullet point, are provided to give the reader an overview of
the types of concepts and heuristics that must be represented in the knowledge base.

* The interface serves a purpose. The objective of the interface is to transfer some spe-
cific data over the[¥0-D15) data signals of the MC68000. All other signals in the
interface are used to facilitate this data transfer.

35

The interface design is performed in the context of a specific purpose.

The interface connects signals which are used to send information in and out of a com-
ponent. Signals are connected after analyzing the information that is transferred over
them.

Signals and the information on signals must be represented so they can be analyzed.

Signals are grouped according to the function of the information on them.
Signals must be classified and grouped according to the function they perform.

Signals are connected between components, sometimes directly, sometimes through
intervening circuitry.

A method must be provided to connect components directly through wires, if appropri-
ate. If signals can not be directly connected, an interface circuit must be generated.

Signals with similar function are directly connected together. For example the address
signals A1-Al11) on the MC68000 are connected to address sigidglsA10) on the
MK6116s.

Design knowledge to recognize and connect signals of similar function is required.

Some signals must be converted to the proper format before they can be connected,
such as th&/W* of the MC68000 signal being connected to@te* signal on the
MK6116. The format includes characteristics of the signal such as the polarity, and the
method of encoding information on the signals.

A method to represent the information signal format is required.

Design knowledge that enables design of interface circuitry to convert a signal to the
proper polarity is required.

Some signals must be ‘conditioned’ with other signals before they become usable by
another component. The term ‘conditioned’ refers to combining two signals in a bool-
ean logic operation to produce a third signal. An example of this R/W& signal

being ANDed with théAS* signal to generate the required glitch ftl@g&*signal on

the MK6116. The selection of signals for conditioning requires the detailed analysis of
the timing diagrams.

Design knowledge of how to generate clean, glitch free signals is required.

A representation of timing diagrams is required.

A component that connects to a microprocessor will have a select input (MKBE16

in the example) which will be asserted only when the component should be active. The
design engineer must consider the conditions under which the component should be
activated, where in the address space the component is located, what type of data trans-
fer the component should respond to, and which part of the data bus the component
connects to. The designer will often generate a single signal for each condition. All of
these signals are then ANDed together to obtain the resulting select signal.

Design knowledge on how to activate a unique component is required.

Design knowledge to generate a signal for each activation condition is required.

Design knowledge is required to produce a single signal from multiple signals.

36

» Components are placed in the address space of the processor by decoding the address
into a signal such asddress_Select, which is then used in the generation of a
signal that activates the corresponding device.

Design knowledge for generating an address select signal is required.

* A component can have signals that indicate which part of the data bus will be used for
data transfer. In the example these signals areDi%¢ andUDS* data strobe signals.
Design knowledge about how to activate and use the correct data signals is required.

* Some signals are multi-purpose. Tt2S* andUDS* signals in the design example
carry information about both the missing MC68@ID address bit, about how wide
the data transfer is (8-bit or 16-bit) and about when the data transfer occurs.

A method for representing and utilizing multi-purpose signals is required.

 Different signals from different functions may be combined in some fashion to generate
new signals. For example the address select signal is ANDed wittliB& andUDS*
signals to generate ti@&S1* andCS2* signals, which drive th€E* signals on the
RAM components. Th€S1* andCS2* signals are combined using an OR function to
generate thBank_Select signal.
Design knowledge about why and how to combine signals must be provided.

» A method may be provided to adjust the time allowed for the completion of the data
transfer. This makes it possible to use memory devices with different access times. In
the example this is done using tb& ACK*input signal on the MC68000. TH&TACK
generator produces a delay®dnk_Select signal which terminates the data transfer
after a certain time interval has elapsed.

Design knowledge about how to change the time to completion of data transfer is
required.

» Signals may be generated that will only be used internal to the interface. For example,
theBank_Select signal in Figure 3-1 is generated but does not connect directly to
either the MC68000 or the MK6116. Such a signal is calladtamal signal
A method for generating internal signals is required.

Design knowledge on how to generate and use the correct internal signals is required.
By analyzing many microprocessor components, knowledge representations have
been developed for this work in the form of the component model, the interface model and

design rules given in later chapters.

This work emphasizes the reduction of the complex design and data representation
problem through abstraction. The next section gives an overview of the approach used for
the development of the Interface Designer and explains how abstraction is used to reduce
the complexity of the design problem.

37
3.3 Approach Used for Development of the Design Automation System

This section gives an overview of the approach and methodology used in the devel-
opment of the Interface Designer.

3.3.1 Imitating a Human Designer

Humans are in general better in grasping the overall structure of designs and coming
up with high level strategies to solve the problem than in systematically working through a
series of detailed steps in an algorithmic methodology. One of the goals of this work is to
give the synthesis system the ability to perform higher level reasoning and make design
decisions that are based on human experts’ knowledge through the recognition of patterns.
Sometimes new goals, constraints or other conditions emerge only as the design proceeds,
requiring human intervention in the design process [52]. This work develops techniques
that allow the human expert’s knowledge to be captured in the database so that the design
can be completed without human intervention.

3.3.2 Partitioning of the Interface Design System Knowledge

The Interface Designer is structured as a production system as shown in Figure 3-5.
The representation of knowledge is divided into three parts: the component library (the
component modglthe interface data structures (timerface modg| and design knowl-
edge in the form of production ruledeGign ruley

The system state database contains knowledge about the components that are being
connected and knowledge about the interface connecting the component. The knowledge
about the components ssatic it is supplied by the manufacturer of the component and is
stored in a library. The knowledge about the interfacgyisamic the interface data struc-
tures are created and modified during the execution of the Interface Designer production
system. The inference engine builds up the interface data structure using the production
rules and data from the component library.

3.3.3 Abstraction of the Design Knowledge Representation

The description or specification of a system where some aspects are emphasized,
while others are suppressed, is caldabstraction A good abstraction emphasizes details
that are significant to the task at hand, while it suppresses those details that are insignifi-
cant or immaterial [72]. At the highest abstraction level, only general aspects are given,
while at the lower levels more and more details are provided. The design rules are
abstracted in a similar fashion: the more abstract level design rules are concerned with the

38

Interpreter -
Inference Engine

yad _

Knowledge
Base

System
State
Database
Production Rules
: Interface
(Design Knowledge) Data Structu
Condition Action (Dynamic)
Condition Action
Component
S _ Library
Condition Action (Static)

FIGURE 3-5. Structure of the Interface Designer
general aspects of a design while the more detailed level design rules accomplish the more
detailed specific tasks.

The abstraction levels developed for the component model, the interface model, and
the design rules follow each other closely. For each abstraction level in the component
model there is a corresponding abstraction level in the interface model and corresponding
design rules to accomplish design at that level.

Abstraction of the interface design process is achieved through limiting the context
of the design rules: the condition of each design rule includes a test for the current design
level. Only if the current design level is active, can the rule be fired.

3.3.4 Design Based on Recognizable Patterns

A patternis the configuration, behavior or other feature characterizing observable
system properties [75]. From analyzing interfaces designed by design engineers it was
found that some of the designs were accomplished by recognizing patterns and performing
certain actions according to the recognized patterns. For example, a designer might recog-
nize that component A and component B both have signals whose function is to convey
the address of a data transfer, and therefore decides to connect them to each other. The
designer then looks at the timing diagram of the address signals from the manufacturer’s

39

data sheet and recognizes that address from one component is multiplexed, while the other
is non-multiplexed. The designer therefore decides to insert a latch which converts the
multiplexed signal to a non-multiplexed signal. This example also illustrates abstraction in
the design process: the recognition that an address exists is performed at a higher abstrac-
tion level than the recognition of the address signal timing behavior as multiplexed/non-
multiplexed.

Rule based production systems are powerful tools that are capable of pattern recog-
nition and can be used to perform design provided that the relevant patterns can be repre-
sented in appropriate data structures. A large part of this work is concerned with the
development of a method for representing the design knowledge using pattern based data
structures and rules that can manipulate these structures.

Frames allow for the organizing, describing, relating and constraining of knowledge
and therefore provide a method to represent typical features or patterns. Since they also
provide a method for inheritance, data abstraction and information hiding, frames were
chosen as the primary knowledge representation method for the Interface Designer.

3.4 Representing Components and their Behavior

The behavior of a component is the way it acts, reacts or functions under particular
circumstances. A component model has been created that can represent the behavior as a
set of hierarchial frame based objects. At the higher abstraction levels the behavior
describes operations a component can perform at the system level, such as transferring
data or interrupting the processor, while at the lower abstraction levels, the operations are
broken down into detailed description of the signal behavior involved in the operation,
such as signah changes state 10nsec before sighahanges state. This section presents
an overview of the component model. The details are provided in Chapter 4.

3.4.1 Modelling Capabilities of Components

A component’s ability to perform certain operations at the system level, is called the
capability of a component. For this work, capabilities have been classified into two types.
Type | capabilities accomplish identifiable tasks that can be found in components of differ-
ent families and by different manufacturers. For a Type | capability the interface between
the components is not predetermined: the manufacturer specifies how the signals behave,
not which signals must be connected together. The system designer must decide which
signals should be connected and what interface circuitry must be inserted between signals.

40

The common Type | capability classes of a microprocessor component are interrupt capa-
bility, bus arbitration capability and data transfer capability.

Type Il capabilities accomplish tasks that are more difficult to identify and are spe-
cific to a set of components. For example it is difficult to describe the task accomplished
when connecting the 8288 bus controller and the 8086 microprocessor. The 8288 bus con-
troller was made to be used specifically with the 8086 microprocessor, and the interface
between them is fixed (also callemhtly coupled: The manufacturer specifies which
electrical signals must be connected together between the components. There is no choice
or flexibility in designing the interface. Interface design for a Type Il capability is straight
forward and can be accomplished using a simple procedure that directly connects each
signal.

This work develops an expert system that can design Type | capability interfaces. A
model was developed to represent components with Type | capabilities as hierarchial data
structures. The behavior of a capability is given in terms of its protocol. Specifically, the
component model developed abstracts the protocol of a capability into several hierarchial
levels, where the higher levels give the protocol in abstract, general terms, while the lower
abstraction levels reveal more detalil.

3.4.2 Modelling the Capability Protocol

Each system component will carry out the task of the capability by communicating
various information over signal wires. The communication of information over signal
wires is called annformation transfer Each of these information transfers will accom-
plish one specific task associated with the capability. The interaction of the different infor-
mation transfers used to carry out the task of the capability is calleccdpeability
protocol

All information transfers involved in a capability are classified according to their
function. For example the passing of an address from one device to another is called an
address information transfer. By studying many different microprocessor components, a
set of information transfer classes was developed that can be used to represent the data
transfer capability of most microprocessor system components.

3.4.2.1 Synchronizing the Protocols between Components

It was found that the function of one of the information transfers was to indicate
when a protocol starts. For example a data transfer protocol will have a signal indicating

41

when the data transfer commences and bus arbitration will have a signal indicating when a
bus is requested. The start information is used to synchronize all information transfers
between components: all information transfers will take place relative to the start informa-
tion. Similarly, there will be an information transfer indicating the end of a capability pro-
tocol. The data transfer capability protocol developed for this work will have specific
information transfers indicating the start and the end of a protocol.

3.4.2.2 Overall Control of a Capability Protocol

The start and end information transfers are used to synchronize the protocols
between components. The method of determining the time between the start and end
information transfers is called the overall control of a capability protocol. If the time is
fixed, it is calledsynchronous overall contrpif the time can be changed through the use
of another information transfer, it is calladynchronous overall control

3.4.3 Modelling Information Transfers

The information transferred between components can be divided into two parts: the
information that is embedded in the states of signals, callatk informationand infor-
mation that indicates when the information transfer takes place relative to a time refer-
ence, callediming information

An information transfer is normally associated with a time reference signal and sig-
nals with state information as shown in Figure 3-6. The transition on the time reference
signal is used as a time reference. The signals with the state information will hold useful

time

—
high logic level
Time reference signal low logic level
Signals ><INFORMATION><j high logic level
with state information low logic level

The occurrence of this transition gives a time reference indicatin
that the state information is correct and usable during a time period.

FIGURE 3-6. Information Embedded in the State of Signals and its Time Reference

information for some time interval relative to the transition. Some components may use
more than one signal and more than one transition as the time reference.

42

These states are usually the voltage level of the signal (e.g. 5V for high logic level or
0V for low logic level). Information is embedded in the state of signals, and some kind of
mapping is required from the physical manifestation of the state to the meaning of the
state. The representation for the state information of a signal developed for this work is in
the form of a list of states and their associated meaning. For example/\ttfesignal of
the MC68000 microprocessor is used for the direction information, which indicates
whether a read or a write operation is being performed. The state information representa-
tion will associate a logic 1 on the/W* signal with a read operation and a logic 0 with a
write operation.

The timing behaviors of many microprocessor components were investigated and it
was found that many variations of the relationship between the time reference and the state
signals exist. The essential features and behavior important to modeling timing informa-
tion were extracted from the timing diagrams of many microprocessor components. The
result was a set of universal timing patterns, catiedng templatesvhich are used to rep-
resent the timing information for data transfer of any microprocessor component, which
will be discussed in Chapter 4.

3.5 Representing the Interface

This work develops an expert system that can design the digital system which com-
prises the interface between components. The expert system requires a representation of
the interface digital system which will be built up during the interface design process. An
interface model was developed for this purpose, which represents the interface between
components as a set of hierarchial objects. This section presents an overview of the inter-
face model. The details are provided in Chapter 5.

3.5.1 Partitioning the Interface

One common approach to represent a digital system such as the data transfer inter-
face is to partition it into more tractable pieces called sub-systems [71] as shown in
Figure 3-7. The term ‘more tractable’ refers to sub-systems that are less complex than the
entire system they make up and therefore are easier to design [45].

This work takes the approach of partitioning the interface digital system into sub-
systems which can be designed from components we are familiar with. A familiar compo-
nent for digital design might be a Flip Flop or an AND gate, and they are consigéarad
itive since they can not be further sub-divided. For more complex systems, the partitioning
will have a number of layers. This means that the digital system is first partitioned into

43

Digital System: Data Transfer Interface

Sub-system 1 Sub-system 2
Level 1 Level 1
Sub-system 1
Level 2
ub-system [[]
Level i
AN n

X A

Sub-system 1

Level i
Sub-system 1 Sub-system 1
Level i+1 Level i+1

.. 71D O~ T
Primitive 1 Primitive 2—]

FIGURE 3-7. Partitioning a Digital Systems into Sub-systems

sub-systems, and then those sub-systems are partitioned into smaller sub-systems, until
the sub-system can be readily designed out of simple primitive components at the bottom
most layer. This type of design structure is often called top down design and integrates
well with the hierarchial component model developed.

3.5.2 Hierarchy of the Interface Digital System

Emphasis was placed in the development of the abstraction hierarchy of the inter-
face model to follow the abstraction levels developed for the component model hierarchy.
This provides a significant advantage when developing the design rules since it allows the
design process to be organized to proceed at the same hierarchial levels.

The interface abstraction layers are shown in Figure 3-8imerface block(IB)
connects two components with capability x. An IB is sub-divided immterface Sub-
Blocks(ISB). Specifically each information transfer of x, such as information Y, is con-
nected by annformation connection ISRithin the IB. The Information Connection ISB
is divided intoState ISBand Timing ISBSor connecting the state and timing information
of Y, respectively.

The ISB primitives (ISBP) are the elementary building blocks that can be used to
build up an interface. The ISBPs are classified into two groups according to how they are

44

Interface Block (IB)
for Capability x

Component R Component2
Capabilty x ﬁ] - Capabilty x
od

ormation
Conpection ISB
™= for Infarmation Y.

LInformation Y

\§\ -
Signals involved

Information Y-

Signals involv

with capability with capability x

State ISB i
Connects: for
Capability X Information Y 'PSriEﬁmtiVGHD—
Information Transfer Y H
State Information for A Tir B
Timing Information for Y fo”rmn

Information Y

~—1| ISB
Primitive

FIGURE 3-8. Interface Hierarchy
commonly used in the interface: combinatorial and memory ISBPs. A combinatorial ISBP
takes the states of signals and changes them to some other state. A combinatorial ISBP is a
combinatorial circuit which implements a boolean function, such as a AND gate. A mem-
ory ISBP is any digital circuit that delays a signal going into it. For example, it can be a
delay line, which physically delays a signal by passing it through a long wire, or it could
be a flip-flop that delays an output transition until a clock signal is received.

3.6 Representing the Interface Design Knowledge

The design process uses a top down approach: an interface is successively refined
until it is completely built up from ISBPs. The organization and hierarchy of the compo-
nent representation and the interface representation lend themselves naturally to top down
design using a rule based production system. The current interface status and the compo-
nent library are part of the system state database. Rules matched on the contents of the
state database are used to modify the contents of the state database to successively refine
the interface until it is complete. This section presents an overview of the design knowl-
edge required for interface design. The details are given in Chapter 6.

The Interface Designer is activated by an externally suppimthection request
The connection request represents the knowledge about what components must be con-
nected, what the purpose of the connection is (i.e. the fact that it will be the data transfer

45

connection) and various parameters that will be relevant for a connection. The generation
of the connection request is outside the scope of this dissertation and it is assumed to be
provided either manually by a design engineer or by another sub-system of the DAME
expert design system.

Rules are provided for the various levels of design. At the highest level, rules are
provided to check the existence of the required capability of the components being con-
nected and if both components have the required capability, an IB will be created for the
capability.

Knowledge is provided about how to connect a capability in terms of the informa-
tion transfers that make up the capability protocol. The knowledge is in the form of rules
that indicate what to do with each information, or what to do if the information is not
present.

Rules are provided for sub-dividing the Information Connection ISBs into State and
Timing ISBs for connecting the state information and timing information. The rules devel-
oped are independent of the class of information being connected allowing the same set of
rules to be used by all classes.

Knowledge is provided to fill in a State ISB with the appropriate ISBP. The ISBP
can be anything from a simple inverter to a multiple input/multiple output combinatorial
circuit. Knowledge is provided in the form of rules that can utilize information about the
states going into, and the required state on the output of the Information Connection ISB.

Timing information is connected using a Timing ISB. Knowledge at this level comes
in the form of rules that can recognize signal behavior in relation to a time reference and
that can make adjustments to the signal so that it has a different relationship to the time
reference, if necessary. The adjustment is accomplished by inserting an appropriate mem-
ory ISBP into the Timing ISB.

Other design knowledge in the form of rules is represented by the Interface
Designer. This knowledge includes heuristics about minimization/maximization of all
aspect of the design, such as cost, power consumption or system speed and it includes
checking a design for completeness to make sure that all signals are connected and that all
ISBs are completed. This knowledge also includes rules to verify timing behavior of the
interface to assure that the final design meets the manufacturer’s specification for the com-
ponent.

46
3.7 Frame Representation of the Components and Interface

The data structures used to represent the components and the interface are broken
down into a set of frame based hierarchial objects. This section introduces the prototype,
device and instance frames that were developed to represent a component and interface at
different levels of abstraction.

A component or interface is built up from a setdadévice framesAll frames will
have slots that are filled either with static values, such as numbers, or the names of other

X2000 Device Frame
T -
number-o% has capability

»

X2000-DATA-TRANSFER-CAPABILITY

uses-timing

X2000-ADDRESS-TIMING

FIGURE 3-9. X2000 Device Frames

frames. For example, Figure 3-9 shows some device frames for the hypothetical X2000
microprocessor. The X2000 component is represented by the device frame Xaat€d

The “number-of-pinslot is filled with the number of pins (40), and thkas-capability

slot is filled with the name of the device frame representing the data transfer capability of
the X2000, namelyX2000-DATA-TRANSFER-CAPABILITY . The data transfer capa-
bility in turn has the*uses-timingslot filled with theX2000-ADDRESS-TIMING device

frame name.

MICROPROCESSOR-g is-a X2000 Device Frame
has cépability Prototype Frame
DATA-TRANSFER-CAPABILITY <«— is-a—— X2000-DATA-TRANSFER-CAPABILITY
uses-timing
SIGNAL-TIMING - is-a X2000-ADDRESS-TIMING

FIGURE 3-10. Device and Prototype Frames

a7

A device frame is created by generating an instance of a a template frame, called a
prototype frameas shown in Figure 3-10. Each device frame is linked to its prototype
using the {s-arelation and will inherit characteristics from its prototype frame. A device
frame will have the same slots as its prototype frame. The slots of the prototype frame are
either empty or filled with default data.

The prototype frames are organized into a hierarchy of classes and sub-classes. This
allows knowledge relating to components to be organized into prototype frame classes
whose members tend to share common properties and concepts. Inheritance allows us to
find information (knowledge) about a prototype frame from its parent frames. This leads
to an efficient knowledge representation method since information that is common to sev-
eral child prototype frames can be stored in a single place in the parent prototype frame.
The more abstract, general prototype frames are near the top and the more detailed and
specific prototype frames are near the bottom of the hierarchy as shown in Figure 3-11. A

COMPONENT
/ \ Prototype Frame
/ is-a is-a
MICROPROCESSOR MEMORY
is-a is-a
/ AN
RAM ROM
is-a is-a
PROM EPROM

FIGURE 3-11. Prototype Hierarchy

prototype frame will inherit all slots from its parent through asr&relation. In Figure 3-

11, the COMPONEN;prototype representing any microprocessor system component is
divided intoMICROPROCESSGRRdMEMOR¥Y¥omponent sub-classes. In turn t&M-
ORYcomponents are divided inRAMandROMomponent sub-classes.

A more complete example of device and prototype frames is shown in Figure 3-12.
The MG58000 andZ80 device frames are created by instantiatingfMHEROPROCES-
SORprototype, theViIK6116 device is created by instantiating tRAMprototype frame

48

and theMK2764 is created by instantiating tieEPRONbrototype frame. All four devices,
theMC68000, Z8000, MK6116 andMK2764, are considered sub-classes of @@MPO-

Device Frame 780
Prototype Frame is-a/number-of-pins
A/ <
_~ COMPONENT - is-a— MICROPROCESSOR

has-property

7 oL
number-of-pins IS-=a—_____ | MC68000

\ type ’number-of-pins
iS'a\ Master

MEMORY <«—is-a-RAM gis-a— MK6116

N

is-a

AN

ROM - is-a; EPROM - is-a-| MK2764

number-of-pins

»

FIGURE 3-12. Example Device Frames

NENT prototype frame and inherit alCOMPONENjroperties (such as ‘Uses Power’)
through thetis-arelations. Device properties can be specified in the device frame, or they
can be inherited from the prototype default values. For exampleM&®@&116 is a 24 sig-

nal pin device, which is the default specified in tlreumber-of-pinslot of the COMPO-
NENTprototype frame.

The component prototype frames represent the set of possible frames that can be
used to build a component in the component library. The interface prototype frames repre-
sent the set of possible frames that can be used to build an interface. The device frames
represent instantiations of the prototype frames used to represent a specific components or
interface. The number of prototype frames is limited by the interface design rule base.
Only those prototype frames that can be manipulated by the rule base are allowed to exist.
The number of component device frames is limited only by the number of devices entered
into the component library, while the number of interface device frames is limited only the
number of different interfaces that can be designed. The strict separation of the device and
prototype frames provides an important advantage for the maintenance of the Interface

49

Designer: If device frames of a new component are created by instantiating existing proto-
type frames and entered into the component library, the rule base does not have to be mod-
ified to be able to design with the new component. In other words, the maintenance of the
component prototype frames and the rule base is separated from the maintenance of the
component library.

TheMC68000device frame represents all MC68000 microprocessors. To represent
a single, specific MC68000 in the microprocessor system to be designed, an instance of
theMC68000device frame is created, and given a name sudhlaas shown in Figure 3-

[
Device Frame Prototype Frame [s Instance Frame

i

MICROPROCESSOR-g-is-a—| MC68000|-g— instance-of—:. Ul :

[P

N

- —4

instance-of

- I
q— instance-of | U3 :
f

- —4

RAM gis-a—{ MK6116

EPROM -g-is-a—| MK2764 lag— instance-of—: ua |

- —4

FIGURE 3-13. Component Instance Frames

13. The instance frame is linked to the device frame through ith&tahce-oflink. The
instance frame is used to represent an actual physical device that will be installed in a sys-
tem. A frame at the instance level can not be instantiated since it represents an actual com-
ponent. An instance frame will inherit all properties from the parent device frame and the
grandparent prototype frames through finestance-ofelation. The example in Figure 3-

13 shows the instance frames of a small microprocessor system that consists of a
MC68000 microprocessor, two MK6116 RAMs and one MK2764 EPROM.

3.8 Summary

This chapter developed the overall structure of the rule based interface design sys-
tem. The design system was partitioned into a component model that represents the static
components, an interface model that represents the interface between the components, and
the design knowledge in the form of design rules which build up the interface, as shown in
Figure 3-14. The abstraction levels of the component model, the interface model and the
design rules follow each other closely. This facilitates the development of well structured

50

AMore Abstract

Microprocessor System

described withCConnection reques

%_ interface —
<]

‘ Interface Model

’ Interface ‘
Block (IB)
[\

VA \

Info Connect ISB

/ 1\
/ \
State
ISB
/ Timing \
ISB
A\
| /,/ \\ Rule Input
\':l I DQ- e
| Rule Output
More Detail

FIGURE 3-14. Interface Designer Knowledge Representation
design rules that can perform design at each level of the hierarchy. The component model
is abstracted into capabilities whose protocol is built up from information transfers. The
information transfers are abstracted into state and timing information transfers. In turn, the
timing information transfers are built up from timing templates. During the design pro-

51

cess, design rules create IBs that connect capabilities. The IBs are sub-divided into ISBs
using design rules. The ISBs are finally sub-divided into ISBPs which can be implemented

using discrete logic or VLSI gates. The ISBPs are chosen using rules that recognize the
timing behavior of the timing templates.

The next three chapters give a detailed description of each of the three parts of the
interface design system: the component model, the interface model and the design rules.

52
Chapter 4

Microprocessor System Component Model

4.1 Introduction

The development of a production system based interface designer requires a repre-
sentation of the components in the form of a component library. This chapter discusses
how a component is represented as a frame based semantic network catlechffument

— Signals more detai
: - Name, pin numbers

\, 5y oy States of Signals

- Asserted, negated, enabled

s

Operations on States s Transitions Between States
- Boolean Logic Operations - Asserted to negate

Y

_I__AI_Time Relations Between Events
- Event A is 5 nsec after Event B

X E Timing of Signals .

- - Multiplexed / Nonmultiplexed
: L]

State Information Transfer Timing Information Transfer

- Description of states . inti
- AttachpM eaning to Stat Btgtsgg%gcr)lnbgf l\fég%n

/

Information Transfer

- Description of when, how and what
information is transferred.

Capabililtgl _ _ _
- Protocol in terms of information transfers

Y

Component Model _
- Description of component behavipr more abstrac’

F=A"B

[®X

114
(2]

FIGURE 4-1. Outline of the Component Model Presentation

53

model The component model is able to represent all aspects of a component’s behavior
from the abstract capability to the detailed voltage specification of a signal’s logic level.

The primary objective in developing the component model was the development of a
representation that is sufficient to accomplish reliable interface design. This means that
only the aspects that are required to carry out and complete the task of interface design are
modeled.

An outline of the component model and its abstraction hierarchy was given in chap-
ter 3. This chapter gives a complete description of the component model, starting with a
detailed description of the electrical signals and working up to the abstract description of
the capability protocol. The order of presentation is shown in Figure 4-1. First, the repre-
sentation for the signals and the electrical states of signals is given. This is followed by a
representation of state changes of signals in the form of transitions and events. The time
behavior of the signals is developed as a limited number of timing patterns, such as multi-
plexed and non-multiplexed signal timings. The concept of information transfer between
components is developed as a combination of state information and timing information
transfers. A description of the data transfer capability protocol is presented in terms of the
information transfer, which finally allows the description of a component in terms of its
capabilities.

4.2 Signals

Devices such as microprocessors and memories piageA pin is a metallic con-
tact which connects electrically to circuitry inside a device package. A pin used to transfer
information to or from a device is calledsagnal A signal is represented by a name such
asAl7 or R/W*, its location on the package such as pin 31, and its electrical characteris-
tics.

The signals in microprocessor systems are often divided into groups according to
their function. A group of signals associated with a specific function is callgaita For
exampleAO, Al, A2 etc. are signals associated with the address port of the MC68000.
Each port will have an abstract classification associated with it, which represents the kind
of information being transferred over the port signals, such as address, data or direction
information. A unique name is used to designate each port suckiyds ADDRESS
DATA

54
4.3 The State of a Signal

The logic state of a signal is a characteristic that can be propagated through a wire or
through a logic circuit. Every logic state has a unique name and has a physical manifesta-

INPUT OUTPUT
/\ AN
FLOATING DRIVEN ENABLED OPEN
/\ /\

INVALIDI VALIDI VALIDO INVALIDO
/N N\

NEGI ASSI NEGO ASSO

FIGURE 4-2. Logic State Hierarchy

tion that corresponds to one or more electrical state. All the logic states defined for signals
are given in Figure 4-2.

The logic states are organized as follows. A signal can receive information, called an
INPUT state or transmit information, called an OUTPUT state. A signal in OUTPUT state
can be either OPEN (disconnected) or ENABLED. An ENABLED signal supplies either a
high or a low voltage. An ENABLED signal is either a VALIDO or INVALIDO output.
VALIDO means that useful information is present on the pin, while INVALIDO means
that the information on the pin can not be used. If the signal is VALIDO it can be one of
two binary states, either ASSO (asserted output) or NEGO (negated output).

A signal in INPUT state can be either FLOATING (not driven by anything) or
DRIVEN. A DRIVEN signal is either at a high or low voltage level. A DRIVEN signal is
either a VALIDI input or INVALIDI input. VALIDI means that information must be pro-
vided on the pin since it will be used internally, while INVALIDI means that the informa-
tion on the pin will not be used. If the signal is VALIDI it can be one of two binary states,
either ASSI (asserted input) or NEGI (negated input).

The asserted and negated levels of a signal have different interpretations depending
on manufacturer’s definitiorAsserted lowor active lowmeans that the asserted state is
represented by a low voltage while negated state is represented by a high vadsgred

55

high or active highmeans that the asserted state is represented by a high voltage while the

negated state is represented by a low voltage.

A graphical representation of the voltage levels versus time, as commonly found in

high voltage
low voltage —_/—< ><

If the signal is an output: time
(1) ASSO (ENABLED, VALIDO)

(2) NEGO (ENABLED, VALIDO)
(3) OPEN

(4) INVALIDO (ENABLED)

(5) VALIDO (ENABLED)

If the signal is an input:
(1) ASSI (DRIVEN, VALIDI)

(2) NEGI (DRIVEN, VALIDI)
(3) FLOATING

(4) INVALIDI (DRIVEN)

(5) VALIDI (DRIVEN)

o @ 3) (4) () >

FIGURE 4-3. \oltage Levels Associated with Sates

timing diagrams provided by component manufacturers, is shown in Figure 4-3.

4.3.1 Compatible States

When a manufacturer specifies a certain state for an input signal, it means that the
input is required to attain that state for correct operation. For this reason the input state is
called aninput requirementWhen a manufacturer gives a certain state for an output sig-
nal, it means that the output will be the specified state. For this reason an output state is
called anoutput specificationthe output signal pin will be at the specified state. Two
states aréO compatibleif an output specification satisfies the input requirement. An out-
put of one device can be connected to the input of another device if the output state is IO
compatible with the input state. Table 4-1 shows compatible input and output states.

56

Input State Compatible Output States
INPUT OUTPUT
FLOATING OPEN
DRIVEN ENABLED
INVALIDO
VALIDO
ASSO
NEGO
INVALIDI ENABLED
INVALIDO
VALIDO
ASSO
NEGO
VALIDI VALIDO
ASSO
NEGO
ASSI ASSO
NEGI NEGO
TABLE 4-1. Compatible States

4.3.2 Representing the States of a Signals

The state of a signal is a basic property of a component. A notation has been devel-
oped to represent the state of a signal in the Interface Designer and for discussion pur-
poses. The syntax of the notation is given usingBN#- (Backus-Naur Form), where the
following symbols have meaning:

== definition

| exclusive-OR

{3 repeat zero or more times
1 optional

~ string

The BNF notation has been extended in two ways: square brackets are used to
enclose an optional symbol or group of symbols, while curly braces are used to enclose a
symbol or group of symbols that may be repeated zero or more times. BNF notation will
also be used to describe other properties of signals, such as state changes.

The expression that represents the state of a signal is cakkgghal stateand is
given as:

<signal state::== ‘(’<logic state> <signal name")’
<logic state> ::== INPUT | FLOATING | DRIVEN | VALIDI | INVALIDI | ASSI | NEG |

57

| OUTPUT | OPEN | ENABLED | VALIDO | INVALIDO | ASSO | NEGO
<signal name ::== <ddentifier>
<identifier> ::== Unique character string

A boolean signal statés a signal state that only involves the boolean logic states

asserted and negated:

<boolean signal state:== ‘('<boolean logic state <signal nameg*)’
<boolean logic state::== ASSI | NEGI | ASSO | NEGO

For example, (VALIDIDO) represents the valid input logic state of the sign@land
(ASSOUDS represents the asserted output boolean logic state Ofx8signal.

A <port state>gives a shorthand method of representing the state of all the signals
in a port, provided that all the signals have the same state:

<port state>::== ‘(’<logic state> <port name‘)’
<port name ::== <Jdentifier>
<port> ::== ‘(" <signal name {<signal name} ‘)’

For example, the port state (VALIDABDDRESp)where ADDRESS:40, Al, A2,
A3, A4, A5, A6, A7), indicates that the address sigm&alsA7 have a valid output state.

The signal state represents a property of a signal, as in the example given above,
where (VALIDI DO) represents the valid input logic state property of the si@palThe
property of a signal can be either true or false: if the sigh@l has a valid input logic
state, the signal state (VALIDDO) is true, if the signaD0 does not have a valid input
logic state, the signal state (VALIIDO) is false. The statement ‘the sigra0 has a valid
input logic state’ is equivalent to saying ‘the signal state (VALDD) is true’.

4.4 Using Signal States to Describe Situations

Signal states are used to describe situations in microprocessor systems. For exam-
ple, the Z80 microprocessor signal state (ASB®B? is used to indicate that the current
memory access operation is a write operation. Often, a situation is described by the state
of several signals. For example, for the MC68000, a memory access in the User Program
data space is indicated if the state (NEGQOQ) is true, the state (ASSOC1) is true, and
the state (NEG@®C2) is true.

To describe the state of several signals applicable to a situatiorsighal state
expressiorwas developed, incorporating the AND, OR and NOT operators between the
states of signals. A signal state expression using the AND operator indicates that each of
the argument signal states is present on the given signals, or each of the argument signal
states is true. A signal state expression using the OR operator indicates that at least one of
the argument states is present on the given signals, or at least one of the argument signal

58

states is true. A signal state expression using the NOT operator indicates that the argument
signal state is not present on the given signals, or the argument signal state is false.

<signal state expression:== <signal state | <or state expression| <and state expres-
sior> | <negation state expressien

<or state expression::== ‘(OR’ <state list ‘)’

<and state expression:== ‘(AND ’ <state list)’

<negation state expression:== ‘(NOT’ <signal state expressiot)’

<state list ::== <signal state expression{<signal state expressioh

All signal states in a signal state expression must either be input signal states or out-
put signal states. The mixing of input and output signal states is not allowed since the
interpretation of such an expression would be ambiguous.

For example,

(AND (NEGI R/W) (OR (ASSI LDS) (ASSI UDS))) (EQ 4-1)
Equation 4-1 shows a signal state expression that indicates th&/Weignal is
negated and eith&DS or theUDS signal is asserted.

In practice it was found that only boolean logic states are used in signal state expres-
sions. A signal state expression using boolean signal states is equivalent to a boolean logic
expression, where the boolean variables are replaced with signal states. This allows bool-
ean algebraic theorems, such as De Morgan’s theorem, to be applied to manipulate the
state expression. For example,

(AND (ASSO A0) (NEGO Al))=
(NOT (OR (NOT (ASSO A0)) (NOT (NEGO Al)))) (EQ 4-2)

4.5 State Changes in Signals

45.1 Transitions

A transitionis the change of the logic state of an input or output signal from one
logic state to another logic state at some instant in time. A transition is given as:

<transitior> ::== ‘(* [<logic state?] ‘I’ < logic state2 <signal name ‘)’
<logic state® ::== dogic state-
<logic state2 ::== dogic state-

If <logic statel>is omitted, it is assumed to be the opposite statdla@gic state2>
<logic statel>and<logic state2>must either both be input signal states or both be output
signals states. The opposite logic states are shown in Table 4-2, and are derived from the

59

logic state hierarchy in Figure 4-2 by determining which states are at the same level in the
hierarchy.

Logic State Opposite Logic State
ASSO NEGO

ASSI NEGI

VALIDO INVALIDO

VALIDI INVALIDI

ENABLED OPEN

DRIVEN FLOATING

TABLE 4-2. Opposite States

For example, assume an output sighalZ changes state from asserted to negated.
This transition can be written as (ASSO ! NEGQY2) or in a more compact form as (!
NEGOXY?2).

A port transitionis the change of state of the set of signals associated with a port,

where each signal in the port has the same transitions:
<port transitiorr ::==‘(* [<logic state®] ‘' <logic state2 <port name-)’

A port transition is simply a shorthand way of specifying the transition for each sig-
nal in a port, provided that all signals have the same transitions. For example the port tran-
sition (! ASSOADDRES¥can be expanded into: (! ASSA0), (! ASSOAL), (! ASSO
A2),....(! ASSQALl) if the ADRRESSort consists of the signad®, A1, ...All.

4.5.2 Events

Theeventextends the concept of transition from a single signal to several signals. A
signal state expression represents a certain combination of signal states. When the combi-
nation of signal states becomes true at some instant in time, an event occurs. An event is
defined as follows:

<evenp ::== <ransitior> | ‘(" ‘!’ < signal state expressior)’

For completeness, a transition is also defined as an event. The ! in front<dithe
nal state expressionindicates the event that occurs when the signal state expression
changes from false to true. The signal states that make up an event must either all be input
signal states or all be output signal states.

Examples of events are:

(OPEN A1) ! (VALIDO A1) (EQ 4-3)
(! (OR ((ASSO LDS) (ASSO UDS)))) (EQ 4-4)

60

Equation 4-3 shows an event, which includes a transition, that occurs whédi the
signal changes from OPEN to VALIDO. Equation 4-4 shows an event using a signal state
expression. Normally theDSandLDS signals are negated. This means, that normally the
signal state expressiq@R ((ASSOLDS) (AssoUDS)) will be false. As soon as both or
either of theLDS or UDSsignals change from negated to asserted, the state exprgagion
((ASSOLDS) (AssoUDS)) will become true, and the event occurs.

4 5.3 Detectable Events

A detectable evens the change of state of one or more output signals which can be
detected using some type of electronic circuit. The concept of detectable events is devel-
oped to allow the detection of the time of occurrence of the event: if the time of occurrence
can be detected, it can then be used as a relative time reference to other events. Detectable
events involve changes of signal states between the asserted and negated logic states. Any
event that only involves boolean logic states is a detectable event. Theoretically there are
other state changes that are detectable, such as (OPEN ! ENABOED In practice
these events can not be detected reliably, and are not considered detectable in this work.
For example, Equation 4-4 is a detectable event, while Equation 4-3 is not a detectable
event.

4.5.4 Complementary Events

An event occurs when one or more signals change logic state. When the signals that
are involved in the event change back to the original statenaplementary eveniccurs.
The event:

(<logic state® ! <logic state2 <signal name) (EQ 4-5)
has complementary event:

(<logic state2 ! <logic state?® <signal name) (EQ 4-6)
and the event:

(! <signal state expressiorl) (EQ 4-7)
has complementary event:

(! (NOT <signal state expressionl)) (EQ 4-8)
For example, the complementary event to Equation 4-3 is:

(VALIDO A1) ! (OPEN A1) (EQ 4-9)
The complementary event for Equation 4-4 is:

61
(! (NOT (OR ((ASSO LDS) (ASSO UDS))))) (EQ 4-10)

4.6 Modeling Time Relationships Between Events

4.6.1 The Timing Link Between Events

Electrical signals in microprocessor systems are used to transfer information. Know-

S 0% 0N
ck () L L L]

Event

ADDRESS | X <X—Valid ADDRESS X

\ \ Relation
R/W*) > between Events

AS*

UDS* LDS*

DTACK*

DATA (D0-D15) { Valid DATA)

FIGURE 4-4. Timing Diagram of the MC68000 Read Cycle

ing which signal is used to transfer the information and how the information is formatted
is not enough to transfer the information successfully. It must also be known when the
information will be transferred. For example, the knowledge that some address signals
will contain a binary formatted address is of no use unless one knows exactly when the
signals contain the address. Manufacturers specify when information transfer takes place
by giving the relative times between events of certain signals. The time relationships
between events of signals are given in the component manufacturer data books in the form
of timing diagrams and tables of timing parameters. This is illustrated in Figure 4-4 for the
MC68000 read cycle. Several signals are involved in the data transfer, s@itKaa1-

A23, R/W*, AS* andUDS*/LDS* . The manufacturer specifies when the address signals
A1l-A23 become valid (i.e. when the (INVALIDO ! VALIDOADDRES¥yevent occurs)
relative to the time of occurrence of events on @leK AS* andUDS*/LDS* signals.
Different types of relations between events are provided, such as ‘event A precedes event
B’ or ‘event A is always 10nsec after event B’. For example in Figure 4-4 the (! ASSO
AS*) event and the (! VALIDOADDRESYypevent indicate that the address becomes valid
before the asserte&S signal.

62

Interface design requires knowledge about the time relationships between events. A
method was developed to represent the relationships in the Interface Designer. The time
relationships between events are represented usmgg links A timing link gives the
relative time of an event, called thail event relative to another event, called thead
event There is no implied precedence between the head and tail events: the tail event can
occur before or after the head event. The timing link represents an unidirectional time rela-
tionship from the head to the tail event. Unidirectional means that if a timing link gives the
time of event A relative to event B, it may not be possible to infer the time of event B rela-
tive to event A. For example, if a link specifies that a tail event (! VALIBODRESpis
always 20ns before a head event (! AS88*), one can not assume that the (! ASSO
AS*) event always will be 20nsec after the (! VALIDKDDRESpevent.

Time relationships between events can be viewed as directed graphs. The graph

(a) Timing Diagram Representation
E
ADDRESS X Valid ADDRESS X Event

AS* Relation
El between Eventq

(b) Directed Graph Representation
Eq Relationship R

\ .
Head Event E= (! ASSO AS¥) R Events E

Tail Event B = (! VALIDO ADDRESS¥) =

FIGURE 4-5. Example of Event Time Relationship

nodesE represent the events and the directed graph IRk&present the timing links
between events. For example, Figure 4-5(b) shows the directed graph representation of the
timing diagram shown in Figure 4-5(a). The directed graph gives the time relationship R
of theE, event relative to the, event.

4.6.2 Repeated Event Sequences in Timing Diagrams

Often a timing diagram is used to show a sequence of events. For example, Figure 4-
6(a) shows a sequence of complementary events foMIR# signal. Repeated event
sequences for microprocessor components often correspond to repeated operations the
components can carry out. For illustration purposes in this work, complementary events

63

(a) Original Write Signal Event Sequence
wr+ wr- wr+ wr- wr+ wr-

WR* signal L
(b) Single Cycle Event Sequence: (c) Directed Graph Event Sequencs

—WH wr- Twr+
WR* signal ——

next cycle Precedence Relationship R
— Tour-

FIGURE 4-6. Repeated Event Sequence Representation
(Section 4.5.4) in a sequence are given names with a + or - symbol attached to the end of
the name. For example evamime+has complementary evename: Using the +/- con-
vention in naming the complementary events helps in the understanding of diagrams
showing temporal ordering between events. The + will be associated with the earlier,
while the - will be associated with the later complementary event. In most circumstances,
the + event is associated with the more ‘positive’ or ‘beginning’ event such as an event ini-
tiating something, a signal going from INVALIDO to VALIDO or a signal going from
negated to asserted, while the - event is associated with the more ‘negative’ or ‘end’ event
such as an event terminating something, a signal going from VALIDO to INVALIDO or a
signal going from asserted to negated.

The timing diagram for a repeated event sequence can be redrawn for a single cycle
of the repeated sequence as shown in Figure 4-6(b). A directed graph representation of the
repeated event sequence is shown in Figure 4-6(c). In the directed graph, a subtle property
for the signal behavior shown in the timing diagrams is represented by the graph links:
The signals that generate the events are not allowed to change between the events. If this
property is attached to the directed graph links, then the original event sequence shown in
Figure 4-6(a) can be obtained from the directed graph Figure 4-6(c).

4.6.3 Properties of Timing Links

Timing links are used to represent different time relationships between events. This
section describes the time relations represented by the timing links. Timing links have
properties such as the precedence between the head and tail events and the time of occur-

64

rence of the tail event relative to the head event. For example, a timing link can represent a
simple precedence relationship:

Event B isalways after event A,
or the timing link can give the guaranteed time of an event relative to another event:
Event Balways occurs between 10nsec and 20nsec before event A.

The interval 10nsec to 20nsec is called timing parameteof the timing link. A timing
parameter is a time interval with a lower and upper limit. The timing parameter represents
a range of time values of when an event can occur. A time interval is written by enclosing
the interval limits, in nano seconds, in brackets. In the above example, the timing parame-
ter would be written as (-20 -10) since negative time values are used to indicate that event
B occurs before event A. An interval (a b) is written so that . A timing parameter that

is an exact time such as 20nsec, is considered an interval of zero length and is written as
either a single value (20) or as a range with the same lower and upper limits (20 20). Using
the notation for intervals, the previous timing link description could be written as:

Event Balways occurs at time (-20 -10) relative to event A.

An event may not always occur with another event, but it may still be related to the other
event as in:

If Event B occurs, iwvill occur at time (-20 -10) relative to event A.

Timing links between events on the same signals can also convey information about the
signals’ behavior between the events as in:

Event Bwill occur at a time (50 70) relative to event A and Hignals involved in
events A and Bvill not change state between events A and B.

As these examples show, timing links have several properties and characteristics,
which include:

» The direction of the signals involved in the events: Input to Input, Output to Output,
Output to Input or Input to Output.

» Atiming parameter
» If there is precedence between the events
 If an event always occurs with another event, or only sometimes

« If the signals change state between the events (if both events involve the same signals).

65

There are a total of six timing links developed that are sufficient to represent all
practical cases and are presented in the next sections.

4.6.4 Timing Links Between Events

Four possible timing links based on the direction can be found in the specification of
time relationships between two events as illustrated in Figure 4-7.

Component
(MK6116)

Input Event

(T ASSI CE¥)

Componen
(MC68000)

Output Event

TASSO UDS*)

C Outgu5 Event C Igput Event

(' VALIDO DATA) (I ASSI DTACK*)

Link
Component Componen
(MC68000) Output Event (MK6116) Input Event
("'ASSO ASY) (! ASSI CE*)
Outgus Event Input Event
(! VALIDO ADDRESS) (! VALIDI ADDRESS)

FIGURE 4-7. Possible Event Relationships

The input to output timing links and the output to input timing links are called
causaltiming links since there is a direct cause and effect relationship between the head
and tail events. A cause and effect relationship implies a precedence between the head and
tail events. For example, for a MC68000, the assdt€ACK*signal will cause th&DS*
signal to become negated. This means that the (! ASRACK?) event will have a causal
timing link to the (! NEGOUDS?*) event, and the (! ASSDTACK? event must precede
the (! NEGOUDS?).

The input to input and output to output event relationships are caledcausal
timing links since there is no cause and effect relationship between the events. The prece-
dence of the events related by a non-causal timing link is not known. For a non-causal tim-
ing link the tail event could occur at any time relative to the head event.

If the tail event of a timing link is an input event, the timing link specifiesrgyut
requirementsince the link dictates how the input must behave. If the tail event is an output
event, the timing link specifies aputput specificationsince it dictates how the output
behaves.

66

If all timing links for the events of a device have strict precedence between events a
petri net called aignal transition grap{STG) can be used to represent the timing behav-
ior. STGs are directed graphs consisting of the ev@ntsd the precedence relatiéh
between the event nodes. When state transition graphs were developed they were applied
to designs which were delay insensitive (i.e. unbounded positive delays), but they have
been extended to include timed delays [69][27].

Instead of a petri net based approach this work develops its own specialized timing
links to represent the timing behavior patterns for several reasons:

» This work only requires a representation that gives the general pattern of a timing
behavior, not the detailed relationships between all signals. STGs provide too much
detail, thus adding unnecessary complexity.

» This work requires that links have certain properties in addition to a time value. For
example such a property may be a link that specifies that a signal will not change state
between two specified events.

» This work requires that the links in timing patterns can have a general behavior associ-
ated with them such as: The setup time of signal A relative to a reference event is usu-
ally negative or close to zero. This type of behavior can then be used to develop the
concept of a propagation delay invariant timing templates as explained in Section 4.7.2.

There are some similarities between STGs and the timing behavior model developed
for this work, and it may be possible to extend STGs to include some of the special con-
cepts developed here.

The following sections describe the timing links developed for this work and their
associated properties.

4.6.4.1 Causal Timing Links

A timing link between either an input event and an output event or an output event
and an input event is called a causal timing link.

The input to output event link represents the response output event to some input
event and is called eesponds-wititiming link. Due to the cause and effect relationship
between the events (i.e. an input event will cause the output event), there is strict prece-
dence and the timing parameter (a b) associated with the responds-with timing link is
restricted to & b, a= 0 and = 0.

The output to input event link expects an event on an input port in response to the
event on an output port, hence it is calledexpectgiming link. Normally, there is strict
precedence between the output and input events. It was found however that when describ-

67

ing the timing behavior of more than two events as done later in this work, that an expects
timing link is required that can take on a negative timing parameter value. For this reason,
an expects link is defined with no restrictions on precedence. The timing parameter (a b)
of the expects linkisa b, 00 < a< +00, and e < b < +00,

4.6.4.2 Non-Causal Timing Links

A non-causal timing relationship is one between two output events or two input
events. For two output events or two input events that are related, the important knowledge
about the events is not the order in which they occur, since that may change, but which
event always occurs with the other event, and what the relative time between the events is.

The always-accompanied-byiming link represents a non-causal timing link
between two input events or two output events that always holds true. A typical example
of this is the time relation between a transfer request si§B4l event and thADDRESS
signal event of a MC68000 microprocessor as shown in Figure 4-8. It is known that if an

as+ as- as+ as-

AS* signal

add+ add- add add-

sooressHEX. (S @

signal always-accompanied-by link

FIGURE 4-8. Example of the Always-Accompanied-by Link

as+ event occurs on thaS* signal, it will always be preceded by tleld+ address event
on theADDRESSignals at a certain time. Similarly, if as-event occurs on thAS* sig-
nal, it will be followed by theadd- address event on thr@DDRESSignals at a certain
time.

Sometimes an event is not always accompanied by another eveiitit lmiaccom-
panied by another event, a certain timing relationship exists between the events. This tim-
ing link is called amaccompanied-btiming link. An example of the accompanied-by link
is shown in Figure 4-9. ThBS* signal indicates that a data transfer operation will occur.

It is sometimes accompanied by¥R* signal as shown in the figure with a certain timing
relationship to thdS* signal. If ads+ andds- event sequence occurs, tive+ andwr-

68

event sequence may or may not occur, and if it does occur it will have a given timing rela-
tionship as specified by the accompanied-by timing parameter.

ds+ ds- ds+ ds- ds+ ds-
DS* signal
wry Ywr- wr+y Ywr-
WR* signal
accompanied-by link

FIGURE 4-9. Example of the Accompanied-by Link

The timing parameter (a b) associated with the always-accompanied-by and accom-
panied-by timings link is & b, -0 < a< +00, and e < b < +00.

4.6.5 Timing Links Between Complementary Events

Figure 4-10 shows a typical write data transfer operation for a microprocessor.
Always-accompanied-by can be used to specify links between the wr+ and dat+ events
and the wr- and dat- events. The timing diagram shown in Figure 4-10 conveys more infor-

wr+ Wr- ——
WR* y R
pata | X X AKX A
dat+ dat- always-accompanied-by
e

FIGURE 4-10. Typical Data Write Operation Timing Diagram

mation about its behavior to the designer than that given by the two always-accompanied-
by links. The timing diagram also indicates that iIN&R*signal does not change between

the wr+ and wr- events, and that tBATAsignal does not change between the dat+ and
dat- events. Special always-accompanied-by links have been developed to represent the
behavior of signals between complementary events.

The always-accompanied-by link between complementary events can be split into
two types: acomplementary-precedéming link where the signals involved in the events
will not change until the complementary event occurs called, anevantually-precedes
timing link where the signals are allowed to changed between complementary events. This

69

is illustrated in Figure 4-11 (a) for a typical data write operation. Link 5 is a complemen-

wWr+ wr- 4 wr+ wr-
3 y N

e r —>-\2 dat+ dat- f— —b-\x

DATA | X X X
dat dat= datr~_____¥ dat-

(a) Timing Diagram folWR*Signal andATASignal

dat+, (tlmin’ t:I-mao)

tmin <t
(+ min™ tmax

Complementary-Precedes
—>

Always-Accompanied-By

r-
Y Eventually-Precedes

dat- (Zmin Zmax
(b) Timing Graph FOWR* Signal andDATASignal Events

FIGURE 4-11. Typical Data Write Operation Timing Links

tary-precedes link which indicates that thATAsignals will not change between the dat+
and dat- events and that the dat+ event occurs before the dat- event. Link 6 is an eventu-
ally-precedes link where tH2ATAcan change between the dat- and dat+ events.

The complementary-precedes and eventually-precedes links always have prece-
dence: the head event will always occur before the tail event. This means that their timing
parameter (a b) isab, a= 0 and k= 0.

Using the timing links developed, the behavior of microprocessor system signals
can now be specified. For the timing behavior of the data signal in Figure 4-11(a), link 3, 4
and 5 are complementary-precedes links while link 6 is an eventually-precedes link. Links
1 and 2 are always-accompanied-by links. The links developed make it possible to give a
graphical representation of the data write timing behavior as shown in Figure 4-11 (b).
Using the graphical representation given in Figure 4-11(b), it is possible to reconstruct the
timing diagram representation shown in Figure 4-11(a).

70
4.6.6 Timing Link Summary

This section developed a method to represent the time relationships between events
in the form of links. Table 4-3 shows a summary of all the timing links and their proper-

Timing Link Head Specification | Classifica- | Precedence| Timing
to or tion Parameter
Tail Requirement (ab), b>a
Responds-with intoout| Specification Causal Yes a, k=0
Expects outtoIn| Requiremen Causal No 0 <a< +o

-0 <b < +oo

Always-Accompanied-by out to oyt Specification | Non-Causal | No o < as< +oo,

in to in Requirement -0 <P < +o0

Accompanied-by out to out Specification | Non-Causal | No o < as +oo,

intoin Requirement -0 b < +00
Complementary-precedes out to quSpecification | Non-Causal | Yes a, =0

in to in Requirement
Eventually-precedes out to olitSpecification | Non-Causal | Yes a, =0

in to in Requirement
TABLE 4-3. Component Timing Links

ties.

It should be pointed out that the timing links were developed with foresight as to
how they will be used to represent the timing behavior of signals in the Interface Designer.
Specifically, the timing behavior of signals are often similar but not identical, and the tim-
ing links will allow the similarities to be extracted as patterns which the Interface Designer
can use to perform design. For example the behavior oDIA@Asignal relative to the
WR*signal in Figure 4-11(b) is the typical behavior of a non-multiplexed signal in a
microprocessor system. By giving this timing behavior a name such as XYZ, any similar
timing behavior can be simply described by stating that it is of type XYZ and giving the
specific timing intervals associated with each link. This type of representation integrates
very nicely with frame based semantic networks used for this work: the timing behavior of
every signal is based on a timing template (such as pattern XYZ) with specific timing
parameters for each link specified in an instantiation of the timing template. This will be
discussed in more detailed in the section on modeling signal timings.

71
4.6.7 Notation Used to Represent Timing Links Between Events

A timing link represents the time relationship between two eventiming link
expressions used to represent the relation between the events and the associated timing
parameters. A timing link expression is given using the following notation:

<timing link expression ::== <head evert ‘->' <tail event {<tail event} @’ <time>
<head event ::== <event

<tail event ::== <even? | Jort transitiorr
<time> ::==‘(* <time value>[, <time valuey ‘)’
<time value ::== <numeric constant} ‘-~ | ‘+~’

‘-~' represents a time of negative infinity
‘+~’ represents a time of positive infinity
<numeric constant>:== character string representing time in nano seconds.

The RHS of a timing link expression consists of a set of one or more events. (A port
transition can be expanded into a set of transitions).Jthme> gives the timing parame-
ter that indicates when the tail event will occur relative to the head event. For example,

(! (OR (ASSO UDS*) (ASSO LDS*))) -> (IVALIDO ! VALIDO A0) @ (-~ -10)

states that the address sigAgl will go VALIDO 10 nsec or earlier before the occurrence
of either an assertedDS* or asserted.DS* signal. This link expresses what is often
called the setup time of th&0 relative to the assertddDS* or LDS* signals: The AO sig-
nal becomes stable and valid 10 nsec before the asE#®&d or LDS* signals.

In this work, timing links are normally used to indicate when information transfer
takes place. This means that the head event is used as a relative time reference point for the
time of occurrence of the tail event. For practical design reasons, an event that is used as a
time reference should be a detectable event. The head event for timing link expression
developed for this work is therefore normally a detectable event.

4.7 Modeling Signal Timings

Section 4.5 and Section 4.6 showed how state changes for signals are modeled as
events and how timing links represent time relations between events. This section builds
on the concepts of events and timing links to devedigmal timings A signal timing can
be thought of as a method of specifying when and how information is transferred between
two components in a digital system relative to one or more detectable reference events.

4.7.1 Developing the Concept of Timing Templates

One of the difficulties the interface designer faces when connecting two components
is the large variety of signal timing behavior that can be encountered. Often the general

72

aspects of signal timing behavior are similar between components, while the detailed sig-
nal timing specifics are different. To overcome this problem the designer may use some
heuristics by recognizing the general timing behavior patterns of a signal timing. For
example, the designer may look at a timing diagram and recognize that the output address
signal of one device has the general behavior of a multiplexed signal, while the input
address signal of another device has the general behavior of a non-multiplexed signal. The
designer recognizes the general signal interrelationships and knows that he must store the
information carried by the multiplexed signals before connecting it to the non-multiplexed
input signals. The designer knows that this storage can be accomplished with a D-Latch.
The designer inserts the D-Latch into the interface and then verifies that none of the spe-
cific setup and hold times of the input are violated. This work takes a similar approach in
organizing the knowledge about the timing behavior of a signal. The timing behavior

Signal Timing for A3 signal

AS* .
setup time \\hold time

(20,-10) \ VALIDO Y] (10, 20

/

A3 signal timing is represented as two parts

A Patter The Details
a Non-Multiplexed Signal Timing Template\ A3Signal "\
Timing Details
setup timeT ¢ hold timeT},
range:(-~ 0) range:(0 +~) Based on:
\ref” ref Non-Multiplexed
REF SN Timing Template
sigl+ sigl- ref+=(1 ASSO AS¥)
SiGL | X VALIDO X ref-=(1 ASSO AS*)
T sigl+=(! VALI A3)
———» Complementary-Precedes sigl-=(! INVALI A3)
— Always-Accompanied-By T=(-20, -10)
_ Eventually-Precedes _Th=(10, 20) %

FIGURE 4-12. Representation of Signal Timing of Non-Multiplexed Signal A3

knowledge is split into ‘a pattern’, which represents the general aspects of the timing

73

behavior, and ‘the details’ which represent the exact timing parameters such as setup and
hold times, as shown for the non-multiplexed signal timing in Figure 4-12.

The general behavior pattern of a signal timing is calletintgng templateA signal
timing template classifies the characteristics, properties and behavior of a signal timing
including:

» A description of the different events involved in the signal timing
» A description of each of the timing links and the associated events
» A range of allowed values for the timing parameters for each of the timing links

Signal timings that have similar characteristics, properties and behavior belong to the
same class of timing templates.

After studying the signal timing behavior of many components, it was found that the
setup timing parameter was almost always less than or equal to zero, while the hold time
almost always was greater than or equal than zero. This property of the timing template is
included as thallowed range of valuefor the timing parameters of a timing link. For
example, (-~ 0) for the setup time and (0 +~) for the hold time in Figure 4-12.

The allowed range for a timing parameter in a timing template allows representation
of heuristics used in interface design. It allows assumptions to be made about the timing
behavior of a signal by simply looking at the timing template. In the non-multiplexed
example of Figure 4-12, the setup and hold time allowed ranges enable us to assume that
the SIG1 signal will become valid before the ref+ event, and it will remain valid until
after the ref- event, without having to consider the details of the timing.

The details for a timing are given by specifying the events and timing parameters. In
the example, the ref+ and ref- events are specified as (!AS3Pand (INEGOASY*).

The timings and their templates integrate well with frame based semantic networks.
A set of frames representing the templates for all possible signal timings is created. Then,
when a component is entered into the database, the appropriate signal timing template
frames are instantiated for each signal timing and the details for the specific signal timings
are filled in.

4.7.2 Propagation Delay Invariance of Timing Templates

Timing templates were developed to provide a method that allows signals with simi-
lar timing behavior to be represented by the same timing template. Conceptually, if a sig-

74

nal is based on a given timing template class at one point in a circuit, it will be based on
the same timing template class at any other point in the circuit.

The concept opropagation delay invariancerias developed to provide a method to
represent the design engineer’s knowledge of the effect of circuit elements, such as wires,
on the behavior of a signal timing. A design engineer knows that conceptually, if a signal
has a given timing behavior at one end of a circuit wire, it will have the same timing
behavior at the other end of a wire. However, physically, any two points of the same signal
in a circuit will be separated by an inherent delay determined by the distance between the
two points. Therefore the timing templates must have a property that preserves the behav-
ior of the timing template class even in the presence of inherent circuit delays which are
unknown until the design is implemented. The Interface Designer represents this heuristic
as the propagation delay invariance property of the timing templates.

The concept of propagation delay invariance is extended to other simple electronic
devices such as buffers. A buffer is an active device that is used to restore the voltage level
of a signal and/or increase the drive capability of a signal. Conceptually the timing behav-
ior of a signal before and after a buffer should be similar. In other words, the delay intro-
duced by a buffer can be treated as a simple inherent delay of the circuit and should not
fundamentally change the timing behavior of a signal.

The utility of propagation delay invariance can be seen from a simple example.
Assume there exist two microprocessor components: for component A, a silicon die is
packaged in a plastic dual in-line package with signal pins, while component B uses the
same silicon die which is mounted on a printed circuit board with the signals going to an
edge connector. Additionally, the address signals of component B have a buffer inserted to
increase the current drive capability. The propagation delay invariance property allows the
timing behavior of the signal pins of component A and the edge connector signal pins of
component B to be represented by the same timing templates. This provides three impor-
tant advantages: First, only one single model for the timing behavior for both components
has to be developed. Second, rules representing design heuristics used for interface design
of component A can also be used for component B. Third, the timings of signals within an
interface can be based on the same timing templates as those used for the components.

It is known that the propagation delay is greater than zero, finite and generally on the
order of magnitude of the propagation delay of the technology used to implement the
design. However, the exact value is not known until a technology is chosen and the design

75

is implemented. We shall call this type of delay ampdelay (for Order of Magnitude
Propagation delay). Typical values for an omp delay in LS TTL technology are 7-10ns.

An example of the effect of propagation delay on the signal timing, if the signal is

WR*
A3 I > A3 always-accompanied-bly
—>
Timing1 for A3 signal Timing2 for A3’ signal
WR* ;| WR* *
A3 X VALIDO A3’ X VALIDO]
T, T TI=THd Tp=Tptd
O represents a small inherent delay in the system (i.e. wire delay)
The timing template of signal A3 should be the same as the timing tempglate of
signal A3 even though A3’ is delayed By

FIGURE 4-13. Propagation Delay Invariance of Timing Template (Signal is Delayed)

delayed, is shown in Figure 4-13. Sigie8, based on a non-multiplexed timing template,
is delayed by an amoumd due to either physical separation or a buffer. Even though the
resulting signalA3’ has different setup and hold timing parameters relative to the same
referencaVR, and the setup time changed sign @0 and T > 0), the A3 andA3’ sig-

nals should be based on the same class of timing template.

Similarly, an example of the effect of a propagation delay on the signal timing if the
reference is delayed is shown in Figure 4-14. The refergviRé is delayed by an amount
O due to either physical separation or a buffer to prodi®*. Even though the signai3
has different setup and hold timing parameters relative to the two reference 3/gRals
andWR?*, and the hold time changed sign{¥ 0 and T}, > 0), the signal timings relative
to theWR*andWR* signals should be based on the same class of timing template.

4.7.3 Developing Propagation Delay Invariant Timing Templates

The last section established that signal timing templates must be propagation delay
invariant to assure that a timing template is unaffected by small delays inherent in a micro-
processor system. This section presents the methods used to make the signal timing tem-
plates propagation delay invariant.

76

A3
N always-accompanied-k
WR* 5 WR® ys-accompaied-y
|
Timing1 for A3 signal Timing2 for A3 signall

WR* ;‘ — WR*

A3 X vaLpbo X | A3 [X vaubo X |

Ts Th Ts0 Ti-O
O represents an inherent small delay in the system (i.e. wire delay)

The timing template of signal A3 relative to signal WR*
should be the same as the timing template for A3 relative to WR*
even though WR* is delayed iy

FIGURE 4-14. Propagation Delay Invariance of Timing Template (Reference is Delayed)

So far the timing templates presented consist of events, links between events and
allowed range for the timing parameters for the links in the timing template. An example
of a timing template was given in Figure 4-12 for the non-multiplexed signal timing tem-
plate. Is the timing template shown in Figure 4-12 propagation delay invariant? The
answer is no, which can be seen from a simple example illustrated in Figure 4-15. Assume

always-accompanied-bly
—>

A3 I o) A3’

Timing for A3 signal Timing for A3’ signal

YR 0) YO Ny Y +9)

FIGURE 4-15. Simple Setup and Hold Time Example

there is a signafh3 with a signal timing that has a setup and hold timing parameter of 0
relative to the timing referend®R* Since 0 is included in the timing parameter range for
the template setup and hold times of Figure 4-12, this timing does indeed follow the non-
multiplexed timing template of Figure 4-12.Af3 is delayed by a finite delad, the setup

and hold times of the resulting3’ signal will change to ®. A setup time of d violates

the allowed range imposed on the timing template of Figure 4-12 on the setup time of -~ to

77

0 (i.e. +0 does not fall within the interval (-~ 0)). Due to this violation, the signal timing of
the A3’ signal can not be based on the timing template of Figure 4-12.

To make the timing template presented in Figure 4-12 propagation delay invariant, it
must be modified slightly as illustrated in Figure 4-16. To allow for the inherent delays in

REF

setup time M \\hold time
limit: -~ to +omp - limit: -omp to +~
SIG1 >< Valid ><:|

setup time range 1 ™= hold time range

(-~ +omp) " (-omp +-~]

omp propagation delay

FIGURE 4-16. Updated Non Multiplexed Signal Timing Template

the system, the limits for the setup and hold time must be extended by an omp delay (writ-
ten as -omp and +omp). This is shown with the special— symbol. The

— indicates a range from the omp delay and ther— indicates the range to
negative infinity.

This section showed how a non-multiplexed timing template using always-accompa-
nied-by links can be made propagation delay invariant by adjusting the limits of the
allowed timing parameter range. When developing the component model timings pre-
sented in Section 4.8, all allowed timing parameters were investigated and adjusted to
allow for propagation delay invariance. Non-causal timing links are adjusted by extending
the allowed timing parameter limits by an omp delay, while causal timing links normally
do not require any adjustment since their allowed range due to causality must be (0 +~).

4.7.4 The Component Model Timings

The signal timings developed for the component model fully specify the behavior of
signals relative to one or more reference events.réfexzence eveni@re detectable events
that are fundamental to the operation of a capability. For example in data transfer there is
always an event indicating that a data transfer operation has started and an event indicating
that a data transfer operation is about to complEteadamental to the operation of a
capability means that if the signals used to transfer some information are connected, the
signals generating the reference events must also be connected. For example consider the
connection of the address signals on a microprocessor and a memory device. Connection

78

of the address signals alone is not enough to transfer the address information: some other
signals (i.e. the signals that can be used for timing reference such as a data strobe) must
also be connected. In this case, the signals that generate the timing reference events are
considered fundamental to the operation of the capability.

4.7.5 Two Reference Event Timings for Data Transfer

This work develops a set of timing templates that can be used to represent the timing
behavior of any information signal involved in data transfer. The signal timings developed
are based on two reference events, the first event, ref+, represents the initiation of the data
transfer, while the second event, ref-, represents the termination of the data transfer. The
reference events are illustrated in timing diagrams as transitionsedarance signalThe
reference is a virtual reference signal since the reference events are often generated by
several signals, but only one signal is shown. The signal timing of any information signal
is given relative to the two reference events. The reference consists of two complementary
detectable events ref+ and ref-, while the information signal consists of complementary
events sig+ and sig-.

The data transfer signal timings encountered in the microprocessor system compo-
nents investigated are divided into two groupn-interactive timinggive the timing
behavior of an information signal relative to the two reference events witdeactive
timingsgive the timing behavior of an information signal relative to the reference events,
and also the behavior of the reference events relative to the information signal events.
Interactive timings are used to specify the timings of signals that are used in the overall
control discussed in Section 3.4.2.2 on page 41. The difference between the two groups of
timings can be seen in the direction of the timing links between the reference and informa-
tion signal events: If there is a timing link from an information signal event to a reference
event, the timing is an interactive timing, otherwise the timing is a non-interactive timing.

reference signal [timing link
—>

information signal[X" VALIDO ><j

FIGURE 4-17. Non-interactive Timing Example

Figure 4-17 shows an example of a non-interactive timing, where the reference
events have a timing link to the information signal events. This type of timing is typically
found for address signals in microprocessor systems such ad thignal of a MC68000

79

microprocessor. There are no timing links from the information signal events to the refer-
ence events.

Figure 4-18 shows an example of an interactive timing where the reference events

reference signal > timing link

information signal

FIGURE 4-18. Interactive Timing Example

have a timing link to the information signal events as in the non-interactive timing, and
where an information signal event has a timing link to a reference event. A typical exam-
ple for an interactive timing information signal is thZl ACK* signal of a MC68000
Microprocessor.

4.8 The Data Transfer Signal Timings

A signal timing for data transfer describes the relationship between two complemen-
tary events of an information signal (sig+ and sig-) relative to two timing reference events
(ref+ and ref-). Figure 4-19 shows the timing links that are always assumed to be present

ref+ A ref-

reference signal

U

complementary precede
>

information signal X

_ . eventually precedes
Sig+ sig-

FIGURE 4-19. Theoretical Timing Relations

between the ref+ and ref- events and the sig+ and sig- events unless otherwise specified.

The signal timings described in this section are illustrated by showing the timing
links between events other than those shown in Figure 4-19. The range of the allowed val-
ues for the timing parameter of the timing links are shown using the symael——
or ———-1 with respect to the reference event, as explained in Section 4.7.3, if the
timing parameter is bounded by infinity on one side and an omp delay on the other. For a

80

Strobe Timin

0]

reference signal (O, I)

setup time Iink’/{

hold time Iin:l
Y

clock setup time Iink//A

ALE signal (O, 1) | ale+

- ale-

information signal (O, I) >< VALID)G

setup time Iink/{ ¥\\hold time link

(-~ +omp) setup rangex L

clock Setup rangeq—————
(=Fomp) 0

~ hold range (-omp +~)

I clock hold range
(-omp +-)

\‘_, clock hold time link

Follows Timing

reference signal (I)

responds -with

N
setup time Iin_W
information signal (O ><

VALID

khold time link

(0 +~) setup rangb—|>

hold range (0 +~)

Loqic Timing

reference signal (O)

information signal (O)NEGO ASSO

setup time link —* %

accompanied-by
—_—>

hold time link
NEGO

(-omp +omp) setup range. |

| hold range (-omp +omp)

always-accompanied-
information signal (O, | >< VALID STATE E—
(-~ +omp) setup rang_e| hold range (-omp +~)
Latch Timing
ref+ ref- always-accompaﬂied- DYy
reference signal (O, 7|

FIGURE 4-20. Non-Interactive Timing Templates - Part 1

81

causal timing link, where the timing parameter value is bounded by 0 one side and + infin-
ity on the other, the symbo@———-—r is used.

All signals shown in a signal timing template are marked with an O for output or an
| for input, indicating the allowed direction of the signals with respect to the component.

For discussion purposes, all timing links in the signal timings presented are given
names such as ‘setup time link’, ‘hold time link’, ‘response time link’, ‘acknowledge time
link’ or ‘access time link’. The timing link names have slightly different meanings for the
different timing templates, and must be discussed in the context of the timing template in
which they are used. Figure 4-20 and Figure 4-21 present the non-interactive Strobe,
Latch, Follows Logic, Pulse-Latch and Follows-Latch timing templates, while Figure 4-22
presents the interactive Handshake, Wait and Pulse timing templates. A detailed descrip-
tion of the different timing templates can be found in Appendix A.

Pulse-Latch Timing

I - ied-b
always-accompanied-by

reference signa (1) i hold time link
r setup time link

information signal (1) ><VALID ><j
— — ~ hold range (-omp +~)

setup range (-~ +omp)<17|_—|

Follows-Latch Timing

i S — expects
reference signal (O)
access time Iink///\«\ hold time link
information signal (I ><VAL|D ><j setup time link

hold range (0 +~)
(-~ +omp) setup|range

(O +~) access rang@———=—

FIGURE 4-21. Non-Interactive Timing Templates - Part 2

82

Handshake Timing (Inf ormation Signal is Input)
reference signal (O) — respongs-with

expects
acknowledge time link—— | //Z \ hold time ”nl]
— ifk

information signal (1) | response time |

acknowledge range (0 +
.~ response range (0 +~)

@ — holdrange (0 +~)
Wait Timing (Inf ormation Signal is Input)

minimum time responds-with
—>
_ —~— - expects
reference signal (O

. 4 complementaryirecedes

setup time link ~—
——————— response time link

acknowledge time link

¢

information signal (1)

@ ———> minimum range (0, +~)
@ setup range (% +~)

@ = acknowledge range (0, +~)
@ response range (0, +~)

Pulse Timing

14

ES

_ Complementary-preced
Information Signal / Reference (O, H——— »

T access time link

@ > daCCess range

FIGURE 4-22. Interactive Timing Templates

4.8.1 Interactive Timings and the Initiate to Terminate Time Interval

The three interactive timings represent three fundamentally different methods used
to adjust the time interval between the initiate and terminate events of the reference. Isolat-
ing the method of adjusting the initiate to terminate interval has two important advantages
for modeling the signal timing of components and interface design:

First, it allows the concept of delay information to be developed. Delay information
is information transferred between components that is used to adjust the initiate to termi-
nate interval. For example on a MC68000, the DTACK signal is used to pass information

83

to the MC68000 that indicates when it should terminate a data transfer. This work later
develops universal technigues to connect information transfer, which can also be used to
connect delay information.

Second, it allows separation of the interactive and non-interactive aspects of an
information transfer. The separation provides a method of abstracting information transfer
into more primitive and therefore simpler information transfers. For example, the descrip-
tion of a read data transfer of a MC68000 is often presented relative tdDIs and the
DTACK* signal as shown in Figure 4-23. The assetHdS* event causes the memory

/" Ups* N I
\(A) (®)
DTACK*
(B)
D15
L)
interactive non-interactive

Y|)

DTACK* ><:|
FIGURE 4-23. MC68000 Read Data Transfer

-
UDS* UDS* ‘@
X

device to supply the valid data after an interval (A). Once the memory device supplies the
data orD15, DTACK?*is asserted after interval (B). An interval (C) later, thBS* signal

is negated. Instead of a single timing behavior involving three signals, the timing behavior
of the read data transfer is modeled as a Handshake Timing betwedsDif& and
DTACK*signals and as a Follows-Latch Timing betweenib&* and theD15 signal.

The three interactive timings represent different methods of specifying the initiate to
terminate interval of the reference. The Handshake Timing specifies how the interval can
be increased (from a lower limit), by delaying the time of occurrence of the asserted infor-
mation signal event as shown in Figure 4-24(b). The Wait Timing specifies what the inter-
val is if no information signal transition occurs as shown in Figure 4-24(c), and it specifies
how the interval can be increased from a lower limit by delaying the time of occurrence of

84

responds-with expects complementary-precedes
ref+ ref- Figure 4-31(a) > ref-
Refererice— (300 350) Pulse Timing ref+ -> ref- @ (300 350)
ref+ ref-
Reference (Variable) . .
0 50) i rer+ ->re -
O hiE e Piing @ Cerabl) (40 0)
Information Sign3 80)
(DTACK*)
ref+ ref-
iy (300 350) ref+ -> ref- @ (300 350)
elerence Figure 4-31(c)
Wait Timing
Case 1
Information Signal
(WAIT*)
ref+ ref-
Reference o Figure 4-31(d)
(0 30) (4080) wiait Timing
Case 2 ref+ -> ref-
_ 1 @ (0 30)+(Variable)+(40 80)
Information S'gnal—\\(VariabIe)
(WAIT*)

FIGURE 4-24. Initiate to Terminate Timing Link Example
the negated information signal event as shown in Figure 4-24(d). The non-interactive
Pulse Timing simply specifies what the interval is, as shown in Figure 4-24(a).

4.8.2 Multiple Reference Signal Timings

The input reference on a device can consist of several signals. Often the timing
parameters of timing links to information signals are given relative to initiate and termi-
nate events of each of the reference signals. For example, Figure 4-25 shows the data
access time Tand T, for a typical EPROM memory device relative to two sign&&*
andCE*. How is the reference consisting of multiple signals given? And how are the other
signal timings given relative to this reference?

85

CE*] responas-with
OE* \
access time links__ | | hold time links
Data vaLp X]
T
T1

FIGURE 4-25. Data Access Timing for a Typical Slave Device
By investigating a signal timing such as the one shown in Figure 4-25, it was real-
ized that the reference consists of the logical AND of the signals involved as shown in
Figure 4-26. This resulted in the development of the concept of the AND signal timing:

S responds-with
—>

s

setup time Iink\ \
A

reference signal =
So>...S, *
X vaup X |
= setup timing parameter (relative t9) S
n

setup timing parameter (relative tg) S
T

FIGURE 4-26. AND-Follows Timing

An AND signal timing provides a separate timing parameter for the timing links from
each of the signals involved in the reference as shown. For example, the AND-Follows
Timing given in Figure 4-26 indicates that the timing is a Follows Timing, with different
access timing parameters supplied for each of the reference signals.

86

The following AND timings were found to exist: AND-Follows Timing (Figure 4-
26), AND-Pulse Timing, AND-Strobe Timing, AND-Pulse-Latch Timing, AND-Latch
Timing, AND-Handshake Timing, AND-Wait Timing.

AND timings are similar to the other timings described in this section except they
have separate timing values associated with each reference signal. If one of the timings of
a data transfer capability is given as an AND timing, all other data transfer capability tim-
ings for that device are also given as AND Timings.

4.8.3 Signal Timing Summary

A total of seven output signal timings (Table 4-4) and seven input signal timings

Strobe Timing
Follows Timing
Latch Timing
Logic Timing
Pulse Timing
Handshake Timing
Wait Timing
TABLE 4-4. Output Specification Timings

(Table 4-5) were developed to represent the timing behavior of an information signal for

data transfer. If the input timing reference consists of more than one signal, the input tim-

ings will be AND timings, which means separate timing parameter values are provided for

events on each of the signals used for the reference. Of the total number of nine signal tim-
ings, six are non-interactive timings, while three are interactive timings which can be used

to adjust and/or specify the initiate to terminate interval of the reference.

Strobe Timing

Latch Timing
Pulse-Latch Timing
Follows-Latch Timing
Pulse Timing
Handshake Timing
Wait Timing

TABLE 4-5. Input Requirement Timings

87
4.9 Modeling Information Transfer

Information transferis the conveyance of information over signal wires. Informa-
tion transfer over electrical signal wires requires the interpretation of some state that can
be found on the signal wires and an indication of when the state can be interpreted. Thus,
an information transfer is divided into two parts: ttming informationindicating when
certain states are present on the signal asthte informatiorindicating the meaning or
interpretation of the state. The models developed so far allow us to give the timing infor-
mation of signals in the form of signal timings. The state information of a signal requires
the attachment of an interpretation or meaning to a set of states.

The concept of attaching an interpretation to a set of states is best explained using an
example. The information transfer associated with the direction of a data transfer for a
MC68000 microprocessor is given in Figure 4-27. The timing information for this exam-
ple is given by a signal timing that is based on a Strobe Timing template with a setup time
of (-20 -10) and hold time of (10 20) as shown Figure 4-27. The timing information is
used to indicate when the state information is transferred RWW&signal is used to indi-
cate a read if asserted and a write if negated. The state information for this information
transfer is given by associating two keywords, ‘READ’ and ‘WRITE’, representing the
concepts of reading from and writing to a component, with the appropriate states of the

Information Transfer
for direction information
for MC68000

—

Timing Information State Information
— (Interpretation Table)

Reference Events

Interpretation State
20 - 10 20
(-20 -10) VALID(()) 'READ' (NEGO RW¥)
*
RW X X ‘WRITE’ (ASSO RW*)

FIGURE 4-27. Information Transfer Example

RWr*signal.

The division of the information transfer into timing and state information integrates
well with the frame based data structures used for component representation. An informa-
tion transfer frame has slots containing the names of the timing information frame and the

88

state information frame. The state information frame is a table that associates some key-
words with signal states. The Interface Designer will look for the keywords to perform a
specific task, such as determining the state of a signal during a read operation.

4.10 Modeling the Data Transfer Capability

Data transfer is a capability whose specific purpose is to move specific information
from one place to another in the microprocessor system. This well defined information
will be called thedata information.

To complete the transfer of th#ata information, there must be other information
transfers associated with it that indicate whendlé information should be transferred,
how it should be transferred and where it should be transferred to/from. The description of
how the different information transfers involved accomplish the data transfer is called the
protocol of the capabilityThis section discusses a method of representing the protocol of
the data transfer capability as a set of information transfers.

4.10.1 Organization of Data Transfer in a Microprocessor Systems

For data transfer to occur, requires a device to transmit the data, a device to receive
the data, and a device to initiate and terminate the data transfer. For data transfer it was
found that all devices that are capable of initiating data transfer also terminate the data
transfer, thus the initiator and terminator are the same device.

Once the data transfer is initiated, tbata information will eventually be trans-
ferred between two or more devices. There always will be one source faiathe infor-
mation and one or more destinations for tfega information. To initiate a data transfer
the initiator / terminator indicates to the transmitter to start the process of sending the
data information to the receiver, while at the same time indicating to the receiver to be
prepared to accept tidata information from the transmitter. To terminate the data trans-
fer, the initiator / terminator indicates to the transmitter and receiver thalate infor-
mation transfer is about to be completed. It should be noted that the termination as
discussed here does not refer to some indication that the transmitter has transmitted the
data information or that the receiver has accepted/received/dt@ information (i.e. an
acknowledge). It simply indicates that the data transfer process is about to be completed.
The sequence of initiation, transfer and the termination is callbstatransfer cycleThe
initiation and termination of the data transfer cycle can be recognized by events on the
control signals. The initiation and termination events are used as the two reference events
for all data transfer signal timings.

89

In most practical cases either the transmitter or receiver will also be the initiator/ter-
minator of the data transfer. A device that can receive and tramé&tat information and
is also the initiator/terminator is commonly callednaster A device that can receive and
transmitdata information but can not initiate and terminate the data transfer is com-
monly called aslave

In this work we will only consider the data transfer between master and slave com-
ponents. The techniques developed for interface design can be extended to data transfer
for the more general receiver/transmitter model with a third device as the initiator/termina-
tor.

4.10.2 Classification of the Data Transfer Information Transfers

In classical treatment of microprocessor systems [18][65][35], data transfer is parti-
tioned into thedata information itself, the address information which indicates where the
data is transferred to/from, and the control information which includes any other informa-
tion required to complete the data transfer.

When investigating data transfer for microprocessors it was found that often part of
the information that indicates where data is transferred to/from consists of the address
information plus some other information, such as information about the type of data space
(e.g. supervisor or user). For this reason it was decided to include the address information
with the control information.

The control information is classified into information sub-classes: request, direction,
address, type, size, width and delay. It should be noted that the same physical signal can be
used to transfer two or more different sub-classes of information.

The information supplied by the master that provides an indication of the direction
of data transfer is thdirection information, such as thHe/W signal of the MC68000.

The location ofdata information is provided by using a linear address that repre-
sents an index to a location. This information is caleltiress information, such as the
A1-A23 signals of the MC68000.

Thedata information transferred during a data transfer may be classified according
to the type of information it represents. The classification of the information represented
by the data information is indicated usingype information supplied by the master
such as th&CO0, FC1 andFC2 signals of the MC68000.

90

The data information requested to be transferred often has different size from one
transfer to the next, such as 8-, 16- or 32-bit words. The information associated with the
size of the transfer is callesize information and is supplied by the master such as the
SIZEO andSIZE1 signals of the MC68020.

There often can be more than one data path between two devices. For example, a 32-
bit microprocessor has 4 separate 8-bit wide data paths available to transmit an 8-bit infor-
mation word. The actual data path used to transfer data is selected by the slave in the form
of width information, such as thBSACKO* DSACK1* signals of the MC68000. The
width information indicates to the master how wide the actlah information path is
and which path is used.

Thesize andwidth information is used to completely specify dynamically sized
data information transfers. For example, thge information of a MC68020 micropro-
cessor might indicate a 16-bit word size data transfer request (of a possible 8-, 16- or 32-
bit word). The device that responds to the data transfer may only be able to transfer data in
8-bit words. The slave then indicates to the MC68020 that the transfer is only 8 bits using
theDSACKO*andDSACK1* width information signals. To complete the transfer of the
16-bit word the MC68020 will then request the transfer of the second 8-bit word.

4.10.3 The Request Information

Conceptually, the initiation and termination events can be treated simply as informa-
tion transferred between components. This information is calledetipgest information
A design engineer will often connect tiequest information implicitly whenever sig-
nals are connected between components, sinceetijigest information is embedded in
signals which have functions other theequest information transfer. For example the
UDS* signal on a MC68000 contains both thee information andrequest informa-
tion.

Making therequest information explicit provides a major advantage. It allows us
to formalize the behavior of theequest information in a manner similar to all the other
information transfers as state and timing information. This makes it possible to manipulate
and connect theequest information explicitly using the same method developed for
the other information transfers. Furthermore, the Interface Designer will be able to pro-
ceed with the connection of the other information transfer signals with the knowledge that
therequest information will always be connected.

91

A Logic Timing with a setup and hold time timing parameter of value (0) provides
us with a simple method to give the timing of thequest information. For example, in
the MC68000, the signals involved in initiate and terminate events ar&fif* and

MC68000 Request Informatio}m

/

MC68000 Request Timing Informatign

- MC68000 Request State Informatjon
Reference
(O)V v (0) 'Request-Active-State’
UDS* LDS* | — (OR (ASSO UDS*) (ASSO LDS¥))

FIGURE 4-28. Request Information Example

LDS* signals. The MC6800@equest information consists of the MC6800@quest
timing information and the MC6800fkquest state information as shown in Figure 4-
28.

4.10.4 The Delay Information

The fundamental events underlying all data transfer operations are the initiate and
terminate events of the reference generated by the master. The method to control the time
period from the initiate to the terminate event is called akierall control The informa-
tion transfer associated with the overall control is calleddbkiy information. The con-
cept ofdelay information arose when investigating the interactive and non-interactive
aspect of an information transfer as explained in Section 4.8.1. The delay information rep-
resents the interactive aspect of the information transfer and is used to specify the time
interval from the initiate to terminate event of the reference.

The delay information is classified into two type€verall asynchronous control
andoverall synchronous control

4.10.4.1 Overall Asynchronous Control

For overall asynchronous control the time between the initiate and terminate events
of the reference is adjustable. The terminate event of the reference can not occur until after
a delay information signal event occurs as shown in Figure 4-29. The adjustable time

92

period is increased by delaying thle/ay information event (grey circle in Figure 4-29).
The delay information for this type of overall control will be based on either a Hand-
shake Timing or a Wait Timing. For overall asynchronous conwielay information

adjustable time peri
reference (O) —

delay information signal (1) j

- .
move this event to adju

responds-with
—

FIGURE 4-29. Overall Asynchronous Control

flows from the slave to the master.

4.10.4.2 Overall Synchronous Control

For overall synchronous control the time period between the initiate and terminate
events of the reference is fixed. Figure 4-30 shows a reference with a fixed time period

complementary-precedds
Fixed time period

reference and delay information (O) A

FIGURE 4-30. Overall Synchronous Control

between the initiate and terminate events. Teéay information for a data transfer of
this type will always have a timing of class Pulse Timing. For overall synchronous control,
no information flows from the slave to the masi@elay information for overall synchro-
nous control simply specifies the initiate to terminate interval.

4.10.5 Summary of Information Transfer between Master and Slave

All the control and the data information discussed has an information flow direction
associated with it. Each control information either flows out of the master and into the
slave or out of the slave and into the master as shown in Figure 4-31.

93

address Info

type Info

MASTER direction Info SLAVE

size Info

request Info

Y vy vyyvy

< width Info

< delay Info

data Info

FIGURE 4-31. Information transfer between master and slave

4.11 Conclusions

A component model has been created which allows a hierarchial representation of
the component. The protocol of a capability is given as a set of state-timing information
transfers. A set of information transfer classes has been developed to represent the data
transfer capability of all microprocessor components. For data transfer, the information
transfer classes amata , address , direction , type , size , width , request
and delay information. Details of the frames representation of the component can be
found in Appendix B.1.

Each information transfer is given as state and timing information. The state infor-
mation attaches meaning to the states of signals, while the timing information transfer pro-
vides information of how and when information is transferred. A method has been
developed to represent similarities between timing behavior of different signals in the
form of timing templates. All similar signal timings are represented by the same class of
timing template. The timing templates are propagation delay invariant: This means that the
timing template of a signal will not change from one end of a wire to the other. This allows
component signal timings with similar timing behavior to be represented by the same tim-
ing template.

94
Chapter 5

Microprocessor System Interface Model

This chapter develops data structures to represent the interface connecting the com-
ponents. The information organization is closely related to the hierarchial structure of the
component model and the top down design methodology used to accomplish the interface
design.

5.1 The Interface Block

An interface blocKIB) represents the complete digital system that connects a capa-
bility of two or more components together. For example, Figure 5-1 shows an IB that con-

Componentl < Component?
Interface
Block
Capability x (1B)
Signals —
— 7 Inputs Outputs—— ™
I () © 1
> Capability X
Signals

FIGURE 5-1. Interface Block (IB)

nects the x capability of Componentl and Component2. These components could be VLSI
devices such as microprocessors, memories, UARTS or any digital systems such as a laser
printer. The IB will have all the information signals related to the capability of the devices
flowing into and out of it.

5.2 The Information Connection Interface Sub-Blocks

The protocol of a capability is given as a sequence of information transfers over the
signal wires that connect to the signal pins of the devices. The IB is divided into interface
sub-blocks (ISB) callednformation Connection ISBsr simply Info ISB.Each Info ISB

Devicel Interface Device2
Block
(1B)
Info A ———®—ISB] p-| INfO A,
Info C - —|;
ISB p| INfO E
[- Info F
InNfo D |« ISB - Info D’
FIGURE 5-2. Information Connection Interface Sub-Blocks (ISB)

can have one or more information input port and a single information output port as shown
in Figure 5-2. The protocol of a capability determines which information transfer input or
output ports are connected by Info ISBs. The output from an Info ISB can go to the input
of another Info ISB or to the input of one of the devices being connected.

5.3 Partitioning the Info ISBs

The intended function of the Info ISB is two-fold:

1. State ConversiarThe states of the ISB information input port signals are used to gen-
erate the correct states on the output of the Info ISB.

2. Timing ConversionThe timings of the ISB information input port signals are used to
generate the correct timing on the output of the Info ISB.

To accomplish the two functions, the Info ISB is partitioned into ISBs for state con-
version and ISBs for timing conversion, callState ISBandTiming ISBrespectively. The
choice of using separate State and Timing ISBs is a natural one since the state conversion
can be accomplished with a combinatorial circuit, while timing conversion is accom-
plished with a memory device such as a Flip-Flop. This can be seen with a simple exam-
ple. A microprocessor with a multiplexed address bus and a memory with a non-
multiplexed inverted address bus are to be connected. To accomplish the timing conver-
sion, the microprocessor address bus must be demultiplexed (this is usually done with a
transparent D-Latch). To accomplish the state conversion the address signals must be
inverted (this is usually done with an inverter).

The State and Timing ISBs will take the input signals of the Info ISB, make the
appropriate conversions, and then generate the output signals. Figure 5-3 shows three

96

ways of organizing the state and timing conversion within an Info ISB. In Figure 5-3(a)

(a) Timing Conversion First, State Conversion Second

Signal In Timin State Sig[ial Out
—— 3B — ™ISB |

(b) State Conversion First, Timing Conversion Second
Signal In State

—_— L g TiMin
ISB ISB g

Signal Out
|

(c) State Conversion and Timing Conversion in Parallel

> State
Sianal | ISB L
ignal In i
2 Combine? Signal Oﬂ
Timing 4
—®1|SB

FIGURE 5-3. Timing and State Conversion Order

the timing conversion is performed first, followed by a state conversion. In Figure 5-3(b)
the state conversion is performed first, followed by the timing conversion, while in
Figure 5-3(c) the timing and state conversion is performed in parallel. Attempting to per-
form the state conversion and timing conversion in parallel results in a design dilemma:
After the timing and state conversion, two signals will exist which must now be used to
produce a single output signal as shown in Figure 5-3(c). It is difficult, if not impossible,
to define what the block marked ‘Combine?’ in Figure 5-3(c) has to accomplish.

Figure 5-4 shows the organization of the Info ISB that was chosen to accomplish the
task of timing and state conversion. The timing conversion is performed on each signal
entering the Info ISB. The output of each Timing ISB goes into the State ISB.

The order of the State and Timing ISBs was chosen to allow the timing behavior of
each signal to be fine-tuned before the state conversion takes place. This imitates the way
a designer will normally accomplish the task of timing and state conversion. For example,
assume a designer must generate a decoded address signal from a multiplexed address bus.
Normally the designer will demultiplex the address signals (timing conversion) and then
pass the demultiplexed address signals into the address decoder (state conversion).

97

Information Information
into ISB out of ISB
Infop
S . Infooyr
Si2 | .| Timing
Converter —p» >So
6
Infog ISB State -
Si3 Converter So7
Sia ISB
Sik Timing | | >SOn

Converter——%
ISB

Information Connection ISB

FIGURE 5-4. Details of Information Connection ISB

5.3.1 The Timing ISBs

The output signals of one device will exhibit certain timing behavior, and the other
device will require its input signals to have a certain timing behavior. To connect the two
devices, the timing behavior of the output information must be translated (modified) using
a Timing ISB so that all timing requirements of the device receiving the information are
satisfied. There are basically only two methods of changing the timing of a signal: A
clocked memory device and a pure delay.

A clocked memory deviaean store the state of a signal until the occurrence of an
event called a clock event.

A pure delaytakes an event and delays it a certain amount of time (e.g. a wire,
buffer, delay line or, under some circumstances, a combinatorial circuit). A pure delay will
generate an identical version of the event sequence, except delayed in time.

The signal timings developed in this work give the general timing behavior of sig-
nals in the form of timing templates and the specific timing behavior of the signals in the
form of timing parameters. The pure delay and clocked memory device are used to change
different aspects of a signal timing. A clocked memory device such as a D-Latch will nor-
mally change the timing template a signal is based on. A pure delay such as that from a
wire, buffer or combinatorial circuit will normally only change a signal’s timing parame-
ters, while preserving a signal’s timing template. A signal’s timing template is preserved
for a small pure delay, since the timing templates were designed to be small delay invari-
ant as discussed in Section 4.7.2.

98

For example, Figure 5-5 shows the effect of a clocked memory device and a pure
delay on the timing of a sign&IG1. Figure 5-5(a) shows the sign&8lG1, which is
based on a Latch Timing template passing into a transparent D-Latch (a clocked memory
device) to produce sign&@lG2. The signal timing ofSIG2 is completely different than
that of theSIG1 signal and is based on a Strobe Timing template. Figure 5-5(b) shows
the information signablG1, passing through a buffer with delayo generat&IG3. The
timing of SIG3 is also based on a Latch Timing template and the timing parameters are

(a) Clocked Memory Device (D-Latch) .
Strobe timing

SIGL D Q__ SIG2 reference
Latch timing ALE | CK si62 =Y var—h

reference [~]]
ALE
(b) Pure Delay (buffer or wire) Latch timing
SlGl[_~ a] [b+] | reference
SIG1: | SIG3 ALE
delay d SIG3
[-~a+d] [b+d +-]

FIGURE 5-5. Effect of Pure Delay and Clocked Memory Device on a Timing

increased by the amount of the dethy

The above discussion of the effect of pure delay and clocked memory devices on the
timing behavior of a signal is general and should be used as a guideline. There are excep-
tions where a pure delay changes the timing template of a signal (for example if the pure
delay is longer than an omp delay), or where a clocked memory device preserves the tim-
ing template of a signal and only changes the timing parameters.

The Timing ISB is designed by analyzing the required ISB output timing and the
available ISB input timing and choosing either a clocked memory device or a pure delay to
accomplish the appropriate timing conversion.

5.3.2 The State ISBs

The output signals of one device have certain states, and the other device will
require its input signal to have certain states, with a meaning associated with each state.
The meaning of a state refers to items such as a specific address for address information,
or a specific direction for direction information. To accomplish the connection of the state

99

information, the state information between two devices must be translated using some
kind of circuitry, so that they are compatible with each other.

For most information exchanges in microprocessor systems the translation involves
only logical operations on asserted or negated signal states, and simple combinatorial

Inn ut Combinatorial —»
p - Circuit
— ™| State ISB — — n-In to 1-Out
m 1-Output
n > Boolean P — _ Combinatoria]
Inputs’ Eﬂﬂcﬂ??o': ~ Outputs Circuits
— m-OI?Jtput > \ n EE Combinatorial —»
Inputs_—_ | Circuit
Decoder —
n-In to 1-Out

FIGURE 5-6. Combinatorial State

logic can be used for the state translation. The combinatorial state translation involves a n-
input to m-output combinatorial circuit, which can be generated using m n-input, 1-output
combinatorial circuits as shown in Figure 5-6[37].

Sometimes the state translation involves states other than ASSERTED and
NEGATED. In these cases specialized hardware, cédteel convertersmust be utilized
for the state translation. For example, a tri-state buffer can be used to change the state of a
signal from ENABLED to OPEN as shown in Figure 5-7.

Enable
This Signal will make the Signal Out
Either OPEN or ENABLED

’ Signal Out

Signal In Required to be OPEN at one time,
From ENABLED Output ENABLED at another time

FIGURE 5-7. Tri-state Buffer

The State ISB is designed by analyzing what the required output state of the ISB,
and inserting the appropriate State ISB made up of either combinatorial circuits or special-
ized signal level converters such as tri-state buffers.

100
5.4 Interface Sub-Block Primitive Circuits

The IB is organized into a hierarchial series of ISBs as shown in Figure 5-8. At each
level of abstraction, the ISBs become more and more detailed. At the lowest level, the
ISBs are simple digital circuits with known, well defined behavior. These simple digital

Devicel . Device2
Port Interface
Block (IB)
ISB
ISB
Portl ISB —1SB

'—I
—
] ISB iSE Port5

Port4

>
> SB ISB Port6

‘ > ISB
Port7

FIGURE 5-8. Interface Block Organization

circuits are devices such as AND gates, OR gates, flip-flops or buffers. They are the build-
ing blocks from which the ISBs are ultimately constructed. These digital circuits are
calledISB primitiveg(ISBP).

An ISBP is a simple, well defined digital circuit. The circuit can have any number of
input and output signals. It is considered primitive since its input / output behavior is
known, and it can not be broken into smaller sub-circuits by the Interface Designer. There
are basically three types of ISBPs that are allowed in an ISB and that are primitive:

» Combinatorial primitive circuitwhich includes any combinatorial circuit without feed-
back.

* Memory primitive circuitwhich includes flip-flops, latches and delay elements.
» Level Conversion Primitivesvhich includes tri-state buffers and open collector drivers.

The choice of which ISBPs to use to build up the interface is up to the interface
designer. The knowledge about which ISBP to use to manipulate state and timing informa-
tion is represented with design rules.

101
5.4.1 Common ISBPs and their Behavior

A set of eight ISBPs was developed for the Interface Designer. The set of ISBPs was
chosen to facilitate the design of all possible State and Timing ISBs the Interface Designer
may encounter. For example, the state conversion is normally accomplished using a com-
binatorial circuit, thus the combinatorial circuit was chosen as one of the primitives. Simi-
larly, the timing conversion to convert a multiplexed signal to a non-multiplexed signal is
normally accomplished by a D-Latch, thus the D-Latch was chosen as one of the ISBPs.
All state and timing conversion possibilities between IB inputs and outputs were exam-
ined, resulting in the ISBPs presented in this section. The set of ISBPs chosen is not
unique, and it is possible to develop a different set ISBPs to facilitate the design of the
State and Timing I1SBs.

The ISBP’s behavior is divided into two domains: the value domain and the time
domain. Thevalue domairdeals only with the logic function of an ISBP. It represents the
transformation of 1/0 values and ignores the 1/O timing relations. The logic function is
what a designer generally remembers about a device without looking up specific details in
a data book. For example take a D-Flip-Flop: a designer usually will remember that the
data input will be transferred to the Q output on a clock transition, but he will often not
remember what the specific setup and hold times are. This knowledge represents the logic
function. Thetime domaindeals with the 1/O timing relations such as event propagation
delays and signal setup and hold times for any signal going into and coming out of the
ISBP. Values associated with the 1/O timing relations of an ISBP are referred 8B&s
parameters

In the Interface Designer, the ISBPs are represented using a VHDL [2] behavior
description which defines their behavior precisely. There are four advantages to represent
the ISBPs using VHDL: First VHDL provides a well developed, standardized method of
describing a digital circuit using familiar programming language forms. Second, specify-
ing the ISBPs using VHDL allows the complete structure of the designed interface to be
given using VHDL. This means that once the frame based IBs and ISBs are completed
they can easily be translated into structured VHDL code which utilizes the VHDL ISBPs.
Third, VHDL provides a method of simulating the behavior of a design without the delay
and expense of hardware prototyping. And fourth, the VHDL description of the interface
can be used for synthesis: The actual hardware can be synthesized using a VHDL synthe-
sis tool. There are other hardware description languages, such as VERILOG, that could be
used to describe the ISBPs. VHDL was chosen due to its availability and ever increasing
industry support.

102

The final output of the Interface Designer will be the description of an implementa-
tion of the microprocessor system interface. By representing the ISBPs using VHDL sev-
eral methods of implementing the microprocessor system are possible. The VHDL
description can be manually converted to an implementation using discrete logic such as
TTL gates, since the ISBPs were chosen to easily map to available TTL devices. The
VHDL description can also be used for automatic synthesis of the interface for different
target implementation platforms, using field programmable devices such as PALs, XIL-
INX programmable logic devices, Alterra EPLDs, or custom VLSI devices such as gate
arrays.

The ISBPs developed for this work are presented in this section. For each ISBP, a
circuit diagram logic symbol is provided, showing its inputs and outputs. A timing dia-
gram is used to indicate relationships in the form of events and states between the input
and output of the ISBP. Finally, the VHDL code description is given for each ISBP in the
form of an entity definition and an architecture for each entity. Following commonly used
terminology a device described in VHDL is called antity, while the description of its
operation of the device is called &schitecture

5.4.1.1 Combinatorial ISBP

Any single output combinatorial circuit of arbitrary complexity, without feedback, is
a Combinatorial ISBP. The behavior of the Combinatorial ISBP is represented by its Bool-

Il — n-Input
| Combinatorial
2 —® function

|3 —P TPD — O
(no delays)
In O =F(plz ... In)
E PR 0o o Iy A

T — time relation
PD

o) 0 X

FIGURE 5-9. Behavior Model of Combinatorial ISBP

ean equation F, which is a function of the inpuis I I, as shown in Figure 5-9 and the
propagation delay dp. The effect of any changes on the inputs of the Combinatorial ISBP

103

propagate to the output after a delaypl’ A VHDL behavior model of a 2-input AND
Combinatorial ISBP is given in Table 5-1. The Combinatorial ISBP is also used within the

entity AND2 is

generic (tpd : TIME :=10ns);

port (IN1, IN2: in STD_LOGIC; OUT1: out STD_LOGIC);
end AND2;

architecture BEHAVOIR of AND2 is
begin

OUT1<=IN1 and IN2 after tpd;
end BEHAVOIR;

TABLE 5-1. VHDL Behavior Model of 2 Input AND ISBP

description of other ISBPs such as the Leading Edge Delay.

5.4.1.2 D-Flip-Flop Clocked Memory ISBP

An edge triggered D-Flip-Flop is a simple memory ISBP with two inpiisad
CLK) and one output@). It was chosen because it is simple to analyze and it can be used
to build other edge triggered Flip-Flops such as J-K-Flip-Flops.

INL —>| D __ " ouTl
D-Flip-Flop

Teik
Tsw Th

cLKk —1Tck > CLK

CLK Tey T So=S
IN1(D) X \s|><: — time relation
Tcik
OUT1(Q) Y so

FIGURE 5-10. Behavior Model of Edge Triggered D-Flip-Flop ISBP

An edge triggered D-Flip-Flop latches the input data on the NEGATED to
ASSERTED clock edge as shown in Figure 5-10. A VHDL behavior model of the D-Flip-
Flop ISBP is given in Table 5-2. The time domain behavior of the D-Flip-Flop includes
three time relations shown Figure 5-105,Tand T, are the input setup and hold time
requirements, while d, is the clock edge to output delay (tclk in VHDL code). The

104

entity D_Flip_Flop is
generic (tclk : TIME :=10ns);

port (IN1, CLK: in STD_LOGIC; OUT1: out STD_LOGIC);
end D-Flip-Flop;
architecture BEHAVOIR of D_Flip_Flop is
begin
process (CLK)
begin
if rising-edge(CLK) then
OUT1<=IN1 after tclk;
end if ;

end process ;
end BEHAVOIR;

TABLE 5-2. VHDL Behavior Model of D-Flip-Flop ISBP

VHDL D-Flip-Flop shown here is a simplified version of the one actually used. The com-
plete VHDL code for the D-Flip-Flop, which also includes a reset signal, is shown in
Appendix C.2.6. The current Interface Designer does not use the D-Flip-Flop directly, but
uses it to implement Pure Delay ISBPs (discussed below). Once the capabilities of the
Interface Designer are expanded, the D-Flip-Flop ISBP could be used to build output reg-
isters or to synchronize an asynchronous signal to a system clock.

5.4.1.3 Other ISBPs
The other ISBPs developed are the D-Latch (Figure 5-11), Pure delay (Figure 5-12),

INL ——Tpp (> D Q ——» OUTL
D-Latch

Tpp Tolk
Tsu h

CLK _TCLK = CLK

CLK T’V -;h \

IN1(D) S X |)
Tpp Y Teik %073
OouUT1(Q) >< So ><: —» time relation

FIGURE 5-11. Behavior Model of D-Latch ISBP

Leading Edge Delay (Figure 5-13), Trailing Edge Delay (Figure 5-14), Tri-State Buffer

105

Pure

IN1 Y—_ S — time relation
\ Tep So=S,
OuT1 X So
FIGURE 5-12. Behavior Model of Pure Delay ISBP
Pure Delay
INT — @ 'SBP ‘\\\ANDZ
e OUT1
/ TPD_and2
Tvar Tpur * TPD_and2
IN1
T * T . .
var PD_and2 g time relation
OUT1
FIGURE 5-13. Behavior Model of Leading Edge Delay Primitive
Pure Delay INV

IN1 ISBP AND?2
Tour Ton
PD_inv OouUT1
/ Tpp _and2

IN1 h —» time relation
Tpp and2 Tvar Tvar Tpur * Tep_invt TPD_and?

OouT1

FIGURE 5-14. Behavior Model of Trailing Edge Delay Primitive
(Figure 5-15) and Open Collector Buffer(Figure 5-16). The VHDL behavior model of
these ISBPs is given in Appendix C.2.

106

OuUT1

So=S
S'0=S]

— time relation

FIGURE 5-15. Behavior Model of Tri-State Buffer Primitive

IN1

IN1

OuT1

OUT1

m
Tpp

—» time relation

* Indicates Open Collector

FIGURE 5-16. Logical Model of Open Collector Buffer Primitive

5.4.1.4 ISBP Timing Simulation

A simulation test bench for the VHDL ISBPs was developed to verify their opera-
tion. The VHDL test bench was compiled and simulated using Mentor Graphics Corpora-

tion VHDL tools. The result of the simulation is shown in Figure 5-1idl‘’, ‘in2,

in1+
in2 clk en
Sys reset
sys clock -

AND2 outl

D-LATCH outl -

D_FF outl
PUREDEL outl -+
L_EDGE outl
T_EDGE outl +

TRI_BUF outl -

OPENCOL outl -+

Entity:test_bench

3
L - 1
- ,\\

| I | |] | |] | [
| T
————————————————————— : |
| E I
| 50 1100 ; L
| \4\ 150
‘ : | :

 —1

100

Architecture:test_benchl

Date: Thu Jul 31 08:33:04 1997 Page 1

FIGURE 5-17. Simulation of Primitives

400

e

PErrrr e
4

107

clk, en ’and ‘sys-reset ' are three signals generated within the simulation test
bench. in1 ' connects to théN1 input of a device,in2, clk, en ' connects either

to theIN2 input, CLK clock input orT tri-state enable input of a device, whilgy's-

reset ' connects to theeset input of a device. Th@utl output is shown for the 2

input AND gate (ANDZ2), D-Latch (D-LATCH), D-Flip-Flop (D-FF), Pure Delay (PURE-
DEL), Leading Edge Delay (L_EDGE), Trailing Edge Delay (T-EDGE), Tri-state Buffer
(TRI_BUF) and the Open Collector Buffer (OPENCOL). The test bench used a gate prop-
agation delay tpd of 4ns, a clock to output delay tclk of 5 ns and a tri-state enable t_tri
delay of 8 ns. The Pure Delay has a 50 ns propagation delay, while the Leading Edge and
the Trailing Edge Delays have a propagation delay of 100 ns and 150 ns respectively. The
Pure, Leading and Trailing Edge Delays are implemented using D-Flip-Flops clocked
with the 'sys-clock ' signal.

The timing diagram verifies the correctness of the VHDL specification of the ISBPs
and the operation of the ISBPs. For example, the timing diagram shows the delay of the
inl , 0 to 1 edge by approximately 50 ns, 100 ns and 150 ns for the Pure, Leading and
Trailing Edge Delays respectively. As expected, the delays are not exactly 50, 100 and 150
ns due to the inherent delays of the ISBPs.

5.5 Interface Representation Summary

This chapter discussed how the interface is represented as a hierarchial data struc-
ture that will be created and built up during the interface design process. The interface for
a capability is represented using an Interface Block. The IB is sub-divided into Info ISBs.
These in turn are sub-divided into Timing and State ISBs. The timing and State ISBs are
given using ISBPs. A set of ISBPs was developed to allow for the conversion of com-
monly found timing and state information formats. The ISBPs include a Combinatorial
ISBP, a Tri-state Buffer and Open Collector Buffer ISBP for state information conversion
and a D-Latch, D-Flip-Flop, Pure Delay, Leading Edge Delay and Trailing Edge Delay
ISBP for timing information conversion. Each ISBP has a VHDL representation which
allows testing and implementation of the interface using various technologies. Details of
the frame representation of the interface can be found in Appendix B.2.

108
Chapter 6

The Interface Design Process

6.1 Introduction

This chapter introduces the interface design methodology and its representation in
the Interface Designer. Automation of the interface design process is complicated by the
fact that often no formal method or precise algorithm exists for all aspects of this design
process. A human designer will use heuristics to complete the design. In this work, this
heuristic knowledge about interface design is represented in the form of design rules that
utilize knowledge at specific abstraction levels of a component’s capability. This is one of
the primary reasons for the emphasis placed on abstraction in the development of the com-
ponent and interface models presented in Chapter 4 and Chapter 5.

Figure 6-1 gives an overview of the underlying fundamentals of the design process.
A component (Componentl) has output information signals with a given state-timing out-

Componentl gilét gégﬁgcificaﬂon: Component?
Output Spe .. ,
SigSpecl Fig(ISBP Parameters, SigSpecl)
is propagated B
InformationAy Forward :RLOJFationB.
Output > — — e
Sge%lijfication Fig Specification
SigSpecl ISBP Parameters SigSpec2

FIGURE 6-1. Interface Design Process

put specification SigSpecl as specified by the component manufacturer. An output specifi-
cation gives the state and timing specification of an output signal. Another component
(Component?2) receives some input information signals with a given state-timing input
specification SigSpec?2 as specified by the component manufacturer. A state-timing input
specification gives the state and timing requirements of an input signal.

The design of the interface blocks follows a top down design practice. This means
that the problem of the interface design is broken down into the design of interconnected
sub-systems, which in turn are broken down into the design of more detailed sub-systems

109

until finally at the most detailed level simple, well defined ISBPs are chosen to build the
interface. These ISBPs will have ISBP parameters associated with them, such as propaga-
tion delays and setup and hold times, whose values will not be known until after the inter-
face design has been completed and an implementation technology has been chosen. This
is one of the problems that makes interface design difficult: the design must proceed with-
out knowing the values of the ISBP parameters.

The design of the interface block has one fundamental goal: It must allow the two
interfaced components to operate within the limits of the specification supplied by the
component manufacturers. As shown in Figure 6-1, the design process developed in this
work accomplishes this goal by propagating the output specification of Componentl,
SigSpecl, forward through the Interface Block (IB), resulting in an output specification
SigSpecl’. The output specification of the IB, SigSpecl’, is derived as a funggowfF
the ISBP parameters and the output specification of Componentl, SigSpecl. Once the
design is complete, an implementation technology is chosen with known ISBP parame-
ters, and the timing parameters of SigSpecl’ are evaluated. The implementation technol-
ogy also could be chosen before starting the interface design, and the SigSpecl’ timing
parameters can be evaluated as SigSpecl is propagated forward through the IB. The Inter-
face Designer uses the first approach, where the implementation technology is chosen
after design completion, to give the user the option of evaluating different implementation
technologies for a given design. In any case, once the timing parameters of SigSpecl’ are
known, they are verified against the SigSpec2 input specification, assuring that the funda-
mental goal is satisfied.

This chapter first presents the hierarchial tasks used to perform interface design that
satisfy the above fundamental goal. This is followed by an overview of the terminology
used for the building blocks and signals within the Interface Designer. The rules developed
to accomplish each of the Interface Design tasks are then presented in separate sections.

6.2 Abstraction of the Interface Design Tasks

The interface design is divided into several hierarchial tasks which will be accom-
plished using rules in a production system. The design tasks are organized into the seven
layers shown in Figure 6-2. The top level Component Selection design task (Level A)
selects components and decides which components must be connected by an interface.
The second level Capability Interface design task (Level B) creates an interface block for
each capability that must be connected between components. Next, the interface block
connecting a capability is broken into a set of Information Connection ISBs (Level C).

110

FIGURE 6-2. Interface Design Task Abstraction Levels

The fourth level of the design hierarchy divides the Information Connection ISB into State
and Timing ISBs (Level D). The next task fills the State and Timing ISBs with ISBPs
(Level E). After an implementation technology is chosen, timing verification is performed
(Level F). Finally the interface is implemented using a VHDL description which allows
the design to be simulated or realized using real components (Level G). If problems are
found during the timing verification or the implementation phase of the interface design,
most likely the components are incompatible and the design process should be repeated
using a different selection of components.

This work places emphasis on the development of design rules that can accomplish
the design tasks by assembling and connecting building blocks applicable to a particular
abstraction level. By using design rules specific to a design abstraction level, task interde-
pendence is reduced. This in turn reduces the number of rules required to achieve each
task and it simplifies the development and maintenance of the rules. For example, a set of
rules was created to accomplish the division of a generic Information Connection ISB into
State and Timing ISBs (Level D). These rules are independent of the actual classification
of the information being transferred, found in Level C (i.e. they are independent of the
information transfer such asddress information or direction information), and
they are independent of the actual timing templates of the signal timing found in Level E
(i.e. they are independent of the timing behavior such as multiplexed Latch timing or non-
multiplexed Strobe timing). The number of rules is reduced since it is not necessary to
provide an Information Connection ISB division rule for each class of information trans-
fer, or for each timing template. If a new class of information transfer has to be added to

111

the capability, the rules dividing an information transfer into state and timing parts do not
have to be modified since they are independent of the information class. Thus the mainte-
nance of the rules is also simplified.

This work is primarily concerned with the design of the interface between compo-
nents (levels B to G), not the selection of the components (level A). Design rules are
developed to accomplish the interface design which follow the design task abstraction lev-
els found in Figure 6-2.

6.3 Overview of the Interface Block Design Terminology and Process

Figure 6-3 shows a typical IB. The IB is sub-divided into Information Connection
ISBs, also called Info ISBs. The Info ISBs are used to connect information transfer ports
between components. Each information transfer port will consist of one or more signals.
The component output signa(g\) will be connected tdB input signals(B). The IB input
signals are connected tofo ISB input signal¢C). Each Info ISB may have one or more
input signal. In Figure 6-3, ISBla and ISB1b have one input signal, ISB2 and ISB4 have
two input signals, while ISB3 has three input signals. Each Info ISB input signal is con-
nected to the input signal of a Timing ISB. The output signal of the Timing ISB is called
theintermediate signafl) and it is connected to the input of the State ISB. The output of
the State ISB is connected to th&@o ISB output signa(D). The Info ISB output signal
can be connected to the input of any external component é autput signal(F), or it
can be connected to other Info ISBs admernal signal(E). An internal signal is an Info
ISB output signal that only connects to other Info ISB inputs. The only signals connected
to the inputs of an Info ISB (C) are IB input signals (B) or internal signals (E). Each signal
in Figure 6-3 has an associated timing: The component output timing (A), IB input timing
(B), Info ISB input timing (C), Info ISB output timing (D), internal timing (E), 1B output
timing (F), component input timing (G) and intermediate timing (I).

The interface design process builds up the IB from building blocks specific to each
design task abstraction level. Design of the interface commences at the highest abstraction
level with the creation of an IB. The IB is created from an IB prototype without specifying
internal details, but with all IB input signals (B) and IB output signals (F) specified.

At the next task abstraction level, the IB is filled in with Info ISBs interconnected
with Info ISB input and output signals. When each Info ISB is first created, a goal infor-
mation specification is established for the ISB output. bal informationis the desired
output state-timing specification of the Info ISB, and the Interface Designer will design

112

B
| Info ISB1b
Info ISBla
(A B C State ery D Fl)
2a B C 1, Timing1 | | Converter D 2 GE
L Converter > G
=D-
[A|B C |,/ Timing= | Info ISB3
g "| Converter -
D
\A B SER Timing 1| | G\t
Info ISB2 Converter > State gl S
B ICL,| Timing 41 | Converter|D G/
fA Converter [State pcl | Timingf1 |
g 5 Converter > Converter =D-
Cl, Timin I
A =y
‘L "| Converter =D-
=
(&)
c
S E Info ISB4
= c| TimingT | N
S > Converter 7> State =
Converter | D Q
sa | B Cl, Timin | 2
5A 9341 S
¢ " Converter =- E
< |F O
sG
A - Component Output Signal
B - IB Input Signal
C - Info ISB Input Signal
D - Info ISB Output Signal
E - Internal Signal
F - IB Output Signal
G - Component Input Signal
| - Intermediate Signal

FIGURE 6-3. Design Process Overview and Terminology
the Info ISB so that the output specification of the Info ISB matches the goal information.
The design methodology to determine the goal information will be discussed in
Section 6.5.5.

The Info ISBs are built up from State and Timing ISB building blocks. Finally the
Timing and State ISBs are built up using ISBPs as building blocks. The ISBPs are chosen
in a way to generate the desired goal information on the Info ISB output. This is accom-

113

plished by first filling in the State ISB with a Combinatorial ISBP, and then filling in each
Timing ISB with a Timing ISBP.

An Info ISB can only be designed if its input state and timing specification are
known. This means that any Info ISBs whose inputs come from component outputs are
designed first, since the signal timings of any component output signals are known from
the component library (ISBla,b and ISB2 in Figure 6-3 are designed first). As an Info ISB
is designed, its specific output timing parameters, such as the setup and hold times, will be
determined. Any Info ISB that uses the known outputs can then be designed. In the exam-
ple in Figure 6-3, both Info ISB3 and ISB4 can be designed after ISB2 has been completed
since the internal signal (E) comes from the output of ISB2. Since the design of an Info
ISB involves the generation of its output signal timing, the output timings of the IB will be
known after the completion of all Info ISBs. Once an implementation technology is cho-
sen the IB output timing can then be checked to see whether it satisfies the component
input timing, thus verifying that a correct interface has indeed been produced.

The following sections present the rules developed to accomplish each of the Inter-
face Design tasks.

6.4 Creating the Interface Block

The Interface Designer is invoked by a connection request to design a required inter-
face. A connection request specifies the components selected, the class of capability the
connection must satisfy and specific information related to the capability.

The data transfer interface connection request contains a list of the components that
must be connected through an 1B, the address map assigning a unique address to each of
the components being connected, the direction of the data transfer, type of data to be trans-
ferred and information about the data bus size used for the data transfer. Other information
that may be included in the connection request is an indication on what the design priority
is: Should the Interface Designer emphasize high speed, low cost, small PC board real
estate or low power consumption? The connection request must provide all the informa-
tion necessary to complete the interface design.

This work is not concerned with how the connection request is generated. It is
assumed that the connection request is provided either directly by the user of the design
system or through a higher level expert system similar to the one used in the MAPLE [77],
MICON [10] and KDMS [45] microprocessor system synthesis systems.

114

An IB for a capability is created by a rule that is triggered by a connection request
frame as shown in Figure 6-4. The signals in and out of the IB are all the signals involved
in the capability X.

Connection! (Production) ::f:we:
Request for System Connection Request
Capability x THEN
Create IB

Component create
Library |

Capability X Capability X

Signals of Signals of

Componentl B Component2 ~omponent?

FIGURE 6-4. Capability Connection IB Creation

6.5 Partitioning the IB into Info ISBs

To partition the 1B, the protocol of the capability is treated as a series of information
transfers which are connected using Info ISBs. Each information transfer is associated
with a specific function in the protocol of the capability. For data transfer the protocol
requires thataddress , data , type , size , direction , request , delay and
width information transfer signals be considered for connection using Info ISBs. The
decision on which information transfer ports will be connected depends on which infor-
mation transfer ports exist and the capability being connected. Rules are used to recognize
the presence or absence of information transfer ports on a component. Figure 6-5 shows
typical Info ISBs created by these rules when they are triggered (in Figure 6-5 an Info ISB
is called an ISB).

The primary knowledge for this design task are rules that consider how the different
information transfers in a capability should be connected. Figure 6-5 shows a typical
example set of information transfers involved in a microprocessor to memory data transfer
interface. It should be noted that some of the information of a certain classification can be
found on both components being connected (for exangadress , direction
request anddata information in Figure 6-5), while others are only found on one com-
ponent (for examplé/pe anddelay information in Figure 6-5).

115

IB Production | Information

for Capability X System Connection
Design Rules

Component|

Library | create ISBs

Info ISB
Internal Decoded Read Info
1B Internal Decoded Request Info
Internal Decoded Type Info
a Internal Decoded Address Info
Address > SB1 Addreg
T—> ISB1b

Direction Direction
. > | ISB3a|, »| [ISB3b >
? Y
§ Request| > 1SB4| 4 g,
o e
=S Reunt [}
o
S |Type [TSBY| [TSB4 S
.§ | |ISB10 H
=

Qelay

1 g |- .

ISB Y Internal Access info
<Data ISB9 Data

FIGURE 6-5. Example Microprocessor / Memory Interface Info ISBs
The organization of the interface block shown in Figure 6-5 is somewhat dependent
on the design style of the designer. Different designers may produce equally correct
designs with a different layout of Info ISBs.

Figure 6-5 also shows the generation of internal information ports.Imernal
information portrefers to any port generated within the IB and only connects to the inputs
of other Info ISBs within the IB, such as the interrd#coded request information.
Internal information ports are introduced since they provide a flexibility method of repre-
senting the knowledge and heuristics a designer uses for interface design. Internal infor-
mation serves two purposes, which may overlap. First, an internal information port can be
used to generate information internal to the interface that is not available directly from the
components, such as the interagicess information in Figure 6-5. Second, an internal
information port can be used to provide information signals commonly used in a standard

116

format. For example a designer will normally use an address decoder to generate a
decoded address signal. The decoded address signal is then used in conjunction with other
signals (such as a data strobe) to generate the chip enable signal for a memory component
or to generate the enable signal on a bus transceiver. The intl#oatled address
information generated in ISB1b of Figure 6-5 is equivalent to the decoded address signal.
This example also shows that internal information ports provide a powerful tool to sepa-
rate the utilization of information from the generation of information.

A set of rules is required to generate the Info ISBs in the context of the capability
being connected. These rules must be aware of all the possible information input and out-
put ports for a capability and they must include knowledge about how to determine the
goal information. These rules are divided into the following categories:

1. Knowledge on how to connect information ports of the same class.
2. Knowledge on how to generate internal information ports.

3. Knowledge on how to use tlextra informationprovided by an output port of a compo-
nent if there is no matching input port on the other component.

4. Knowledge on how to generate thessing informatiomequired by the input port of a
component if there is no corresponding output port on the other component

5. Knowledge on how to generate the goal information of an Info ISB.

The rules required to represent each of the five categories are discussed in the fol-
lowing sections.

6.5.1 Rules Used for Connecting Information Signals of the Same Class

If information ports with the same class exist between two components, they should
be connected. Rules are used to recognize the presence of the same class of information on

If Master has Info

and Slave has Info

Then generate ISB to connect Info

data (In/Out)

data (In/Out)

data to data

address (Out)

address (In)

address to address

direction (Out) direction (In) direction to direction
type (Out) type (In) type totype

size (Out) size (In) size tosize

request (Out) request (In) request to request
width (In) width (Out) width to width

delay (In) delay (Out) delay to delay

TABLE 6-1. Connections Rules for the Same Information Class

117

the components that are being connected. These rules, if triggered, will create an Info ISB
for each common information class found. For example, in Figure 6-5 ISB1 connects the
address information ports between Componentl and Component2. Table 6-1 lists all
the connection rules developed to connect data transfer ports of the same class.

6.5.2 Rules for Generating Internal Information Ports

The design of the Info ISBs is modularized and simplified through the use of inter-
nal information ports with known classification, states and timing. The standardized inter-
nal information signals can be used by the Interface Designer during numerous parts of the
IB design.

The utility of internal information ports can be illustrated with the simple example
design shown in Figure 6-6. The purpose of this Info ISB is to activat€Cthsignal on

ISB1 Info ISB

Address Internal Decoded |Address Info
Info Al2 | (SELECT) Reduest
from A13 to
Micro. > 4

Ald Memory

> ISB3
AL L, ™ CE

>
Request LDS . /

Info UDS))

from Bl

Micro. ISB2 | Internal Decoded Request Info

FIGURE 6-6. Example Extra Address Information Merge using three 1SBs

the memory whenever the address signals have a certain state and whenever either of the
UDSor LDS signals are asserted. By using internal signals the process of generating the
CE ssignal can be broken into three simple independent tasks: The generation an internal
decoded address information signal SELECT), the generation of an internal
decoded request signal and the generation of tHeE signal from the internal
decoded address anddecoded request information signals. The AND function

in ISB3 assures that tHeE signal will only be activated when the address is in the correct
range A12-A15 are asserted) and when one or more of dbhguest information sig-

nals from the microprocessor is asserted. From another viewpoint, ISB3 combines the
internaldecoded address information with the internatlecoded request infor-

118

mation. Since the combination process involves only standard internal signals generated
by the designer, a ‘standardized’ method can be used to generate the CE signal, namely the
combination of the internalecoded address anddecoded request signal using

the AND gate in ISB3. If theaddress information from the microprocessor is different

(i.e. different address or more address signals), only ISB1 must be changed, and the same
ISB3 can be used for the combination process.

By using internal information ports two important advantages are realized. First,
rule development becomes simpler since it is usually easier to develop many simple rules
that carry out small, well defined independent tasks, than it is to develop one complex rule
that carries out a more elaborate task. Second, the rule tasks can be partitioned into groups
of independent sub-tasks, which makes the rule base easier to maintain and debug. For
example one group of rules generates the internal signals and another group utilizes the
internal signals.

Several microprocessor system designs were investigated to see which internal ports
are commonly generated, and how these internal ports are utilized. The internal informa-
tion ports represented in the Interface Designer are:

Internaldecoded request information Single signal that specifies events that initiate and
terminate data transfer

Internaldecoded address information Information indicating when a given memory
block in the address space is being accessed.

Internaldecoded type information Information indicating when a given memory
block in the type space is being accessed.

Internaldecoded size information Information indicating what specific data bus sig-
nals are used for data transfer.

Internaldecoded read information Information indicating when a read data transfer
is in progress.

Internaldecoded access information Information indicating when a data transfer is in

progress in a given address range, type space and
for a specific data bus size.

Table 6-2 shows internal information generation rules. These rules were developed
to be able to generate all commonly used internal information found in a data transfer
interface. As can be seen in Table 6-2, there are two categories of internal information
generation. One is the interndecoded request , decoded read andaccess
information which are always generated. The other category has internal information ports
generated only if specific extra information is present on a compora#gtoded
address , type andsize information. The next section describes how the Interface
Designer utilizes extra information.

119

If Then Generate Internal

extraaddress information on master decoded address information (A)

extratype information on master decoded type information (B)

extrasize information on master decoded size information (C)
Always decoded request information (D)
Always access information

AND of (A) (B) (C) (D) if present
Always decoded read information

TABLE 6-2. Internal Information Generation Rules

6.5.3 Rules Used for Utilizing Extra Information

Often an output port of a certain classification on one component does not have a
similar information input port on the other component. This output information port is
called anextra information portFor example, the microprocessor often providegoe
information output port, while the memory does not provigee information input port.

Design rules are provided that recognize the extra information ports (signals) and
subsequently utilize the information if it is required for the correct operation of the inter-
face. For example, in the interface block of Figure 6-5, the esto@ , address and
request information are used to generate interm@coded type , address and
request information which are then applied to ISB5. ISB5 takes all three internal infor-
mation ports and generates the interaatess information, which is then sent to the
memoryrequest information input port after passing through ISB6. ISB6 is generated
to allow state and timing conversion of the interaalcess information as required by
therequest information input of the memory.

If Extra Information

Then

address on master

utilize the exteddress information

direction on master

error in component library

type on master

utilize the extitgpe information

Size on master

utilize the extsize information

request on master

error in component library

data on master or slave

error in component library

width on slave

incompatible component

delay on slave

incompatible component

TABLE 6-3. Extra Information Manipulation Rules

Table 6-3 lists all the possible extra information that could be found on either com-

ponent during data transfer interface design. Siecgiest anddirection
tion must always be found on both a master and a slave componentregtiest

informa-

and

120

direction information on the master (but not the slave) indicates that there is an error

in the component library and the Interface Designer will stop the design process with an
error message. If a slave component magth or delay information output, but the
master component does not have a matching input, it indicates that the components chosen
are not compatible with each other. The Interface Designer will not be able to proceed
with the design and will stop after printing an error message indicating the components are
incompatible.

In this work, the utilization of the extraddress , type or size information is
accomplished through the use of internal information ports. The Interface Designer will
first generate internal decoded information port signals for the extra information as
explained in the previous section and then take the decoded extra information which are
now in a standard format and logically combine them with deeoded request
information to generate the interratcess information.

Extra information is thus handled using two different methods. For extra
request, direction, width, data and delay information an error in the
component library or in the selection of components is indicated, while for extra
address, type andsize information internal decoded information ports are gener-
ated.

6.5.4 Rules Used for Generating Missing Information

The components being connected often do not have an information output port for
every information input port. These output information ports are catlessing informa-
tion ports For example, a microprocessor often has a delay information input port, while
the memory does not provide a delay information output port.

Design rules are provided to recognize the missing information ports and attempt to
utilize available information to generate the missing information. For example, in the
interface block of Figure 6-5 théelay information output is missing from the memory.

The delay information is generated from the internatcess information signal by
passing it through ISB8. It will not always be possible to generate the missing informa-
tion. For example, a microprocessor may have less address signals than are required by a
memory component. There is no obvious method of generating the missing address sig-
nals directly from the available information. In factatidress or type information

are found to be missing during interface design, it most likely indicates that incompatible
components were chosen during the higher level system design phases. In these cases, the
Interface Designer will stop the design process. If the Interface Designer finds missing

121

If Missing Information Output Port Then

for Matching Information Input Port

data master or slave flag error in component library

address on master flag invalid component selection

type on master flag invalid component selection

Size on master generate ISB that suppb&® information

request on master flag error in component library

direction on master flag error in component library

width on slave generate ISB that suppliggth information

delay on slave generatdelay information fromaccess infor-
mation

TABLE 6-4. Missing Information Generation Rules

data , request or direction information on the master, it indicates that an error in
the component library, since these information ports must always be present on the master.

Table 6-4 summarizes the rules developed to generate Info ISBs for missing infor-
mation ports. The Interface Designer will generate missizg , width and delay
information ports. The other missing information will generate error messages.

6.5.5 Generating the Goal Information of an Info ISB

When an Info ISB is created, a goal information is determined for its output. The
goal information represents the Interface Designer’s understanding of what the output of
the Info ISB should be once design has been completed. As such, the Interface Designer
will use the goal information as a guideline for designing the Info ISB. The goal informa-
tion is divided into two parts: the goal state and the goal timing. The goal state of the Info
ISB is the state the output of the Info ISB must attain during information transfer.

The goal timing is a timing template and represents the abstract timing behavior of
the output of an ISB. This fundamental technique allows rules to be developed that repre-
sent the heuristic knowledge a designer uses when designing the interface. This heuristic
knowledge allows the design of an ISB to proceed without knowing specific timing
parameters of a timing and relying only on the general behavior of the signals (i.e. the tim-
ing template of the signals). This is critically important since the timing parameters are a
function of the ISBP parameters which are not known until the design is complete and has
been implemented in a chosen technology.

Two methods are used by the Interface Designer to determine the goal information.
The first method is used when the goal information is for an Info ISB that generates inter-
nal information. This method uses simple rules that represent the heuristics a designer

122

would use to generate the internal information signals and are shown in Table 6-5. The

If ISB Generates Internal Then | Goal State Goal Timing
decoded address information asserted Strobe timing
decoded size information asserted Strobe timing
decoded type information asserted Strobe timing
decoded request information asserted Logic timing
decoded direction information asserted Strobe timing
access information asserted Logic timing

TABLE 6-5. Internal Information ISB Goal Information

goal states and timings in Table 6-5 were obtained by analyzing many different micropro-
cessor system designs and looking for similarities between the behavior of internal infor-
mation signals of the same classification. For example, it was found that most
microprocessor systems have an intemedoded address information signal that is
asserted during data transfer and which has a non-multiplexed timing. Therefore, for the
internal decoded address information, the goal state is chosen as asserted and the
goal timing is chosen as a Strobe timing.

The second method is used when the goal information is for an Info ISB output that
connects to a component information input port. This method analyzes the information
input specification obtained from the component library. The goal timing is determined by
finding an output timing template that is compatible with the component input timing tem-
plate. An output timing template is compatible with an input timing template if the timing
parameter range of the output timing falls within the timing parameter range of the input
timing template. For example, the setup time parameter range of a Logic timing is (-omp
+omp) which falls within the setup time parameter range of the Strobe timing (-~ +omp).
This means that the Logic output timing can be a goal timing for a Strobe input timing.
There may be more than one output timing template that can satisfy the timing parameter
range of an input timing template.

The goal timings for all the possible component input timing templates were deter-
mined by considering all the output timing templates whose timing parameter range could
satisfy the input parameter range. (The possible input and output timing templates were
discussed in Chapter 4). Those output timing templates that have timing parameters that
fall outside the input timing parameter ranges are eliminated. For example, Figure 6-7
shows how the setup time parameter range violation is used to eliminate the Follows tim-
ing as a goal timing for the Strobe input timing. As shown, the Logic timing and Strobe
output timing setup time parameter range satisfies the Strobe input timing setup time

123

Input Timing Specification:

Strobe timing

Allowed Range <——

Referencg

Signal >< VALID STATE

+omp

Output Timing Specification:

Strobe timing

X
Allowed Range /@i_|

Reference

Signal VALID STATE

+omp

Refetrence
Output Timing Specification: @ \

Logic timing

d

gnal ~NEGO | ASSO ' NEGO
Allowed Rangé¢——
-omp +omp

Both of these specified rangé§
fall within the required range of the input timing specification.

Follows Timing

Output Timing Specification:

Reference /KN ™\
e b

o=

0 +~

Allowed Range

The allowed range of this parameter falls outside of the
required range of the input Strobe Timing requirement above
(i.e. there is no upper bound) Therefore Follows output timing
can not be the goal timing of a Strobe input timing

FIGURE 6-7. Strobe Input Timing Specification Goal Timings

parameter range, while the Follows output timing setup time parameter range falls outside
that of the Strobe input timing parameter range. A similar conclusion can be drawn for the
hold time parameter range for the timings in the example, resulting in the conclusion that
Strobe output timing and Logic output timing are both goal timings for an Strobe input

timing, while the Follows output timing is not.

124

A list of possible goal timings for each input timing template is shown in Table 6-6.

Component Input Timing Template Goal Timing for Component Input Timing Template
Strobe Strobe Logic

Pulse Strobe Logic

Latch Latch

Pulse-Latch Follows, Strobe, Logic

Follows-Latch Follows, Strobe, Logic

Handshake Handshake

Wait Wait

TABLE 6-6. Goal Timings

Table 6-6 shows that some input timing templates map onto more than one goal timing.
The set of timings that can satisfy a component input timing template are capeat
specification compatible timinggrom Table 6-6, two sets of input specification compati-
ble timings can be seen: Strobe and Logic timing, and Follows, Strobe and Logic timing.
The timings in italics are assigned as the goal timing when an Info ISB is created. During
interface design, the Info ISB output timing can be changed to any timing in a set of input
specification compatible timings, if necessary. For example, if the input timing template of
a component is a Pulse-Latch timing, the set of input compatible timings contains the Fol-
lows, Strobe and Logic timing. Table 6-6 shows that the Follows timing is chosen as the
goal timing for the Pulse-Latch timing, which means that the Info ISB output timing is set
to a Follows timing when the Info ISB is created. During the design of the Info ISB the
Interface Designer may realize that the output timing of the Info ISB naturally has a
Strobe timing if all Info ISB input timings are Strobe timings. Instead of complicating the
interface by adding circuitry that generates a Follows timing output, the Info ISB output
timing may be changed to Strobe, since both Follows and Strobe timings are in the same
set of input specification compatible timings.

In the timing verification phase of interface design, the ISBP parameters of the inter-
face blocks are assigned values which depend on the implementation technology. A Logic
timing will place more restrictions (constraints) on the ISBP parameters than a Strobe tim-
ing since the Logic timing has a more restricted range for its timing parameters. A more
restricted range on an ISBP parameter means that it will be more difficult to find values
that permit correct operation of the IB. In Table 6-6, the timing templates that place the
least restrictions on the ISBP parameters are those shown in italics, and are the goal tim-
ings chosen for a given component input timing template.

125
6.6 Creating the State and Timing ISBs

Once an Info ISB is created, a rule is used to partition it into State and Timing ISBs

Production RULE:
System IF
Info ISB
THEN
Eigrrglﬁr)onentl create State an
y | create Timing ISB
create
Infon Info ISB
Si1
S | Timing Infooyr
ISB - -
Info o
le State > So7
3 ISB >
Sik | Timing | [Son
ISB >

FIGURE 6-8. State and Timing ISB Creation

as shown in Figure 6-8. The rule creates the State and Timing ISB building block frames
and connects the building blocks with signals. One State ISB is created for each Info ISB,
while an individual Timing ISB is created for each signal entering the Info ISB. The out-
put of each Timing ISB is connected to the input of the State ISB.

The Timing ISB will be used to change the timing template of the Info ISB input
signal to that of the goal timing of the Info ISB, or to one of the input specification com-
patible timings, while the State ISB is used to change the state of the Info ISB input sig-
nals to the goal state of the Info ISB. The Timing ISB passes the Info ISB input states
unchanged, while conceptually the State ISB passes the timing template of the Timing ISB
output unchanged. In practice, however, the State ISB will affect the timing in two ways:
First, the Combinatorial ISBP within the State ISB will have a non-zero propagation delay,
and second, if the State ISB input timing templates are different, the combination of the
different timing templates in the State ISB may produce a completely different timing
template. Since these aspects of the State ISB deal with timing, a procedure was developed
that allows the timing aspects of the State ISB to be dealt with when designing the Timing

126

ISBs. This allows the State ISB to be designed independently by considering only the state
information into and out of the Info ISB. The following section discusses the generation of
the ISBP for the State ISB. This is followed by a section discussing the generation of the
ISBPs for the Timing ISBs, which also deals with the effect of the State ISB on the Info
ISB output timing.

6.7 Generating the Combinatorial ISBP for the State ISB

A Combinatorial ISBP is inserted into the State ISB as shown in Figure 6-9. If states

— (Production) | Combinatorial ISBP
Component System

Library | | Design Rules

creati create

Input State Goal

State- ISB State
— — = Timing 1 b, ¥

ISB — — _|>_ —

— Level —

1 . : nverter
1 ﬂ' Combinatoria ICéoBI\D/e €

ISB —>

A

FIGURE 6-9. State ISB Primitive Circuit Creation

other than asserted or negated must be generated on the output of the Info ISB, a level con-
version ISBP such as a Tri-state Buffer or an Open Collector Buffer will also be inserted
into the State ISB. The combinatorial logic expression is determined by finding the Bool-
ean logic equation that maps the Info ISB input state to the ISB goal state. For example in
Figure 6-6, the internal address decode si@HELECT has the goal state (asS&ELECT).

This state must be attained whenever the Info ISB input state is (AND @fsksSp(asso

Al4) (ass0Al3) (asscAl2)). The Combinatorial ISBP will have the Boolean logic equa-
tion: SELECT=A15*A14*A13*A12 , where* represents the Boolean AND operation.

It is required that the Timing ISBs must pass the signal states from the Info ISB
input unchanged to the State ISB inputs. Care was taken when developing the Timing
ISBs to guarantee that this is the case.

127

6.8 Designing the Timing ISB using ISBP

The design of the Timing ISB involves two parts. First, an ISBP callddnang
ISBPis chosen as the basic building block of the Timing ISB. The Timing ISBP is chosen
to assure that the desired output timing template (the goal timing) is produced on the Info
ISB output. Second, the Info ISB output timing is finalized by considering the effect of the
chosen Timing ISBP and of the State ISB on the Info ISB input timing. Figure 6-10 illus-
trates the action of the rules developed for Timing ISBP design.

P pe—— Production Timing
Component < System > | ISBP
Library | Design Rules
create finalize
Output
Inout——I—= —Zli Timing
T'p' |~ = _pITiming ISB
iming | NN,
Timing ISBPJ—Q | . State
—ﬂ ISB ™
—— Timng | T * Vel
ISB —
Info ISB

FIGURE 6-10. Timing ISBP Design

The development of the rules that insert the correct ISBP into the Timing ISB was
central to this work since they represent an important heuristics a designer uses to com-
plete interface design. The premise seems straight forward: the Timing ISB design rule
must insert an ISBP into the Timing ISB that will generate the Info ISB output timing tem-
plate (which was set to the goal timing), given the input timing template of the Info ISB. In
practice, this task is complicated by the fact that after the ISBP has been inserted into the
Timing ISB, the Info ISB output timing must be determined as a function of all its ISBP
parameters. When the Combinatorial ISBP was chosen, only the input and output states of
the Info ISB were considered. Now that the output timing of the Info ISB must be deter-
mined, the effect of the Combinatorial ISBP on the input timings must also be considered.
The Info ISB output timing is therefore a function of the Timing ISB input timing, the
Timing ISBP parameters and also the Combinatorial ISBP parameters and is determined
through a process callgiching propagation

128
6.8.1 Overview of the Timing ISB Design Process

Figure 6-11 illustrates the signals and timings of an Info ISB. The output timing

Info ISB Input Timing Intermediate Signal
(one of the Output Intermediate Timing Info ISB
Timing Templates) Output Timing Template
Info (one of the Goal
ISB Timings)
Iny | Timing
ISB1 State
ISB
> Out
In, | Timing
ISBn

FIGURE 6-11. Info ISB with Timing ISBs

template of an Info ISB was determined when it was created: it was set to the goal timing.
The signal generated by the Timing ISB is the intermediate signal. The timing of the inter-
mediate signal is determined so that after the intermediate signals pass through the State
ISB, the required output timing template or one of the input specification compatible tim-
ings is generated.

As a simple example of the Timing ISB design process, consider the Info ISB shown
in Figure 6-12 which has 2 inputs: a multiplexed input (Latch timing) and a non-multi-
plexed input (Strobe timing). The output of the ISB must be a signal with the Strobe tim-
ing. An experienced designer knows that if each of the intermediate timings is a Strobe
timing, then the State ISB output timing and hence the Info ISB output timing will be a
Strobe timing. The problem of generating an ISB Strobe output timing is thus changed to
the problem of generating intermediate signals with a Strobe tinSignal , already
has a Strobe timing, and thus can be used directly (Timing ISB2 is just a ®Bigg)al 1
has a Latch timing, which is changed to a Strobe timing in Timing ISB1 using a D-Latch.
Both signals going into the Combinatorial ISBP now have a Strobe timing, and as will be
shown in Section 6.8.4.1, if all signals going into a Combinatorial ISBP have a Strobe tim-
ing, the output will also have a Strobe timing.

The Interface Designer decides which Timing ISBP to use through a set of rules that
generates the intermediate timing templates. These rules are based on heuristics a human

129

Intermediate Signals:
\ Strobe Timings

Info : .1 |Output Timing Template:

Latch Timing %—Iégtch ISB %anllbmato“al Strobe Timing
Siana | | Timing

gnay ISB1

State out

Strobe Timing Wire ISPP ISB
Sigha || Timing\

gnab ISB2

FIGURE 6-12. Interface Sub-Block example
designer would use for each possible Info ISB input timing / Info ISB output timing com-
bination.

Once an ISBP has been chosen and inserted into a Timing ISB, the Info ISB output
timing will be finalized. The building blocks of an Info ISB, are parameterized ISBPs such
as buffers, combinatorial logic, flip-flops, latches and delays. The Info ISB output timing
is represented in terms of the ISBP parameters and the timing parameters of the Info ISB
input timings. For example, in Figure 6-13 an Info ISB used for generating the internal

IB
Info ISB
Microprocessor ISSt.:Ete
Address iy ! M -
% I //
/ internaldecoded Address
Timing information signal
(Wire ISBP ISB Combinatorial ISBP:
ISBP parameter J=0) ISBP Parameter ph;

FIGURE 6-13. Example for Info ISB Timing Propagation

decoded address information is shown. It consists of two Timing ISBs and one State
ISB. The Timing ISBs are made up of Wire ISBPs which pass the Info ISB input signals
unchanged to the Combinatorial ISBP with zero propagation delgy£0). The State

ISB is made up of a Combinatorial ISBP with a propagation delaygf. Now assume
that theaddress information on the microprocessor has a setup time of -25ns relative to

130

the initiate event. The output of the Combinatorial ISBP will have a setup time of
-25+Tpgot Tpd1 = -25 +Tyg1 relative to this initiate event.

The process of determining the output timing parameter of tleeoded
address information signal in terms of the ISBP parameterg Tand Tyqo and the
microprocessoaddress information timing parameter is calléoining propagationthe
output timing of an Info ISB is determined by propagating the Info ISB input timing spec-
ification forward through the Timing ISBs, and then the State ISB, to the Info ISB output.

The next section provides detailed information on how a Timing ISBP is chosen.
This is followed by a section that provides a more detailed insight into the process of tim-
ing propagation for the different ISBPs.

6.8.2 Choosing the ISBP to build up the Timing ISB

As shown in Figure 6-11, the input timing of an Info ISB will be based on one of the
seven output timing templates, while the output timing of the Info ISB will be based on
one of the six goal timings. This means there is a total of 42 possible input/output timing
template possibilities for an Info ISB. The Interface Designer must therefore provide rules
that can handle all of the Input/Output timing combinations that can occur during interface
design.

Table 6-7 lists the input and output template combinations allowed for an Info ISB,

Info ISB Output Timing Template
% Strobe Logic Latch Follows Handshake | Wait
£ strobe Yes Yes Yes Yes
(O]
'> | Logic Yes Yes Yes Yes Yes Yes
c
£ | Pulse
|_
‘g_ Latch Yes Yes Yes Yes
c
m | Follows Yes
2
g Handshake Yes Yes
B Wait Yes Yes

TABLE 6-7. Permitted Input / Output Timing Templates for Info ISB

marked with a ‘Yes'. Table 6-7 was determined by investigating each of the combinations
in the context of microprocessor system design as accomplished by the Interface Designer
and asking two questions:

131

1. Can the combination possibly occur during the design process used by the Interface
Designer?

and

2. If the combination can occur, is it possible to perform the timing template conversion?

Only if both questions can be answered with a yes, is the combination allowed in
Table 6-7.

For an example applicable to the first question, the columns for the Handshake and
Wait output timing template are considered. It is found that the Interface Designer will
only encounter Logic, Handshake and Wait Info ISB input timings since there are only
two possible sources afelay information: thedelay information from the output of
another component, which always will have a Wait or Handshake timing or the internal
access information signal, which will always have a Logic timing.

For an example applicable to the second question the Strobe output timing is consid-
ered. The Interface Designer can conceivably generate Strobe, Logic, Latch and Follows
input timings. The Follows input timing however must be eliminated, since the setup time

Reference N N /
\ \' Follows Timing —p|
_ (into Info ISB)
Signal >< VALID ><:| IS -

o 7/ \

The above Follows Timing event may be later than
the permitted output event time for the Strobe Timing template
below. Hence this timing conversion is not possible.

Reference f \'
>< Strobe Timing *

Signal VALID | X_] (out of Info ISB)
B I

setup hold

FIGURE 6-14. Follows Input to Strobe Output Timing Template

event into the ISB for the Follows timing can have a later time of occurrence than that per-
mitted by the Strobe timing as shown in Figure 6-14. This means that it will not be possi-
ble to generate a Strobe output timing from a Follows input timing. This combination will

normally not occur, and if it does occur the Interface Designer will print an error message

132

stating that the design can not be completed and that a different component should be
selected.

Table 6-8 shows the intermediate timings for the Info ISB input/output combina-

Info ISB Output Timing Template
% Strobe Logic Latch Follows Handshake | Wait
£l strobe Strobe Strobe Latch Strobe
éLogic Logic Logic Latch Logic Handshake | Wait
E Pulse
‘g‘_ Latch Strobe Strobe Latch Strobe
;) Follows Follows
,_8 Handshake Handshake | Wait
Wait Handshake | Wait

TABLE 6-8. Intermediate Timing Templates for Input / Output Timings of Info ISBs
Bold entries require a non-trivial Timing ISBPs
Italic entries require a Timing ISBP that consists of a simple Wire ISBP
Regular font entries can be avoided through proper choice of components

tions that are permitted. The intermediate timings were chosen to satisfy three criteria:

1. The intermediate timing must be able to produce the desired output timing after passing
through the State ISB.

2. If different intermediate timings are allowed for a given output timing (i.e. the timings
found in a column in Table 6-8 are different) then the combination of one or more of
those timings must also be able to produce the desired output timing after passing
through the State ISB.

3. It must be possible to use one of the Timing ISBPs presented in Section 5.4 to perform
the timing conversion to the intermediate timing.

The methodology used to verify that each of the three criteria is satisfied will be dis-
cussed in Section 6.8.4, “Combinatorial ISBP Timing Propagation”.

If the Info ISB input timing and the intermediate timing are identical, the Timing
ISBP is simply a wire which connects the Info ISB input signal directly to the intermediate
signal. In Table 6-8, any intermediate timings that can be generated using a wire are shown
in italics.

Those intermediate timings not shown in italics require a non-trivial (i.e. non-wire)
Timing ISBP to convert from the Info ISB input timing. These Timing ISBPs must be able
to convert from Strobe to Latch, Logic to Latch, Logic to Handshake, Logic to Wait, Latch
to Strobe, Handshake to Wait and Wait to Handshake timing.

133

In real world design situations, it was found that a designer will normally avoid
component combinations that require generation of multiplexed signal from a non-multi-
plexed signal (Strobe to Latch) since an overly complex design will result. The Interface
Designer is a proof of concept system that represents a design expert’s knowledge of inter-
face design. To limit complexity, no Timing ISBPs are provided for those Info ISB input
and output timings that a human designer will normally avoid. These timing conversions
include the Strobe to Latch, Logic to Latch, Handshake to Wait and Wait to Handshake. If
these timing combinations occur, the Interface Designer will display an error message
indicating that the Interface Designer can not complete the design due to a component
incompatibility and that different components should be chosen. If timing conversions for
these combinations are desired at a later date, they can be added to the Interface Designer
by using the appropriate timing conversion rules.

The timing conversion provided in the Interface Designer includes Latch to Strobe
(using a D-Latch), Logic to Handshake (using a Leading Edge Delay) and Logic to Wait
(using a Trailing Edge Delay). The intermediate timings for which a non-trivial timing
conversion is required are showrbiold in Table 6-8.

The next sections provide a description of how the signal timings are propagated
through Timing and Combinatorial ISBPs. The techniques developed are presented using
examples. To illustrate timing propagation through Timing ISBPs, timing propagation
examples for a D-Latch ISBP and a Leading Edge Delay ISBP are provided. Two exam-
ples are given for the Combinatorial ISBP: one treats the case where all input timings are
Strobe timings, the other treats the case where the input timings are Logic and Strobe tim-
ings.

6.8.3 Timing ISBP Timing Propagation

Timing propagation for each Timing ISBP must be developed in the context of ISBP
input timings and the ISBP parameters. Other than the Wire ISBP, which represents the
trivial case that passes any signal timing unchanged from one end of the wire to the other,
a Timing ISBP has only one possible input timing template and several ISBP parameters.
This is in contrast to the Combinatorial ISBP discussed in the next section which has one
ISBP parameter (f) and several input timing templates.

This section describes the process developed to propagate the timing on the input of
a Timing ISBP to the output. Specifically it shows by two examples how expressions are
derived that give the output timing parameters, such as setup and hold times, in terms of
the input timing parameters and the Timing ISBP parameters.

134
6.8.3.1 D-Latch ISBP Timing Propagation

A D-Latch ISBP was developed to generate a Strobe timing signal from a Latch tim-
ing signal. In more practical terms, a D-Latch ISBP is used to convert a signal that has a
multiplexed timing to a signal that has a non-multiplexed timing. As shown in Figure 6-15

Ip ———®d — ™ p

Q™ O

D-Latch

d,,/ hold times

d3> Ip setup and
relative to |

|c|_|< —> dClk - p CLK

FIGURE 6-15. Model of D-Latch ISBP

a D-Latch has four ISBP parameters associated with it that can be used to completely
describe it. Delay g is the delay for any event that occurs on thginput and passes
through to theQy output, provided that the clock is in a state that passeBthput to the
Qoutput (i.e. the latch is in the transparent statg).dis the clock event to output change
delay. The D-Latch also has data input setup and hold tipesd ¢, associated with it.

The behavior of the D-Latch is described in detail in Section 5.4.1.3.

Figure 6-16 shows the output Strobe timing of a D-Latch for a Latch timing input.
Expressions for the output setup and hold times are desired. The output setupgicenTs
be obtained by considering what causes the INVALID to VALID output signal transition:
itis the INVALID to VALID input signal transition orl p. The output setup time F3ela-
tive to the reference initiate event can therefore be expressed as the sum of the setup time
of the input signal p relative to the initiate event, Ts=Fgx + Ts, and the signal delay
dp from theD input to theQ output of the D-Latch.

The output hold time T§ can be obtained by considering what causes the VALID to
INVALID output signal transition: It is the NEGATED to ASSERTED input signal transi-
tion on CLK. The output hold time Fscan therefore be expressed as the sum of the hold
time of the clock Th k, and the clock input to output delay, ¢ of the D-Latch.

Tso=Tscik+Ts+dp (EQ 6-1)

Tho=Thg k+dc (EQ 6-2)

135

Input timing (Latch)

Reference
Tk /- \ThCLK
Y [
CLK(ALE)
[

o DV

Qutput timing (Strobe)

Reference /

Output X Valid ><j

Tso=TscLktTstdp Tho=Thek tdcLk

Constraints: ds2 Ts —» Causal Relations
d,<Th,

FIGURE 6-16. Timing for Latch Output if Input is Latch Timing
Given any Latch input timing with timing parametersc[g, TS, The k, and a D-
Latch ISBP with parametersydand ¢ g, the timing parameters of the resulting Strobe
output timing of the D-Latch ISBP can be calculated using Equation 6-1 and Equation 6-
2.

Equation 6-1 and Equation 6-2 are independent of the D-Latch input segugan(
hold time (d,) parameters. However for the D-Latch to operate correctly, the setup and
hold time parameter range of thgihput signal must satisfygand ¢, To assure that this
is the case, two timing constraints are generatedinAng constraintis a relationship
between ISBP parameters (such as propagation delays) and/or component timing parame-
ters (such as setup and hold times) that must always be satisfied. Throughout this work,
whenever a timing constraint is generated, it is assumed that it will be satisfied after the
design is complete. Later, during the timing verification phase, values will be assigned to
the ISBP parameters and the constraints will be evaluated. However at this point in the
design (timing propagation phase) the timing constraints are simply generated.

Two timing constraints are generated for the D-Latch ISBP:

ds= Ty (EQ 6-3)

136
d,< Th, (EQ 6-4)
Whenever timing propagation for a D-Latch ISBP is performed to generate expres-

sions for the output timing, the two timing constraint expressions shown in Equation 6-3
and Equation 6-4 are also generated.

6.8.3.2 Leading Edge Delay ISBP Timing Propagation

The Leading Edge Delay ISBP was developed to allow conversion of a Logic timing
signal to a Handshake timing signal. In more practical terms, the Leading Edge Delay
ISBP is used to generate the acknowledge signal for a microprocessor that uses the Hand-
shake timing for thedelay information. A Leading Edge Delay ISBP has one input and
one output. It has the property of delaying the leading edge of the signal by a desired
amount, while the trailing edge is delayed by a propagation delay.

Figure 6-17 shows the model for the Leading Edge Delay ISBP developed for this

Input — 1™ Ovar
:demp » Output

Leading Edge Trailing Edge

Input \
Y dvar>prop

Output

dyar + cﬁorop dprop

FIGURE 6-17. Model of Leading-Edge Delay ISBP

work, in terms of a leading edge ISBP parametgyand the trailing edge ISBP parameter
dorop Which is the propagation delay of a combinatorial AND function. Thgtelay is
dependent on the implementation technology, i.e., it is the propagation delay of a 2-input
AND gate for a given technology (typically 3-7nsec for standard TTL logic). The d
delay however can be any value (usually®&>d, . and will be implemented using dif-
ferent techniques depending on the desired value of the delay. Small valugg fobh
10-1000ns usually will be implemented with delay lines, while delays greater than 100ns
are usually implemented using shift registers or counters.

Figure 6-18 shows the Logic input timing parametersarsl Th relative to the ref-
erence events. The model used for this work shown in Figure 6-17 shows that the leading

137

Input timing (Logic)

Reference

Ts y Th,
Input Negated Asserted Negated

Output timing (Handshake)

Reference N

\/
Negated Negated

Asserted
Tso=Tg +dvar+dprop Thg = Th+dpr0p
FIGURE 6-18. Logic input and Handshake Output Timing
edge will be delayed byg, and gy, while the trailing edge will be delayed only by
dorop Therefore the output setup and hold times of the Leading Edge Delay ISBP can be
expressed as:

Output

Tso = TS +0artGyrop (EQ 6-5)
Tho = Th+dp,, (EQ 6-6)
It should be noted that the primary purpose of the Leading Edge Delay ISBP was to

delay the leading edge of a pulse by a certain amount representggl.byrdideal’ Lead-
ing Edge Delay ISBP has an ISBP parametgcbf zero. However in practice a Leading
Edge Delay ISBP with zerogh, can not be built and therefore the propagation dejgy,d
had to be introduced. For the Leading Edge Delay ISBP, jheiching parameter will be
calculated after the interface has been implemented in a chosen technology, and when all
other timing parameters of the interface have been assigned a value. This is explained in
more detail in Section 6.9.3.

6.8.3.3 Summary of Timing ISBP Timing Propagation

Using the techniques introduced with the two examples given in this section, the
process of timing propagation for a Timing ISBP is specified as a procedure for every
input / output combination of a Timing ISBP. Table 6-9 summarizes the procedures as
simple steps utilizing the equations developed in this section.

138

Timing ISBP | Input Timing | Output Timing Steps to Propagate Timing Parameters
(Intermediate
Timing)
D-Latch Latch Strobe Propagate input to output (Eq. 6-1 , 6-2)
Generate 2 constraints for input setup and holdj
times (Eq. 6-3, 6-4)
Leading-Edge | Logic Handshake Propagate input to output (Eq. 6-5, 6-6)
Delay
Trailing-Edge | Logic Wait Propagate input to output
Delay (similar to Eq. 6-5 , 6-6)

TABLE 6-9. Steps for Timing ISBP Timing Propagation

6.8.4 Combinatorial ISBP Timing Propagation

This section describes the process developed to propagate the timing on the input of
a Combinatorial ISBP to the output. Specifically it shows by example how expressions are
derived that give the output timing parameters, such as setup and hold times, in terms of
the Combinatorial ISBP input timing parameters (which in turn are given as ISB input and
Timing ISBP parameters) and the Combinatorial ISBP parameger, T

Table 6-10 shows the possible input timings into the Combinatorial ISBP for each
output timing. This table can be directly obtained from Table 6-8 since the Combinatorial
ISBP output timing template is the same as the Info ISB output timing template. For sev-

Possible Input Timings Template Combinatorial ISBP Output Timing
(one of intermediate timings) Template

Strobe, Logic Strobe

Strobe, Logic Logic

Latch Latch

Strobe, Logic, Follows Follows

Handshake Handshake

Wait Wait

TABLE 6-10. Possible Input Timing for each Output Timing Template for Combinatorial ISBP

eral output timing templates more than one intermediate timing template can be found.

The Combinatorial ISBP is modeled as a boolean functidn F(.. I) witha
propagation delay Jyon the output as shown in Figure 6-19. An event on an ihpwtill
have an effect on the output after a propagation delgy Hor timing propagation to pro-
ceed, expressions must be found that give the timing parameters of tiggiobtie output

139

Signal k, Timing Ty >
Boolean » -
gun?:ﬂ(?n h Tod Output O
= 155 In LT
Signal |, Timing T, | | Timing Tg

FIGURE 6-19. Model of Combinatorial ISBP

Oas a function of the input timing parameters ang. Note that only the timing templates
as shown in Table 6-10 can be input timings to the combinatorial ISBP.

It will be shown that the output timing parameter expressions can be built up by con-
sidering each input to the Combinatorial ISBP in any order. This will allow the Interface
Designer to derive the expressions incrementally using rules that will systematically pro-
cess each of the Combinatorial ISBP input signals in an arbitrary order.

The technique used to develop the timing propagation expression is presented using
two examples to give the reader an understanding of the issues involved. The first example
shows how expressions for the output timing are obtained for Combinatorial ISBP that has
all Strobe input timing. The techniques presented for the first example using all Strobe
input timings can be applied to Combinatorial ISBPs that have the same timing template
on each of the inputs. The second example provides timing propagation expressions for a
Combinatorial ISBP that has both Strobe and Logic timing inputs.

6.8.4.1 Example of Strobe Input Timings for Combinatorial ISBP

Strobe timings are associated with VALID/INVALID transitions of signals. It is
known that if all inputs of an arbitrary combinatorial function are VALID, then the output
will be VALID, otherwise the output will be INVALID. This fact can be used to determine
the output timing of a Combinatorial ISBP. When the last input becomes VALID, the out-
put will become valid after Jy, and when the first input becomes invalid the output will
become INVALID after .

Figure 6-20 shows the Strobe input timings for inpytsd I, with their respective
setup and hold times Ts and Th. An input that becomes VALID will not cause an
INVALID!VALID transition on the output unless all other inputs are VALID. The time of
occurrence of the INVALID!VALID transition on the output will therefore be determined
by Tpq and by the input whose time of occurrence of the INVALID!VALID transition

140

Input timing (Strobe)

Reference
I, / Valid \
TS:L Thl
I, Valid \

Tsy Thy

Output timing (Strobe)
Reference

Output >< Valid

TSO: ThO:
Later-of{Ts;+Tpg TS+ Tpgs -0 TS+ Tpdt Earlier-of{Thy+Tpg, Tho+Tpg, ..., Thi+Tpgt

FIGURE 6-20. Timing for Combinatorial ISBP Output for all Strobe Input Timings
occurs latest in time. An event A is later in time than an event B if event A occurs after
event B. Since the times as used in the signal timings are always relative to some reference
event at time zero, a later event will have a greater signed time value than an earlier event.
The setup times of the inputs under discussion will usually be bounded by ‘-~’ on the left
side. For example a signal may have a setup time of (-~ -5) relative to some reference
event. This setup time means that the address will become valid at time -5ns or earlier (-~
implies ‘or earlier’). A simple operator was developed that selects the time interval that
extends the latest in time. This operator is calledlth&er-of operator and it allows the
setup time for the output of the Combinatorial ISBP to be written as:

Tsp = Later-of{Ts;+Tpg, T+ Tpg, -, T§+Tpdt (EQ 6-7)
Note that the ‘Later-of’ operator is commutative: Later-of{A, B} = Later-of{B, A}.
For example:

Later-of{(-~ -10) (-~ -5)} = Later-of{(-~ -5) (-~ -10)} = (-~ -5).

141

This example shows the result of the Later-of operator on two time intervals -10ns
and earlier, and -5ns and earlier. The resulting time interval is -5ns and earlier (-~ -5),
since -5ns is later than -10ns.

The determination of the output hold time of a Combinatorial ISBP with all Strobe
input timings proceeds similar to the setup time. The first input to become INVALID will
cause an INVALID!VALID transition on the output. The time of occurrence of the
VALID!INVALID transition of the output will be determined by Jy and by the input
whose time of occurrence of the INVALID!VALID transition occurs earliest in time. An
event A is earlier in time than an event B if event A occurs before event B. An earlier event
will have a smaller signed time value than a later event. The hold times of the inputs under
discussion will usually be bounded by ‘+~’ on the right side. For example a signal may
have a setup time of (5 +~) relative to some reference event. This setup time means that
the address will become valid at time 5ns or later (+~ implies ‘or later’). A simple operator
was developed that selects the time interval that extends the earliest in time. This operator
is called theEarlier-of operator and it allows the hold time for the output of the Combina-
torial ISBP to be written as:

Tho = Earlier-of{Thy+Tpg, Tho+Tpg, ..., Thi+Tpdh (EQ 6-8)
Note that the ‘Earlier-of’ operator is also commutative: Earlier-of{A, B} = Earlier-
of{B, A}.

In general, the setup and hold time ranges for a Strobe timing are (-~ +omp) and
(-omp +~) (see Appendix A.1.1 for a description of the Strobe timing). Given that

1. All the inputs to the Combinatorial ISBP are Strobe timings whose setup and hold
times fall within (-~ +omp) and (-omp +~).

2. The propagation delay invariance of timing templates (see Section 4.7.3 for a descrip-
tion of propagation delay invariance and the omp delay).

3. The propagation delaypfis a small delay where ompgg=omp, by definition of
omp.

It follows that each of the arguments of the Later-of and Earlier-of expressions given
in Equation 6-7 and Equation 6-8, and therefore botg @&sd Th,, also fall within the
setup and hold time ranges of a Strobe timing. A signal timing whose timing parameters
satisfy all timing parameters of a timing template can be represented using that timing
template. This means that the output timing of a Combinatorial ISBP that has all inputs
with a Strobe timing can be represented using a Strobe timing template.

142

The analysis of the ISBP output timing was independent of the boolean function F
of the Combinatorial ISBP, since only VALID/INVALID states have to be considered for
the Strobe timing. Since the Earlier-of and Later-of operators are commutative the expres-
sions shown in Equation 6-7 and Equation 6-8 can be generated by adding a propagation
delay term to the argument list of the Earlier-of{} and Later-of{} operators as each of the
I, to I, input signals is investigated individually. The commutative property means that the
final expressions will be independent of the order in which the inputs are considered.

6.8.4.2 Example of Logic Timing Inputs Mixed With Strobe Timing Inputs

The second example of timing propagation for Combinatorial ISBP is for mixed
Logic and Strobe input timings. This typically occurs for an address decoder signal with
Strobe timing that is gated (ANDed) with a signal that has a Logic timing. Normally when
such a circuit is designed, its purpose is to produce an output without glitches or anoma-
lies that has a Logic output timing. This is illustrated in Figure 6-21. Two address signals
Al4 and A15 (Strobe timing) and a data strobe signal DS (Logic timing) go into a Combi-
natorial ISBP to produce an output signal O. To assure that the output is glitch free, the

Event B must occur before Event A Combinatorial
Event A ISlBP
1 O
DS >
. I
Al4 I\ Valid ><j S

EventsB | :)>‘

ALS Y vaid Y] ol s

F=h*(,+l3)

Output -

FIGURE 6-21. Overview of Input and Output Timings for Combinatorial ISBP

output of the Combinatorial ISBP was chosen by the Interface Designer to be a Logic tim-
ing (i.e., the goal timing of the Info ISB output is a Logic timing). To assure that the output
timing adheres to the timing parameter ranges of the Logic timing, we must place some
restrictions on the relationships between the input Strobe and Logic timings:

143

1. The leading event of the Strobe timing signals (events B in example) must occur before
the leading event of the Logic timing signal (event A in example).

2. The trailing edge event of the Strobe timing signals must occur after the trailing event
of the Logic timing signals.

3. The boolean logic function must logically AND the asserted level of the signals with a
Logic timing to the other signals (For example, in Figure 6-21 the DS signal with Logic
timing is ANDed with the address signals A14, A15).

If these restrictions are satisfied, then we can guarantee that the leading and trailing

edges of the output will be glitch free as required.

Restriction 3 is normally automatically satisfied through the use of components that
are known to work with each other without extraordinary interface circuitry and by
employing a design strategy that will logically AND important intermediate information
signals (as discussed in Section 6.5). The Interface Designer always checks that signals
with Logic input timing are in fact ANDed with the other signals.

Figure 6-22 shows the two timing constraints (restrictions 1 and 2) that are gener-
ated for each Strobe timing input signal, one for the setup time and one for the hold time.
If there arek Strobe timing input signals there will bk 2onstraints. The constraints on
the Strobe input setup and hold times are expressed as a function of the propagation delay
Tpp and of the output setup and hold times:

Tso 2 Ts +Tog (EQ 6-9)

Tho < Thy +Tpq (EQ 6-10)

By expressing the constraints in terms ofyland Th, the process of obtaining the
constraints is simplified. It makes it possible to look at each input signal independently
and in any order, and if it has a Strobe timing, simply generate the two constraints shown
in Equation 6-9 and Equation 6-10.

The setup and hold times of the output timing can be expressed using Equation 6-7
and Equation 6-8 with the@ Logic input timing signals as shown in Figure 6-22. The
expressions for the setup and hold times of the output timing are independent of the sig-
nals that have a Strobe timing, due to the three restrictions above placed on the inputs with
Strobe timing.

As an example, assume that there are 3 input signals to an Info ISB as shown in
Figure 6-21. { has a Logic timing, whiled and k have a Strobe timing. Then gsLater-
of{Ts1+Tpd}=Ts1+Tq and Thy=Earlier-of{Thy+Tg}=Th1+T,q Four constraints will be
generated: T§ 2 Tsy+Tpg, TSo 2 TsztTpg, Tho < ThytTpgand Thy < Tha+T,4 Once

144

Input timing (Strobe or Logic)
Reference
I Ts; Th
! 31 ! Logic
I Ts, ' Th
n *n o Logic
Tshe1 Thnig
lh+1 Valid Strobe
Tsh+k v : "Thn+k
In+k Valid Strobe
Output timing (Logic)
Reference \
\ Logic
v v
Output
Tso=Later-of{Ts;+Tpg, - T$+Tpgt Tho=Earlier-of{Thj+Tpg, ..., Th+Tpgh
Timing Constraints: TSO_ > T3n+1+Tpd Tho S Thn+1+Tpd
Tso 2 TShakt Tpd Tho 'S ThyuctTpg

FIGURE 6-22. Timing for Combinatorial Output for Logic and Strobe Input Timings

all inputs have been processedgksd Thy can be substituted into the constraints giving
T512Tsy, T2 Ts3, Thy < Th,and Th < Thg.

6.8.4.3 Summary of Combinatorial ISBP Timing Propagation

Using the techniques introduced with the two examples given in this section, the
process of implementing the timing propagation for a Combinatorial ISBP can be speci-
fied as a simple procedure consisting of one or more steps for every input / output combi-
nation. Care was taken when developing the procedures to assure that the inputs to the
Combinatorial ISBP could be considered individually and in any order. Table 6-11 sum-
marizes the steps developed for all combinations of input and output timings. Generally
the steps consist of propagation of input timing parameters from the input to the output
using the expressions from Equation 6-7 and Equation 6-8, and the extraction of con-

145

Comb. Input Timing Comb. Output Timing | Steps to Propagate Timing Parameters
Strobe Logic Generate 2 Constraints (Eq. 6-9 , 6-10)
Logic* Logic Propagate input to output (Eq. 6-7 , 6-8)
(Check for AND combinatorial equation)
Strobe Strobe Propagate input to output (Eq. 6-7 , 6-8)
Logic Strobe Propagate input to output (Eq. 6-7 , 6-8)
Strobe Follows Propagate input to output (Eq. 6-7 , 6-8)
Logic Follows Propagate input to output (Eq. 6-7 , 6-8)
Follows Follows Propagate input to output (Eq. 6-7 , 6-8)
Latch Latch Propagate input to output (Eq. 6-7 , 6-8)
Handshake Handshake Propagate input to output (Eq. 6-7 , 6-8)
(Check for AND combinatorial equation)
Wait” Wait Propagate input to output (Eq. 6-7 , 6-8)
(Check for AND combinatorial equation)

TABLE 6-11. Steps for Combinatorial ISBP Timing Propagation

straints given by Equation 6-9 and Equation 6-10. Some of the timing propagation proce-

dures (marked with) also include a check to verify that the appropriate signals are
ANDed together.

6.9 IB Timing Verification

Once all Timing and State ISBs have been filled in with ISBPs, the structure of the
IB is completely defined as illustrated in Figure 6-23. The figure also shows that the sig-

Output Specification=
TimingOUT =F(Tyq, Teik, Timing1)
IB
State 1SB Component2
Info ISB T
pd=Y { \ InformationB
E|>_ Input
ISBP Specification
Timing1 TimingIN
Timing ISB
> T oi=X Connect
ISBP ||

FIGURE 6-23. The Interface Output to Component Connection

nals out of the IB with TimingOUT will be connected to the input signals of Component2

146

with TimingIN. To allow the interface to operate correctly, the timing parameters of
TimingOUT must satisfy the timing parameters of TimingIN. For example, if the input
signal on component2 requires a certain setup time parameter range, the IB output signal
setup time must fall within that range. The output timing TimingOUT is a function of the
ISBP parameters which may or may not satisfy the input specification of component2,
depending on the implementation. The process of checking whether the 1B output timing
satisfies the component input timing for a given implementation is cHlénning verifi-

cation

The verification proceeds in two steps. First a timing constraint, calteshaection
timing constraint is extracted for every timing parameter of every component input tim-
ing. As stated before, timing constraintis a relationship between ISBP parameters (such
as propagation delays) and component timing parameters (such as setup and hold times)
that must hold for correct operation of the interface. Second, all timing constraints
extracted during the interface design must be verified. This includes both the connection
timing constraints and the timing constraints extracted during timing propagation as
explained in Section 6.8.3 and Section 6.8.4. The timing constraints are verified by choos-
ing an implementation technology, assigning numeric values to the ISBP parameters and
then evaluating the constraints.

6.9.1 The Connection Timing Constraint Extraction Process

The timing of the signals in the interface block is given relative to the component
that generates the initiate and terminate events for the data transfer (this is usually the bus
master for the current data transfer). Figure 6-24 shows a simple example interface for a
non-multiplexed address signAll of a microprocessor and the non-multiplexed address
signalAO of a memory component. Since both address signals have a non-multiplexed sig-
nal timing, the Timing ISB for théA1 signal will simply be a Wire ISBP. Since the Wire
ISBP passes the input signal unchanged, this discussion only has to consider the buffer C1.

The timing relationship between signals in the IB is shown in simplified form in
Figure 6-25. The microprocessor generates sigrdalvhich has timing specification T1,
relative to the reference signBIS The outputAl’ of the buffer has timing specification
T2 relative to the reference signal The ISBP for the buffer has a propagation delay d1.
Thus we can state that the timing T2A1’ is the same as the timing T1 relative 5§
except that thé\1 signal is delayed by d1. The propagation delay d1 depends on the tech-
nology that will be used to implement the interface. For example a LSTTL buffer will have
a minimum delay of 2ns and a maximum delay of 8ns, written as the interval (2ns 8ns).

147

o Output Timing o
Output Timing Specification T2 Input Timing
Specification T1 for Al’ Specification T3
for Al for AO
Buffer C1.:
Delay d1
\)
LSB Address A} Al '™ Ll AO
Microprocessor | Wipé ISBP Memory
C2 C3
Address CE’
\ Tf_» CE
/DS/ F — 3 |
\\
Output Timing Combinatorial: Combinatorials
Specification T5 Delay d2 Delay d3
for other Address gUtpl'th Titr'ningT7
. Output Timing peciication
Output Timing Specification T6 for CE
Specification T4 for Decoded Address (DA)
for Request (DS)

FIGURE 6-24. Example Interface for an Address Signal

T1 AL o, T3
LSB Address AL-@— "N o> A0
Microprocessor Memory
Address T7
Y > CE
DS _‘4 d3|CE
")

\

y

FIGURE 6-25. Relative Timing Relationships for Example Interface

The Interface Designer also determines the signal timing T7 oCtesignal relative to
the microprocessor referenB&Ssignal. The component manufacturer specifies the timing
relationship T3 of the memoAO signal relative to th€E signal.

148

The microprocessor signall’ is connected to memory signAD. To assure that the
memory component will operate as specified by the component manufacturer, the Inter-
face Designer must assure that the timing parameters gkthsignal satisfy the timing
parameters of thé&0 signal. In order to compare the timing parameters of two signals,
both signals must be given relative to the same reference events. Signsalto be con-
nected directly to the sign&E which is the reference for th&0 signal in timing T3. A

(@) - - (0)
Timing T1 Timing T4
Reference (DS) Reference (DS)
y y
Al X X DS
Ts=(-~ -25) Th=(10 +~) Ts=(0) Th=(0)
Timing T2 Timing T7
Reference (@—I\T Reference w
Al X X CE -~ | -
Tsy=(-~ -25)+d1 | Th=(10 +~)+d1 Ts=(0)+d3 Th;=(0)+d3
Timing TX ()
CE’
Al X
TSX:TSZ -TS7= ThXZThZ -Th7:
(-~ -25)+d1-d3 (10 +~)+d1-d3
Ts=(-~ -10) Th=(0 +~

FIGURE 6-26. Finding Timing TX of A1’ relative to CE’

timing TX is to be found, as shown in Figure 6-26(c), that gives the timing of signal A1’
relative toCE. Timing parameters between TX and T3 can therefore be compared since
both timings are relative to the same referenC& (connects toCE). Figure 6-26 shows
how the timing parameters for timing TX are obtained.

149

In Figure 6-26(a) timing T1 is a Strobe timing with a setup time of 25ns and a hold
time of 10ns relative to the reference sign@y. Timing T2 of A1’, determined by the
Interface Designer, also is a Strobe timing with a setup time of (-~ 25)+d1 and a hold time
of (10 +~)+d1 relative to the same reference sigieh)(where d1 is an ISBP parameter
propagation delay.

In Figure 6-26(b), timing T4 is a Logic timing with a setup and hold time of Ons rel-
ative to the reference signdd). Timing T7 of theCE signal, determined by the Inter-
face Designer, is also a Logic timing with a setup and hold time of Ons+d3 = d3, relative to
the same reference signBl), where d3 is an ISBP parameter propagation delay.

The events on th€E signal in T7 occur d3 ns later than the events on the reference
DS SinceDSis the reference signal in both T2 and T7, it can be concluded that the events
on theAl’ signal occur d3 ns earlier relative to the events on@#kesignal. These rela-
tionships are shown as timing TX in Figure 6-26(c). TA& signal has a setup time
parameter of (-~ 25)+d1-d3 and a hold time parameter of (10 +~)+d1-d3 relative to the
CE signal. It should be noted that timing TX is a Strobe timing since signal timings are
small delay invariant, and both d1 and d3 are small delays.

This example showed that the timing relationship of the reference events between
components is required to verify the timing parameters of two signals being connected. In
the example shown in Figure 6-26, the required timing relationship is betwe&ttred-
erence signal on the microprocessor and@iaeference signal on the memory. The tim-
ing relationship between these two signal is given in timing T7. As it turns out, the timing
of the reference events between components is always available in the foequetst
information output of the IB. In fact, theequest information was designed primarily to
provide a simple, consistent method to obtain the timing relationship between reference
events between components. The Interface Designer will connect all information ports
found on a component, and in doing so will always generate a connection for the
request information ports. Due to the design methodology employed, the timing of
request information will always be in the form of a Logic timing. For timing verifica-
tion and constraint extraction, the Interface Designer directly looks at thedBest
information output port that is connected to the slave comporezyuest information
input port to determine the timing relationship between the reference events of compo-
nents.

150
6.9.1.1 Extracting the Timing Constraints

To assure setup and hold time parameters of T3 are satisfied, timing constraints are
extracted using the derived timing TX. Figure 6-26(c) shows the input setup tik@ afs
(-~ -10) relative to the&CE signal while the setup time of th&1’ as (-~ -25)+d1-d3 rela-
tive to theCE signal (which is connected directly to tli&Esignal). To assure that thhel’
output signal does generate a signal that meetAtheput specification, the Interface
Designer must assure that the timing parameter interval (-~ -25)+d1-d3 Afithsignal
falls within the timing parameter (-~ -10) of tA@ signal.

Thecontains-intervabperator was developed to provide the Interface Designer with
a method to express a constraint that must be satisfied to assure that one interval falls
within another interval. The expression

((A B) contains-interval (C D)) (EQ 6-11)
represents a constraint that states that interval (C D) falls within the interval (A B). The
constraint is satisfied (true) iff & C and B= D as illustrated in Figure 6-27. The upper

|é|||||}:)|BI||||>
|
|

time -- |)\

| |
I
Interval (A B)I

Interval (C D) }—{

_ —_——
Lower Margin = C-A Upper Margin = B-D

{(A B) contains-interval (C D)} iff A< Cand B2 D

FIGURE 6-27. Contains Interval Operator

and lowemarginsindicated by how much interval (C D) falls within interval (A B). Posi-
tive margins indicate that the constraint is satisfied, while any negative margin indicates
that a constraint fails.

Using the contains-interval operator, a constraint for the setup time oA@hend
Al’ signals can be written as:

{(-~ -10) contains-interval ((-~ -25)+d1-d3)} (EQ 6-12)

151

Figure 6-28 illustrates this constraint graphically. It shows how the timing parameter
Tsyyt Of the output specification of th&l’ signal falls within the input timing parameter
Ts, of theAO signal input specification.

Timing Output Specification TX (relative to CE’)

CE’
Tsou (-~ -25)+d1- \;rhouf(lo +~)+d1\d3

Al

2\ L

g \&

E |@

Timing Input Specification T3 (relative to CE==CE’) 8 |&

| ‘ o

Reference (C °

X

0) Thh=(0 +~)

ative to (CE'==CE)
[| ~

—
0 JO &O
TsouE((-~ -25)+d1)-d3
Tsp=(-~-10)

Specification
The output specification must fall within the input specification

FIGURE 6-28. Constraint Output and Input Specification
For the hold time of thA0 signal the constraint is:

{(0 +~) contains-interval ((10 +~) + d1-d3)} (EQ 6-13)
When the interface is implemented in a given technology, the delay parameters d1
and d3 will be found. The timing constraint shown in Equation 6-13 can then be evaluated
to verify that the input timing specification AD is satisfied.

6.9.1.2 Constraint Extraction Rules

For every IB output to component input connection, a set of connection timing con-
straints must be found. The timing constraints extracted depend on the signals’ timing
templates. A set of constraint extraction rules was developed to extract the timing con-

152

straints for each possible combination of IB output timing templates and component input
templates as outlined in Figure 6-29. The steps for timing constraint extraction are sum-

Productio Timing Verification
Template X Design Rule
o 'F

Template X to Template
THEN

Thd Extract | Extract Constraints
Timing Constraint
Output

Combinatorial
State
Converter ISB

Tsetupcocontains-interval Jog e
Component2| TemplateY| || Thoqczcontains-interval fqis

Input %

FIGURE 6-29. B Constraint Extraction Rules

o

Interface Block Component Steps for

Output Timing Input Timing Timing Extraction

Strobe, Logic Pulse Extract initiate-terminate constraint

Strobe, Logic Strobe Extract setup & hold constraints (Eq. 6-11)

Latch Latch Extract setup & hold constraints (Eq. 6-11), include
ALE delay

Follows, Strobe, Logic| Follows-Latch Extract hold (Eq. 6-11) & initiate-terminate constrgints

Follows, Strobe, Logic|] Follows-Pulse Extract hold (Eq. 6-11) & initiate-terminate constrjints

Handshake Handshake Extract hold constraint (Eq. 6-11)

Wait Wait Extract setup constraint (Eq. 6-11)

TABLE 6-12. Steps for Timing Constraint Extraction

marized in Table 6-12: extracting a constraint for the setup time and hold time of the input
timing or in some cases extracting a constraint for the initiate to terminate time interval as
discussed in Section 6.9.3.

6.9.2 Choosing an Implementation Technology

The ISBP parameters are represented as unknown variables within the constraints.
An implementation technology is now chosen which assigns a fixed range of values to
every ISBP parameter found within the IB. The choice of implementation technology is up

153

to the user of the Interface Designer, and often is important for a successful design. Vari-
ous factors will affect the choice of implementation technology, such as cost, speed power
consumption and availability. Careful consideration must be given to the proper speed of
the implementation technology. If the implementation technology is too slow for the com-
ponents being connected, it may be impossible for the Interface Designer to generate an
interface where all timing constraints are satisfied.

6.9.3 Calculating the Initiate-Terminate Delay

Up to this point, the Interface Designer has completed the design of the interface and
has extracted timing constraints, that if satisfied will assure correct operation. Once the
implementation technology had been chosen, the Interface Designer could assign values
directly to all ISBP parameters with one exception: the adjustable propagation delay (for
example ¢, in Figure 6-17) in Leading and Trailing Edge ISBPs. This delay is used to
adjust the initiate to terminate delay of the reference events on the master, and can now be
determined. If the timing template of tlee/ay information is a Pulse timing, the initiate
to terminate delay provided by the master is fixed and can not be changed.

The timing constraints extracted include several that place a lower limit on the ini-
tiate to terminate delay. For example, the a memory device usually places a restriction on
the initiate to terminate delay: it must be at least as long as the access time. The Interface
Designer systematically searches through all timing constraints involving the initiate and
terminate delay to check for restrictions, and from the restrictions calculates a lower limit.
This lower limit is then used to calculate and set thg t5BP parameter of the Leading

Delay Timing (Handshake)
Ly Initiate to Terminate Delay,F

Reference (DS) \ (
\ v

Acknowledge (DTACK) /\

TSO Tter Tho

FIGURE 6-30. Example Handshake Delay Timing of a Microprocessor

and Trailing edge ISBPs. For example, thg,dSBP parameter of a Leading Edge Delay
ISBP shown in Figure 6-30 is calculated as follows. An IB Handshake delay output timing

154

is connected to the Handshake delay input timing of the microprocessor. For the micropro-
cessor we know that the initiate to terminate delgyiSthe sum of Tgand T,

Tir=Tso+ Tier

which allows Tg, to be written as

Tso =Tt - Tier (EQ 6-14)

For the IB Handshake output timing from Figure 6-18 we know that

TSO = Tﬁ +dvar+dprop
where Ts is the setup time of the input signal of the Leading Edge Delay ISBP. This
allows us to solve for,g, by substituting Tg

Ayar = Tit - Ther - (TS+0hiop) (EQ 6-15)

All parameters on the RHS of Equation 6-15 are knowg:i$ the initiate to termi-
nate delay determined from the constraintg, i the terminate delay from the handshake
signal timing of the component,g,, is the propagation delay of the AND gate used to
build the Leading Edge Delay ISBP and, Tsthe setup time of the signal entering the
Leading Edge Delay ISBP.

6.9.4 Timing Constraint Evaluation and Verification

A timing constraint is a relationship between ISBP parameters and timing parame-
ters. Both the ISBP parameters and the timing parameters are expressed mservals
representing a range of time values. Two types of timing constraints were relevant in this
work: inequality timing constraints such as €AB) and (A= B), involving single value
setup and hold times A and B, and the contains-interval connection timing constraints
involving time intervals X and Y (X contains-interval Y). The inequality constraints can
be written using a contains-interval constraint:

(A < B) can be written as ((-~ B) contains-interval (-~ A))
(A = B) can be written as ((B +~) contains-interval (A +~))

The Interface Designer therefore only has to be able to evaluate constraints involving the
contains-interval operator.

To evaluate the contains-interval constraint (X contains-interval Y), the end points
of the time intervals X and Y are calculated, and a check is performed to see if the end
points of interval X enclose the endpoints of interval Y (see Figure 6-27). Calculating the

155

end points of an interval requires evaluation of arithmetic expressions using addition and
subtraction of time intervals. Evaluation of arithmetic expressions using intervals is called
interval arithmetic For example, if an event of a signal that has a given timing parameter
to a reference passes through an ISBP such as a buffer, a timing parameter for the delayed
signal relative to the same reference can be obtained by adding the ISBP parameter to the
propagation delay as shown in Figure 6-31. The addition of two intervals is represented

Input
Reference

Signa|y

Thold=(A B)

Output

Reference

-

Delay T,(C D)

SignabUT

Thold= Tholdt Tpd™
(AB)®(C D)

FIGURE 6-31. Delay of a Signal Relative to a Reference

using the symbol® . Conversely if the reference is passed through an ISBP such as a
buffer, a timing parameter for the signal relative to the delayed reference can be obtained
by subtracting the interface delay parameter from the timing parameter as shown in
Figure 6-32. The subtraction of two intervals is represented using the sgnbol

Input
Referencg,

Signal

Thold=(A B)

Output

g

Referencgyr

Delay T,4~(C D)

Signal

hold= T hold T pd™
(A B)O(C D)

FIGURE 6-32. Delay of a Reference Relative to a Signal

When two time intervals (A B) and (C D) are added or subtracted, the range of the
resulting sum or difference is determined. The range will specify the earliest possible time

to the latest possible time.

For addition,

Earliest possible time of ((A B

[Earliest possible time of (A B)] + [Earliest possible time of (C D)] = A+C

and

(CD) =
(EQ 6-16)

156
Latest possible time of(AB® (C D)) =

[Latest possible time of (A B)] + [Latest possible time of (C D)] = B+D (EQ 6-17)
The Interval for the time of occurrence of the sum (A®) (C D) is the interval:

(AB) ® (C D) = (A+C B+D) (EQ 6-18)
This is illustrated in Figure 6-33 by showing what happens when a timing parameter

Timing Parameter Interval: (-30 -10) Delay interval:(20 30)
Find result of adding the two intervals: (-30 ®0) (20 30)

e
IIIII-BO-%O-JOJJO £OI I

Timing Parameter Interval (-30 -10)

Timing Parameter -30 delayed by (20 30) 4 —

Timing Parameter -20 delayed by (20 30) !

Timing Parameter -10 delayed by (20 30) i—|

v
Resulting Timing Parameter (-10 20) }—{

FIGURE 6-33. Example of Addition of a Timing Parameter and a Propagation Delay

interval of (-30 -10) is delayed by an interval of (20 30).

For subtraction,

Earliest possible time of (ABP (CD)) =

[Earliest possible time of (A B)] - [Latest possible time of (C D)] = A-D
and

Latest possible time of(ABP (C D)) =

[Latest possible time of (A B)] - [Earliest possible time of (C D)] = B-C
The Interval for the time of occurrence of the difference (A2B) (C D) is the interval:

(AB) - (CD)=(A-DB-C) (EQ 6-19)
This is illustrated in Figure 6-34 by showing what happens when a timing parameter
interval of (-30 -10) occurs earlier by an interval of (20 30).

Both the interval addition and subtraction operators are associative. This means:

157

Timing Parameter Interval: (-30 -10) earlier by interval:(20 30)
Find result of subtracting the two intervals: (-30 &0) (20 30)

—rr e
" 160 -50-40-30-20-10 0 10 20 '

Timing Parameter Interval (-30 -10)

Timing Parameter -10 earlier by (20 30) .

Timing Parameter -20 earlier by (20 30) }—‘

Timing Parameter -30 earlier by (20 30) |—i

v
Resulting Timing Parameter (-60 -30) }—{

FIGURE 6-34. Example of Subtraction of a Timing Parameter and a Propagation Delay

(AB)® (CD)© (EF=((AB)® (CD)o (EF)=

(AB) ® ((CD)© (EF))=(A+C-F B+D-E)
The interval arithmetic expressions given in Equation 6-18 and Equation 6-19 can
be used to evaluate the timing constraints extracted. The interface example in Figure 6-26
has the two timing constraints extracted as given in Equation 6-12 and Equation 6-13. If
the circuit is implemented using a technology such as LS TTL, then delay d1 will be (4
12) ns, while delay d3 will be (6 15) ns (worst case range of values for one implementa-
tion) [62] and the Equation 6-12 constraint becomes:

{(-~ -10) contains-interval ((-~-25 (4 1Zp (@ (615)))} (EQ 6-20)
{(-~ -10) contains-interval ((-~-25 (4 1Zp (6 15))} (EQ 6-21)
{(-~ -10) contains-interval ((-~ -25® (-11 6))} (EQ 6-22)

{(-~ -10) contains-interval (-~ -19)} (EQ 6-23)

The interval (-~ -10) does contain the interval (-~ -19), which means that
Equation 6-23 is always true and the constraint is satisfied for this implementation. The
upper margin for this constraint is 9ns. The margin can be used as an indication of how
tolerant the design will be to fluctuations in the timing parameters. The timing parameters
are usually influenced by the type of implementation technology, operating temperature
range, power supply fluctuations or semiconductor processing consistency. A large posi-
tive margin indicates that the design is robust and will still operate correctly even if the
timing parameters fluctuate from the values assigned during the interface design process.

158

Continuing with the interface example in Figure 6-26, the Equation 6-13 constraint
becomes:

{(0 +~) contains-interval (10 +~ (4 1Zp ((0)+(6 15)))} (EQ 6-24)
{(0 +~) contains-interval ((10 +~® (4 1> (6 15))} (EQ 6-25)
{(0 +~) contains-interval ((10 +~® (-11 6))} (EQ 6-26)

{(0 +~) contains-interval (-1 +~)} (EQ 6-27)

Equation 6-27 fails since the interval (-1 +~) is not contained within the interval (O
+~), by a lower margin of -1ns. The failed constraint means that for this implementation
the hold time of theAO signal relative to th&€€E signal is not satisfied under all operating
conditions, thus resulting in an invalid design. This failed constraint shown is hypothetical
for illustration purposes and would normally indicate that the selected components are
incompatible with each other. Chapter 7 discusses how a failed constraint is handled by
the Interface Designer.

6.10 Generating the VHDL Code

Once the design is completed and the timing constraints are verified, VHDL code is
generated for the interface. This work uses the premise that at the most detailed level, all
interface blocks are built up from known ISBPs (defined in Chapter 5). A VHDL primitive
circuit library was created that contains architectures of these ISBPs. This means that the
ISBPs that are used to build up the IB can be ‘instantiated’ as ‘components’ within the
‘architecture’ of each interface block ‘entii‘y’Since the primitive circuit library contains
an architecture for each of the VHDL primitive circuits, it will be possible to simulate or
synthesize the IB by simply compiling the completed design and including the VHDL
primitive circuit library. There are two important advantages to using a VHDL primitive
circuit library. First, the Interface Designer is able to generate a completely structural rep-
resentation of the interface using the VHDL primitive circuits and second, the architec-
tures of the VHDL primitive circuits can be verified and optimized separately.

The Interface Designer will generate an IB for each data transfer connection request.
For a microprocessor system there usually will be more than one connection request. For
example a microprocessor system may consist of one or more banks of RAM memory, one
or more banks of ROM memory and different IO devices. Such a system would be

1. Quoted words are terminology used in the VHDL language and have different meaning than the same
terms used previously within this work.

159

designed using several connection requests, one for each bank of RAM, one for each bank
of ROM and one for each 10 device. To aid in the simulation and synthesis of the complete
microprocessor system, the Interface Designer will generate a system VHDL entity which
contains all the data transfer IB VHDL entities.

Finally, a VHDL system test bench is produced for the system VHDL entitigsh
benchis a VHDL entity that instantiates the system VHDL entity and applies simulation
excitation signals (calletest vectorsto the inputs of the IBs within the system VHDL
entity. By simulating the test bench using a VHDL simulator the operation of the interface
can be analyzed and verified. More importantly, the capability to simulate the resulting
interface makes it possible to validate the Interface Designer. By studying and analyzing
the output from the simulator, a design engineer can validate that the interface generated
by the Interface Designer allows all components to operate as specified by the manufac-
turer. The simulation test vectors are generated automatically by the Interface Designer.
The state and timing of the test vectors are extracted from the state specification and signal
timings in the component library. The Interface Designer will provide test vectors that
simulate a basic read cycle followed by a write cycle.

6.11 Controlling the Design Process

The design knowledge of the Interface Designer consists of a set of rules to accom-
plish the different tasks of the design process. The orderly execution of the tasks is con-
trolled using context limiting and specificity ordering strategies.

IB

Creation
ISB

Creation

IB

Cleanup ,)

Verify Constraints

VHDL
Generation

FIGURE 6-35. Design Phases used for Contexts Limiting

No More IBs to Create

VHDL
System

Generatio

160

The Interface Designer system steps through the phases shown in Figure 6-35. Inter-
face design starts with the IB Creation phase. Once the initial IB is created, the ISB Cre-
ation phase commences. After completion of the ISBs, unused and redundant ISBs are
deleted during the IB Cleanup phase. An example of a redundant ISB is a Timing ISB that
consists of a Wire ISBP. The deletion of a Wire ISBP in no way changes the behavior of
the IB, it only reduces the complexity by reducing the number of ISBs. This step was
added since it was found that Wire ISBPs were cluttering up the user display of the IB data
structure and the large number of Wire ISBPs slowed the generation and compilation time
of the VHDL code. An example of an unused ISB is an Info ISB that is used to generate an
internaldecoded read information signal, the output of which is not used anywhere in
the IB. Such an ISB can be removed without affecting the operation of the interface.

Next the timing constraints will be verified during the Verify Constraints phase.
Timing constraint verification is followed by generation of the VHDL code for the IB that
has just been designed, during the VHDL Generation phase. If more IBs must be
designed, another IB is created and the ISB Creation phase once more commences. If all
required IBs have been designed, VHDL code for the system test bench incorporating all
IBs is generated during the VHDL System Generation phase.

6.12 Summary of the Interface Design Process and Representation

This chapter developed the interface design process and its representation in the
Interface Designer. The interface design process is divided into seven steps which closely
follow the abstraction hierarchy developed for the component and interface models.

The first step creates an IB for each capability of a component that must be con-
nected. The IB is sub-divided into Info ISBs which in turn are sub-divided into State and
Timing ISBs. The State and Timing ISBs are next designed using ISBPs and the timings
on the input of the ISBs are propagated to the output of the ISB. Once the IB is designed,
the timing constraints are verified to see if all input timing specifications are satisfied.
Finally a VHDL representation of the IBs is produced. A simulation test bench for the IBs
is also generated and allows the operation of the interface to be validated using VHDL
simulation tools.

161
Chapter 7

Data Transfer Interface Design Implementation and Results

Chapters 4 to 6 developed the knowledge representation framework and the infer-
ence process used in the Interface Designer. This chapter presents the results obtained
from the Interface Designer implemented in Knowledge Craft expert system shell [17].
The Knowledge Craft shell version 4.1 runs on a Sun Microsystem SPARCstation 2 with
48MB of RAM under UNIX SunOS release 4.1.3.

Data structures in Knowledge Craft are implemented using the CRL (Carnegie Rep-
resentation Language [16]), a frame based knowledge representation language which pro-
vides object-oriented programming that describes inheritance as relations between objects
that are called frames. A directed graph that uses frames as nodes and the relations
between frames for the links between nodes is calléchme network In Knowledge
Craft, the frame network can be displayed and modified using the Palm Network Editor
tool. Rules are represented in CRL-OPS, a forward chaining rule based system language
[16].

This chapter first presents the components entered into the Interface Designer com-
ponent library. This is followed by the detailed analysis of a design example using the
68000 microprocessor and the 6116 RAM. Other design examples are provided in Appen-
dix F to illustrate different features of the Interface Designer. The chapter concludes with a
summary of the different microprocessor systems designed with the Interface Designer.

7.1 Component Library

Various components were entered into the component library using the knowledge
representation techniques developed in Chapter 4. The component library is used to store
all component information relevant to interface design. The development of the compo-
nent library was accomplished in two phases. First prototype frames were created which
represent the classes of building blocks from which components can be constructed. Sec-
ond, the appropriate prototype frames were instantiated to produce the device frames that
represent an actual, specific component. (For an overview of the component frames see
B.1).

162
7.1.1 Prototype Frames

Prototype frames represent the building blocks from which component and interface
block frames can be created through instantiation. Prototype frames are organized into
networks of related classes using the-a relation. For example, Figure 7-1 shows the

Paln Hetuwork Editor

#¥PULSE_TIMIMNG T *#AMO_PULSE_TIMIMG
¥PULSE_LATCH_TIMIMNG —=—+— *AND_PULSE_LATCH_TIMING
*OC_TIMIMG T *AMO_OC_TIMIMNG
#¥LATCH_TIMING T F¥AMD_LATCH_TIMIMG
#FOLLOWS_TIMIMG i #AMD_FOLLOWS _TIMIMNG
#*STROBE_TIMING T *AMD_STROBE_TIMING
#¥LOGIC_TIMIMNG

*WAIT_TIMIMG s #AMND_WAIT_TIMIMNG

*HAMODSHAKE_TIMING ——=—+t—— *AND_HANDSHAKE_TIMING

Relation Keus:
t1) IS-A

FIGURE 7-1. Class Network of Prototype Frames for Signal Timings

prototype frames that were created for all the signal timings developed in Chapter 4, dis-
played using the Knowledge Craft Palm Network Editor. The root ClaS8NG has sub-
classesPULSE_TIMING, PULSE_LATCH_TIMING etc., which in turn may have
further sub-classes.

7.1.2 Device Frames

Once the prototype frames were designed and completed, device frames were cre-
ated for different components based on the prototype frames: every device frame in a com-
ponent is the instantiation of a prototype frame. For example, the Motorola 68000
microprocessor device frame was created by instantiating the microprocessor prototype
frame. Figure 7-2 shows a partial network of device and prototype frames that make up the
68000 microprocessor. Both device frames and prototype frames are shown to give the
reader an understanding of thes-a class relations between the prototype frames and
device frames, and an understanding of the relations between device frames. A frame
enclosed in a box indicates it occurs more than once in the displayed frame network.

In Figure 7-2, the arrow between nodes in the frame network represents the relations
between nodes. A key for the relations between nodes is given at the bottom of the figure
to allow the reader to interpret the frame network. For example, Figure 7-2 indicates that

163

2342-130-5HH «D) 100 L0H4-53E0) 2345-H34-10-5HH 20 ANIMIL-5330 5 ALTTIAHAHI-ZHH 2
JINHLENT 9 J3d45-H1HO-2HH 0y J348-34AL-10-8HH (H1 D345-103735-040R-5HH o) ANI+IINHLENT f) H-21 Ty
J3dE-HOTIHATATINIOI-EHH 42 AIHLE-53E0 000 D3dE-HLIIN-040A-3HH (63 J3dE-EEIHO0H-2HH o9 EM9-EHH £ 3SRy o TR Tay

TR sy,
T ORI = &1 H3JEHUE L HIHO 00 aks)
FT ORI = #N3 7 104.LN0I 000 e ,,
FI ORI = N3 33340000002 9Wx ,ﬁ
T TR TSR] & SN3 W10 000290 ,___
LANHATINT ik
FHHTENI 0N
[EF FHIER = 31413 IH3d 00 0eaHs
BHIHL L] = PWIRIL J909I5s < PNIHTL A9 50 000C3HE] 23dET0HIYT00025Hx
[3dE e [3d%_OWIWTT JIHIEs]

0301084 TaHIS LA 0 02 dHx

BRI = SN IHILHILHE 1738 s 45— INIHIL WLIH0 T OH3E 00 0e9Hs
(3955 = [397_SHIHIL I

s = 10301084 0438
(I8 TR 31K 15 3L TN 00 029Mx

FHTAT L] < FWTATL TS =+ FNTHTL AT S0 Oiosans] 3343 7ILTHH 0002 3Hx

[IS [HEL 0 T IN.LINTEH BIET T0PCoHs]
1345 THIMOTOHIY 0005 M

00104 "ALIHA LI 00 02 EH:E .

FNIHTIS] < PRTHTT Ta0aIER = 9N THIL B 10 3L TN 0 0029Hs
[< [3d% ININIL TG
[] = 70010443 LT4Hx
(I s I i s 31613 3dAL 0009 9H
W 03457 3ALTLOT 0002 EH #

[T IR e [E0L Mmoo T = FONIINIEW BI60 U00C5Hs]
9343 THIHOTILTHH 0002 9Mx

p dHITHISENEE LTHIHO ek £

FRIRTLE = PRTHTL Sa0 e INIHLL 045070 002 aHx
[[3d%_JNIAIL J10Lcs]
aNoNx ¥
[TG 3IH15 53810 00 029Hx
FHIRL L] <+ [NINII Fa0 e [NIHTL 35 50 10053Hs]
FRIHT L] o= FRIHTL T e [WIWTL F07 300 0002ans]
[3FE e [3dF_JNIAIL JIHLEH]
[0 TS 2195 dNH00 172 7an00x S 31615719313 0400 0025Hx
FRTRT]«—————— PNIRTL 0=+ [RIHIL SOT S0 005 aHs] 03457103 13 TOHON T D 0Edk F
[T e [3d%_INIWTT JIHIER]
[T s I o T 300 LINOUH 553400470 0 029Hx
Wl 2345 TEEIHO0H 00 TH

2345 B3N LA 0 09 aHs ¥

IR = FHIATL 3000 s SWIMIL 5234005 00029Hx
[= [4% INIATL JIH]
ENTHI IS DNINIL 3A0H LSS [NIHTL 30 50 Wee] |
ALITIAHHDy S—F———— dHI "I JENHY L TH IH0e = 040 TN dH Y3 43N L THIHO
1NANOAW 0 A H0ZTII08 408 THx ¥

FIGURE 7-2. Motorola 68000 Microprocessor Frame Network

164

the M68000 (device frame)is-a MICROPROCESSQRrototype frame) which in turn
Nis-a COMPONEN(prototype frame). A complete listing of the device frames for the
Motorola 68000 microprocessor (8Mhz) is given in D.1.

7.1.3 Components Represented

To illustrate the design capabilities of the Interface Designer, a cross section of com-
ponents from different families and manufacturers and for different operating speeds was
selected and entered into the component library. These components are listed in Table 7-1.
The type column specifies if a component is a microprocessor (CPU), RAM memory,
ROM memory or 10 device. The name column lists the generic name for the component
while the part number column gives the name from the manufacturer for a specific speed.
The speed is listed as either a frequency (in Mhz), for those components that require an
external clock signal to operate, or as a period for those component whose speed can be
given as an access time. The address and data columns give the size of the address bus and
the data bus respectively.

7.1.4 Component Entry Guidelines

Data entry into the component library requires a detailed analysis of the component
specification. From the experience gained by entering the components shown in Table 7-1
into the component library, the following guidelines were established:

1. Review a component’s data transfer capability.

2. Review all signals and decide which signals are involved in data transfer. Extract the
signals used for each of the information transferguest, data, address,
type, direction, word, size anddelay .

3. For signals determined in step 2, determine the signal states that occur during data
transfer. This is the state information for information transfer.

4. Since the current design system can only handle standard TTL logic levels, check the
DC logic level compatibility.

5. From the AC timing diagrams for the read and write cycle, find the initiate and termi-
nate events. Extract the signals involved and develop their event expressions.

6. From the AC timing diagrams, determine the timing for each of the signals extracted in
Step 2 for each information transfer. At this point only determine the timing template,
not the specific timing parameters.

7. From the AC timing parameter tables, determine the specific timing parameter for each
event relation found for the timings from Step 6.

165

Type Name | Part No. Ref. Family Manu- Address | Data | Speed

facturer (bits) (bits)

CPU 6809 | mc6809 [58] | 6800 Motorola| 16 8 1Mhz
6809 | mc68A09 [58] | 6800 Motorola| 16 8 1.5Mhz
6809e | mc6809e [58] | 6800 Motorola| 16 8 1Mhz
68000 | mc68000-8 | [55] | 68000 Motorola| 23 16 8Mhz
68000 | mc68000-12.5 [55] | 68000 Motorola| 23 16 12.5MhZ
68020 | mc68020-12.5 [56] | 68000 Motorola| 32 32 12.5MhZ
68020 | mc68020-16.7 [56] | 68000 Motorola| 32 32 16.7MhZ
280 280 [88] | z80 Zilog 16 8 2.5Mhz
280 z80h [88] | z80 Zilog 16 8 8Mhz
8085 | i8085a [43] | 8080 Intel 16 8 3Mhz
8085 | i8085a-2 [43] | 8080 Intel 16 8 5Mhz
8086 | i8086a-2 [41] | 8086 Intel 20 16 8Mhz
32020 | tms32020 [80] | 32020 Tl 16 16 20Mhz

Memory 6116 | cmd6116-3 | [67] | SRAM RCA 11 8 150ns

(RAM) 6116 | cmd6116-9 | [67] | SRAM RCA 11 8 250ns
6164 | mcm6164-45 | [59] | SRAM Motorola | 13 8 45ns
6810 | mcm6810 [58] | SRAM Motorola | 7 8 450ns
6810 | mcm68b10 | [58] | SRAM Motorola | 7 8 250ns

Memory 2716 | etc2716-1 [82] | EPROM | Mostek | 11 8 350ns

(ROM) 2732 | 2732a [44] | EPROM | Intel 12 8 250ns
2732 | 2732a-2 [44] | EPROM | Intel 12 8 200ns
2732 | 2732a-4 [44] | EPROM | Intel 12 8 450ns
2764 | 2764a-1 [44] | EPROM | Intel 13 8 180ns
27128 | 27128a-2 [44] | EPROM | Intel 14 8 200ns
27256 | 27256a-1 [44] | EPROM | Intel 15 8 170ns
27512 | 27512a-1 [44] | EPROM | Intel 16 8 170ns

IO (PIO) | 6821 | mc68b21 [58] | 6800 Motorola| 2 8 210ns
8255 | i8255a [42] | 8080 Intel 2 8 400ns
8255 | i82c55a-2 [42] | 8080 Intel 2 8 150ns

IO (CRT) | 6845 | mc68a45 [58] | 6800 Motorola| 1 8 280ns
6845 | mc68b45 [58] | 6800 Motorola| 1 8 210ns

IO(UART) | 6850 | mc6850 [58] | 6800 Motorola| 1 8 450ns
6850 | mc68as50 [58] | 6800 Motorola| 1 8 280ns
6850 | mc68b50 [58] | 6800 Motorola| 1 8 210ns

TABLE 7-1. List of Components in Component Library

166

8. Create the device frame network of a component using the CRL language, by instanti-
ating the appropriate prototype frames.

7.2 Design Rules

The Interface Designer is comprised of 93 design rules. Table 7-2 shows the rules
grouped according to the interface design function they perform. An example CRL-OPS

Rule Function Number of
Rules
IB Creation 1

Information Connection ISB creation and State | 36
ISB creation / design

Timing ISB creation / design 24
Timing constraint extraction 11
Implementation & timing constraint verification 1

Generation of VHDL code, Test Bench and Netlist 2

Housekeeping: context limiting, deletion of unusedL8
ISBs

TABLE 7-2. Rule Design Function Summary

rule is shown in Table 7-3. This rule has been simplified for presentation purpose. The
modify-latch-to-strobe-block rule will fire when a Timing ISB with a Latch
input timing and a Strobe output timing must designed. This rule is only active during the

;rule to fill in a Timing ISB with the appropriate logic
;if the input is latch timing and output timing is a strobe timing
;i.e. demultiplex the signal
(p modify-latch-to-strobe-block
(interface_sub_block "“schema-name <int-block> “instance ‘interface_sub_block
“modified-by+inv <superblock>
“unction (member single_signal_converter <>)
Astatus ‘new
Ainput-timing <itim> ~output-timing <otim>
Ainput-signal <isig> “output-signal <osig>)
(latch_timing “schema-name <itim>)
(strobe_timing “schema-name <otim>)

(step “phase data_xfer_interface_creation)
-->
(create-nonmux-signal <int-block>)
(modify-strobe-from-latch-output-timing <int-block> <superblock>)
(adjust-timing (get-value <int-block> ‘output-timing) <otim>
(get-value <int-block> ‘output-signal))
(mark-timing-completed <itim> <otim> <isig> <int-block> ‘latch_to_sth))))

TABLE 7-3. Example Rule for Timing Constr10int Extraction

data_xfer_interface_creation phase of the design. The consequents of the
rule have been organized into several modular LISP routines that will fill in the appropri-

167

ate slots in the appropriate frames. Tdreate-nonmux-signal routine will insert
the D-Latch primitive circuit into the Timing ISB. Thenodify-strobe-from-
latch-output-timing routine will determine the output signal timing parameters of
the Timing ISB from its input. Thadjust-timing routine will determine signal tim-
ing parameters of the output of the State ISB. Finallyriak-timing-completed

routine will mark the Timing ISB as being completed.

7.3 Interface Designer Output

The Interface Designer produces a variety of outputs as shown in Figure 7-3. An
execution logfildracks every step of the Interface Designer. Any errors encountered dur-
ing the design are recorded in the execution logfile. This helps the Interface Designer user

Component Design Connectior
Library Rules Request

Interface
Designer

Execution

Logfile: trace IB and ISB

VHDL Code Files

System VHDL
B and IS-B Test Bench File
Frame File
VHDL Compile
Connection Batch File

Netlist

VHDL Simulation
Plot Batch File |VHDL related Outpu

FIGURE 7-3. Interface Designer Output

to track down any problems encountered during the design process. After completion of
the design, the Interface Designer saves all the IBs and ISBs generatedBnahe 1SB
Frame File This file allows the user to inspect and verify any frames generated, if desired.
TheConnection Netlistile provides a listing of all the component signals being connected
and their pin numbers.

168

The primary output of the Interface Designer are several VHDL files of the inter-
face:

* AnIB and ISB VHDL Codéle is generated for each IB designed.

» A System VHDL Test Benfile is generated which instantiates VHDL entities of all
IBs generated and can be used to simulate the operation of the completed data transfer
interface.

* A VHDL Compile Batch Filés produced to assist the user in the compilation of the
VHDL code. Compilation of the VHDL code is required before simulation and synthe-
sis of the VHDL code.

* A VHDL Simulation Plot Batch Files produced to assist the user in the display of tim-
ing waveforms from the VHDL simulator.

Both the VHDL compile batch file and the VHDL simulation plot batch file were
included for the convenience of the user and they do not contain any design information.
The complete design is contained within the IB, ISB and System test bench VHDL files.

7.4 Interface Design Example: 68000 to 6116

This section illustrates a complete design using the Interface Designer. The aspects
of the design process discussed include the problem specification, 1B and ISB design,
frame representation, timing verification, VHDL code generation and the VHDL simula-
tor output.

7.4.1 Problem Specification: 68000 to 6116

The Interface Designer was given the following microprocessor data transfer inter-
face design problem:

* Microprocessor: Motorola 68000 (8 Mhz clock frequency)
* Memory: Four RCA 6116 (150ns access time) 2Kx8 CMOS static RAM devices
» 16-bit datapath interface between microprocessor and memory

* The memory is organized into two banks of 16-bit datapath width, mapped at address
0x000000 and 0x008000 in 24-bit address space (hex address)

* The memory is accessible from the User and Supervisor, Program and Data spaces.

An overview of the 68000 to 6116 design example specification is given in Figure 7-
4. Some of the features illustrated by this design example are: address decoding, 16-bit
data bus connection allowing both 16-bit and 8-bit data transfer, data bus buffering, data
transfer internatlecoded type information utilization, data transfer acknowledge gen-
eration and connection of non-multiplexed address signals.

169

Bank of 4, 6116 RAM devices
Interface: Address: 0x000000Address: 0x00800(
63000 16-bit cmd6116-3 cmd6116-3
Microprocessqr Data Path Memory, UZ Memory, U4
150ns 150ns
8 Mhz @ ype: Lower Data Lower Data
U1l User cmd6116-3 cmd6116-3
Supervisor Memory,U3 Memory,U5
Program 150ns 150ns
Data Upper Data Upper Data

FIGURE 7-4. 68000 to 6116 Design Example Specification
The Interface Designer is provided with instances of the components being con-
nected and a connection request. Table 7-4 shows the frames (using pseudo code for sim-

COMPONENT INSTANCES:
ul: instance-of: m68000
u2: instance-of: m6116
u3: instance-of: m6116
u4: instance-of: m6116
u5: instance-of: m6116

CONNECTION REQUEST:
connection-request-1
purpose: data-transfer
connect: Ul to U2, U3, U4, U5
memory-map: U2, U3 at address 0x000000
U4, U5 at address 0x008000
U2, U3, U4, U5 at
user & supervisor, program & data
data-bus-map: U2 to U1 lower-data
U3 to Ul upper-data
U4 to U1 lower-data
U5 to U1 upper-data
address-bus-map: U2, U3, U4, U5 (A0-A10) to Ul (A1-Al1)

TABLE 7-4. Component Instances and Connection Request for Design Example

type-map:

plicity) that are passed to the Interface Designer. The complete CRL frames for the
component instances and the connection request are given in D.2.

7.4.2 Execution: 68000 to 6116

To illustrate the operation of the interface design rules, the design process was inter-
rupted after the creation and design of Rexyuest information ISB. The rules that fired
are shown in Table 7-5. The resulting IB frame network is shown in Figure 7-5. The
IB_1 RW_CONNECTrame represents the interface blo¢8B 4 REQUEST INT is

170

the ISB that generates the internal request sigig_4 REQUEST_INT_SIGNAL,
with a timing ISB_4 REUQEST_INT_TIMING, from the 68000request informa-
tion. ISB_9 REQUEST_INT_OUT represents the Info ISB used to generate the

Rule Fired Function of rule

create-rw-control-connect Create IB for 68000 to 6116

create-request-int Create the internal request generate 1SB
(ISB_4_REQUEST_INT)

create-request-in Create an ISB with instructions to finish the intey-

nal request generate ISB (ISB_5 REQUEST _IN)
and design State ISB

extract-conversion-blocks Create a Timing I1SB for each input into the inter-
nal request generate ISB

modify-strobe-to-logic-block Design Timing ISB (ISB_6_CONV_SS)

modify-logic-to-logic-block Design Timing ISB (ISB_7_CONV_SS)

modify-logic-to-logic-block Design Timing ISB (ISB_8 CONV_SS)

modify-block-to-finished Indicate that the internal request generate ISB i
finished

TABLE 7-5. Rules fired for Request Information ISB design

*I5E_4_FEOVEST_INT_SIGHAL — 5= *I3E_d4_FEOQUEST_INT_TIMIHG
*OHHECTION_SUE_REQUEST_1
*OHHECTION_SUE_REQUEST 2
*QHHECTION_SUE_REOQUEST 3
*OHHECTION_SUE_REQUEST_4

*OHHECTION_REQUEST_1

*I5E_9_REOQUEST_INHT_0UT
TIE_1_EW CONHECT . "
ISE_8_COHV_55
*IEE_7_CORV_SS
*IZE_E_CORV_35

*I5E_G_FEQUEST_IH

*I5E_4_REOQUEST_INT

*IZE_2_TIM_CHSTEHT
*IZE_1 DEL STOR

T —
Pelation Fens: {3y COHHECTIOH-REQ {EY HAS-SUE-REQUEST
{1y INSTANCE+INV (4% CONTAIRS-SVE-ELOCE

{2% HAS-INTEPHAL-SIGHAL (5} USES-TIMING

FIGURE 7-5. The Example Interface After 8 Rules Have Fired

request information connected to the 6116 memd§B_5 REQUEST INis an ISB

that is used to keep track of the completion®B_4 REQUEST _INT. The rule that fires

to create theSB_4 REQUEST _IN ISB is also used to finalize the State ISB state equa-
tion. For convenience, the state equation for the State ISB is stored in the internal request
information frame as seen in Table 7-6. A Timing ISB is provided for every signal going

171

{f ISE_4_REQUEST.IHT
IHSTAHCE: THTERFACE_SUB_BLOCK
CONTAINS=-SUB=-BLOCK+INV: IB_-1_RW_COHHECT
COHTAINS-S5UB-BLOCK: ISB_8-COHU.S5 ISB.7_COHV_.55 ISB_6_CONV_.5S5 ISB_S5_-REQUEST.IH
THPUT-COMPOHEHTS: U1
OUTPUT=COMPOHEHTS :
STATUS: FIHISHED
PURPOSE: INTERHAL REQUEST GEMERATE
FUHCTIOH: REQUEST-IH
HEEDS=FUHCTIOH:
GROUP :
HARDWARE=FUHNCTIOH: COMBIHATORIAL
PARAMETERS :
USES-DELAY-VARIABLES:
THPUT=-SIGHALS: M&EBOOO_LDS HMES000_UDS MEB000_AS
IHPUT=TIMIHGS: M&BOOO_UDS_LDS_TIMIHG M&B0O00_DS_-AS_TIMIHG
IHPUT: {AND {(ASS0 M6B000-AS} (OR (ASSO MBEB0O0O_UDS} {(ASSO0 MESOO0O-LDS})))
OUTPUT=TIMING: ISB_4_REQUEST_INT_TIMING
OUTPUT-STATE: {(ASS0 ISB-4_-REQUEST-IHT-SIGHAL)
OUTPUT=-SIGHALS: ISB_4_REQUEST_IHT_SIGHAL

33

TABLE 7-6. Internal Request Generation Frame for Design Example
into the ISB_4 REQUEST INT (thelSB_nn_CONV_SSISBs). A schematic represen-

IB_.1 RW_CONNECT
Request Information Flow

o
68000
ISB_4_REQUEST_INT SB_9_REQUEST_INT_OUT 6116
UDS \
LDS ___
CE
AS
{SB_6_CONV_SS(wire)
ISB_7_CONV_SS(wire)
ISB_8 CONV_SS(wire) ISB_4 REQUEST_INT_SIGNAL

FIGURE 7-6. Request Interface Information Schematic

tation of therequest information circuit is shown in Figure 7-6 to give the reader a
clearer picture of the signals involved. Figure 7-6 shows the circuit inside the
ISB_4 REQUEST_INT ISB and how the ISB signals are related to signals on the 68000
and 6116. The three Timing ISBs in Figure 7-6 are wires since no timing conversion is
required. It should be noted that at this point in the design, the
ISB_4 REQUEST_INT_SIGNAL IS not connected to the
ISB_9 REQUEST_INT_OUTISB.

172

If the inference engine is allowed to continue the design process until completion
(627 rule firings) the IB frame network in Figure 7-7 is obtained. It should be noted that

#I5B_f1_DELAY_INT_SIGHAL — & =I5B K1 DELAY_THT_TIMING

" I5E_49_ACCESS_INT_SIGHAL — &= ¥I5E_49_ACCESS_INT_TIMING

L *TSE 44 TYPE_TNT_SIGHAL — &+ *TSE_44 TYPE_THT_TIMING
*T5F_3%_FEAD_INT_SIGHAL — &% *I3F_3§_BEAD_IRT_TIMIRG
*T5E_3C_WRITE_INT_SIGHAL — & "5 ¥TZE_35_WRITE_THT_TIMING
#T5B_31_BLOCK_ADD_THT_SIGHAL — L= ¥T35B_31 BLOCK_ADD_THT_TIMING
14 *I5E_16_AID_IWT_SIGHAL — &= *T3K_16_ADD_INT_TIHING
*T15E_10_WORD_THT _STGWAL — & "% ¥T3E_10_WORD_INT_TIHING

i}y I5F_4_REQUEST_INT_SIGHAL — 53 *I5E_4_REOUEST_INT_TIMING

i ®CONNECTION_SUE_EEQUEST 1
| *CORNECTIOR_SUE_REQVEST 2
Ol ConNECTT om_FEQUEST_1

) ®CONNECTION_SVE_EEQVEST_$

/ *CONNECTION_SUB_REQUEST ¢

*T5B_27_ME000_AL]_INT — 4= *TSB_294_CONv_cC
4FI5B_249_ADD <::
®TSE_250_MES000_AL TNT — 4 = *T3E_304_CONV_iC

*I55_151_ME116_D7_IRT — 4 = *T5B_217_CONV_ce
*I5E_137_M6116_D0_THT — 4 = ¥TSE_224_CONV_GC
*I55_135_MES000_D15_INT — 4 = *TSE_225_CONV_iC
*I56_121_M68000_D3_INT —————4—= *I5E_232_COHV_CC
*I5E 119 ME116 D7 INT — 4 . *TSE 233 COMV_GC
*I55_105_M6116_DO_IRT — 4= *T5B_240_conv_ce
*TSE_103_MES000_DT_INT — 4 = *TZE_241_COMW_GC
. +I5B_$9 MES000 DO IRT — 4 = *TSE 24§ _CONV_ce

T 5E_T1_ME116_WE_INT — 4= *T5B_84_COMV_iC

*I3E_B9 MEI116_CE_THT_0_0_7
*I5E_69_tE116_CE_THT_D ~<L_—;_;D T
*ISE_63_mE116_cE_TINT_0_§_15

UrTsE 69 ME116_GE_THT *T5E_R9_tE116_CE_TNT_2000_0_7
*ISB-ES-MEHE-CE-INT-SUUUqj-j—:z*xsn £a_ME116_CE_THT 8000_8_15

+¥ISE_B8_DATA

TE_1_BW_COHNECT §

“ISE_85_CONV_CC
SV FISE_67_ME116_0E_INT — 4= *TsE_8E_CONY_GG
f\ I 5E_F5_tES000_DTAK_INT ———————d—3+*I5E_§7_CORV_CC
*I5E_E1_DELAY TN — 4= *I5E_63_CONV_55
\+I55_58_ACC_DEL_INT

1*I5E_49_ACCESS_INT

W+I5E_d4_TYPE_THT

*I5B_38_READ_LHT

WT5E_35_WRITE_INT

*I5E_%1_BLOCK_ADD_INT

*15E_16_ADD_INT

+15B_10_WORD_INT

W<I5E_4_REQVEST_INT

WSI5E_2_TTM_CHSTENT

T

e lation keps: (%) COMNECTION-REQ {E} HAZ-SUE-REQUEST
{1% INSTANCE+IHY {4} COMTATWS-SUB-ELOCE. {7} SUPERSEDED-EY
(2% HAS-TNTERWAL-SIGWAL (5} USEZ-TIMING

FIGURE 7-7. Completed Interface Design Example Frame Network

some of the IB frames were removed for display clarity (for example, only some of the
data signal and address signal ISB frames are shown).

Internal signals and their timings are shown at the top of Figure 7-7
(ISB_nn_xxxx_INT_SIGNAL). ISB_249 ADD represents the interface between the
68000 and 6116 address signdSB_88 DATA represents the interface between the
68000 and 6116 data signals. The ISBs called ISB_nn_CONV_CC represent the interface

173

blocks that connect the output of the IB to the input of a component. It should be noted,
that for this example design, only one Timing ISB is requiré8B_69 CONV_SS
which is a Leading Edge Delay primitive circulit.

7.4.3 System Schematic: 68000 to 6116

To provide a visual representation of the interface design example, the output of the
Interface Designer was drawn manually as a schematic shown in Figure 7-8 from the IB
frame network. The IB schematic is given in terms of its Info ISBs to emphasize the gen-
eral interface methodology and how the methodology relates to the final design output.
Different information port signals from the microprocessor are decoded within ISBs to
generate internal signals. There are two inteatetoded address information sig-
nals for the two different address bank&0 selects address 0 ar®ll selects address
0x8000. There are two internalecoded word information signals for the upper and
lower data bytes. For this design, the interdatoded word information signals corre-
spond directly to th&JDSandLDS signals from the 68000. The interr@¢coded type
information signal gets activated whenever the User, Supervisor, Program or Data space is
selected. The internalecoded request information signal is activated when any data
transfer is in progress.

The information from the internablecoded address , type , word and
request information ISBs are combined using a four input AND combinatorial circuit
and applied to th€Esignal on the 6116. Théirection information from the master is
connected to th®©Eand WRsignal on the 6116 in the form of interndecoded read
andwrite information signals. The internalecoded read information signal is also
connected to the direction signal inpuDIR) on the bidirectional buffers (shown as

@») connecting the data signals. The interaglcess information signal is
generated so that it is active whenever the memory devices are activated and is connected
to the enable inputEN) on the bidirectional buffers connecting the data signals. The inter-
nal access information signal is also connected to a Leading Edge Delay input whose
output connects to thBTACKacknowledge signal. The Leading Edge Delay takes the first
edge of the internahccess information signal (the edge that is related to the initiate
transition from the reference), and delays it by an amount calculated from the timing con-
straints extracted during interface design, which is 76 ns for this example. The buffered
address signalsAl-All) from the 68000 are connected to thE0(A10) address signal
inputs on the 6116 memory. As shown in the schematic the lower datdiBe37) from

174

cmd6116
U2 WR*
68000 OF*| <
Ul cmd6116
U4 WR*
Addr AL1ll o |ADDR (A0:10) OE* °
Al-A23
Data DATA(DO0:7)
DO-D1 CE*
4 JALIT > ADDR (A0:10)
l DO:7 DATA (DO0:7)
g P ’
ela
DTACK |™®
cmd6116 A
U3 WR °
OE* S
cmd6116
Direction us
R/W* WR* e
*
OE*| /|14
ADDR(AO0:10)
Type
FCO:2 DATA(DO:7)
CE*
A ADDR(AO0:10)
Word
UDSI/LDS | D8:15 t DATA(DO:7)
CE*
Address T
Decode
CJLA ALAD CD AA A A
A12:2 E}b I
Word
Decode
LDS,¥DS
LDS lower °
UDS | upper)\
Type
Decode L d A
FCO0:2 I §
L 2 L @
A_ccess
Reques .| Signal Acknowledge
Decode ; Del
elay
LDS,UDS,A! = Direction o | 76ns
Decode WR*

RIW* > o | RD*

FIGURE 7-8. Schematic for Interface Design Example

175

the 68000 is connected to the data signals on U2 and U4, while the upper dai@a8bus (
D15) from the 68000 is connected to the data signals on U3 and U5.

7.4.4 Timing Constraint Verification: 68000 to 6116

For this work, the default target implementation technology was the XILINX
XC4000 programmable logic device family [89]. This logic family was chosen due to its
flexible architecture, and large range of gate counts from 3,000 (standard 2-input gates) for
the XC4003 device to 25,000 for the XC4025 device. The Interface Designer allows the
ISBP parameters to be specified as a triplet of values: (minimum maximum typical). For
the XC4000 series the ISBP combinatorial delay parameter was specified as (3ns 7ns 5ns),
the clock to output delay was specified as (2ns 4ns 3ns) and the tristate enable delay was
specified as (7ns 15ns 10ns). These ranges of values were chosen since they encompass
the -4, -5 and -6 speed grades of the XC4000 series devices. A triplet of values was chosen
for the ISBP parameters since it allows the Interface Designer to perform worst case tim-
ing analysis during the timing constraint verification phase by using the minimum and
maximum values, while also providing a typical value that can be used to investigate how
the interface will perform under typical conditions in a VHDL simulation.

All timing constraints for the 68000 to 6116 interface design example were found to
be satisfactory. This indicates that the Interface Designer produced a valid design from a
signal timing perspective.

7.4.5 VHDL Code Output: 68000 to 6116

The Interface Designer automatically translates the 1B frame network into VHDL-
87 code. The VHDL-87 code was adopted by the Institute of Electrical and Electronic
Engineers (IEEE) in 1987 in the form of IEEE standard 1076. The VHDL-87 standard was
updated and extended in 1993 to version VHDL-93 by adding several new features. This
work uses VHDL-87 since none of the VHDL-93 extensions of the language were
required and because VHDL-87 has easily available compile and simulation tools. The
VHDL language proved to be ideal, since it allows representation of a hierarchial data
structures similar to the frame network developed for the interface. For example, the inter-
nal request generation frame from Figure 7-6 is translated into the VHDL code shown
in Table 7-7.

A complete design example of VHDL code for the IB_.1 RW_CONNECTis
givenin E.2. The VHDL code for the ISBs used to buildiBp 1 _RW_CONNECT given

176

library IEEE;
use IEEE.STD LOGIC 1164.ALL;
library DAMELIB;

entity ISB_4 REQUEST_INT is
generic (
TPD : time);
port
M68000_AS_U1 : IN std_logic;
M68000_UDS U1 : IN std_logic;
M68000_LDS U1 : IN std_logic;
ISB_4 REQUEST_INT_SIGNAL : OUT std_logic);
end ISB_4 REQUEST_INT;

architecture ONLY of ISB_4 REQUEST INT is

begin
ISB_4 REQUEST_INT_SIGNAL <=
((not M68000_AS Ul) and
(not M68000_UDS U1l) or (not M68000_LDS U1l))
) after TPD;
end ONLY;

TABLE 7-7. VHDL Request Generation Entity for Design Example

in E.1, while the VHDL test bench that can be used to simulatéBhé& RW_CONNECT
interface is given in E.3.

7.4.6 VHDL Simulation: 68000 to 6116

Once the VHDL code is generated, the Interface Designer has completed all its
assigned tasks and execution is terminated. The user can now take the VHDL code and
pass it onto a VHDL simulation tool to verify the validity of the design by comparing the
simulation output to the component specification from the manufacturer’'s data books. It
should be noted that simulation is not a required step in the design process and the VHDL
code can be used directly to synthesize the interface using a VHDL synthesis tool. How-
ever, for this work, verification of the correct operation of the Interface Designer necessi-
tated the VHDL simulation of all designs generated.

It should be noted that in the VHDL simulation ISBP parameters are single values,
representing typical values. If a method is developed that allows more accurate values to
be found for the ISBP parameters (such as back annotation through the use of a XILINX
VHDL synthesis tool), then those values can be used for the VHDL simulation instead.

The 68000 to 6116 interface design was compiled using the Mentor Graphics Qvh-
com VHDL compiler. The VHDL code was simulated using the Qhsim VHDL simulator
in Mentor Graphics. The resulting simulation waveforms can be seen in Figure 7-9. The
excitation waveforms simulate a write cycle at address 0x008012 followed by a read cycle

uone|nwIS 1aHA aldwex3 ubisad 00089 "6-2 34N

Isys_reset |

Im68000_as_ul{ ~ [100ns

/m68000_lds_ul-

/m68000_uds_ul -

/m68000_rw_ul| l40ns

/m68000_fcO_ul

/m68000_fcl ul i |

/m68000_fc2 ul

/m68000_dtak_ul

/m68000_Id_u1-

/m68000_ud_ul-

/m68000_a_ul-

/m6116_ce_u5-

Im6116_ce_ud

/m6116_ce_u3

/m6116_ce_u2 -

Im6116_oe_u2345__ [45ns

/m6116_wr_u2345 " [50ns

/m6116_d_u24-

/m6116_d_u35-

Im6116_a_u2345 X 00000010010

fsysclockt [LI LT L JLITLILTrL) L)L+ 7)WL L L]
[470ns |870ns [1140ns
|200ns \
\ | \ |
-+ [510ns
[810ns |1180ns
493ns
170ns [3ddns 895ns 1044ns siigns
X00111100 500ns) HOXXXXXXXX_+ K 00100100 X
1025ns 1165ns
(00100000 HOXXXXXXXX_+ X 01000000
70ns 840ns 1170ns
X 00000000100000000010010 W U 1111111111111 X 00000000000000100041010 W 11111111111111111111111
| 208ns [478ns
| 876ns [1150ns
-+ 515ns
- [520ns -
225ns 495ns 1020ns 1153ns
X(00111100 -+ (00100100
X(00100000 - (01000000 X
K 11111111111 00100011010 11111111111
75ns 505ns 45ns 1175ns
Prrr e rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr e b rrrrrrrr et e e e rr e e e e e
0 500 1lus

LT

178

at address 0x0001la. These addresses were chosen by the Interface Designer, using
unigue bit patterns, to fall within the memory banks starting at 0000000 and 0x008000.
Unique bit patterns are used to allow a design engineer to quickly verify the correct con-
nection of the address signals in the timing diagram. The write cycle is a 16-bit data trans-
fer, while the read cycle is an 8-bit data transfer. The simulation plot displays all data
transfer signals on both the microprocessor and the memory. The events in the timing dia-
gram were labelled by hand with their relative time of occurrence for analysis and discus-
sion purposes. The interpretation of the signal states in the timing diagram is given in

Single Signal BUS Signals
Lo ———— 00X 11. X ZZ.. X XX..)
0 1 Z X

0 Low \oltage

1 High \Voltage

Z High Impedance

X Unknown Voltage (either High or Low)

FIGURE 7-10. Simulation Timing Diagram States

Figure 7-10.

The signal naming convention in the simulation plots is as follows. If a signal is
named ‘/aaa_bbb_ccc’, then aaa is the component name, bbb is the signal name and ccc is
the device instance name. For the signal naa\és‘used for the address bus, whild' is
used for the data bus, if the data bus is 8-bit wide. If the data bus is 16-bit wide, the upper

68000 U1 IB_1_RW_CONNECT
Data[[8:15 /m68000_ud_ul 6116 U2
Data[0:7] /m68000_Id_ul
Address[0:31] /m68000_a ul 6116 U3
/m6116_ce_uZ CE 6116 U4
OE
/m6116_Ce_U3 CE 6116 U5
/m6116 ce u4 OE CE
/m6116_ce_u5 OF CE
/m6116 _oe u2345 OE
oy Isys_reset
oy H/sys clock

FIGURE 7-11. B Signal Naming for Simulation

179

8 bits are namedud’ and the lower 8 bits are callett *. For example in Figure 7-11, the
upper 8 data bus signals of devicdl, a 68000 microprocessor, is called
/m68000_ud_ul .

The simulation plot in Figure 7-9 shows the activation of @tesignal ofU4 andU5
during the write cycle starting at t=200ns at address 0x8012. For the write cycle, the 6116
OEsignal is negated, whil#/Rs asserted. The data signals from the 68000 microproces-
sor pass through the IB to the appropriate data signals of each 6116 RAM. For example,
the /m68000_ud_ul data signals (=0x20) pass to the6116 d u35 signals.
/m68000 DTAK_Ulbecomes asserted at t=344ns, while the write cycle terminates at
t=470ns with the negation of then68000 UDS_Uland/m68000 LDS U1 signals.
Once thdJDSandLDS signals are negateD,TAKbecomes negated as expected.

The next cycle in Figure 7-9, a read cycle, starts at time t=870ns at address 0x011a.
Only the/m68000 UDS_UL1 is activated during this read cycle indicating an 8-bit data
transfer. The IB correctly activates the6116 CE_US3 signal. The data supplied by U3
gets driven onto the 68000 upper data bims68000_ud_ul) as expected. The lower
data bus of the 68000 is not used during this data transfer.

7.4.7 Validation of the Interface: 68000 to 6116

To validate the data transfer interface generated by the Interface Designer, the
VHDL simulation output timing diagram given in Figure 7-9 was manually compared to
the Motorola 68000 data sheet[55] and the RCA 6116 data sheet[67]. The comparison was
accomplished in two stages: First the state of each signal in the VHDL timing diagram
was verified by checking the required state from the data sheets. For example the CE sig-
nal on the 6116 is at a low voltage level during a data transfer and high otherwise. Next,
individual data sheet timing parameters were compared to the timing parameters from the
VHDL simulation. Some important timing parameters that were compared are shown in
Table 7-8. The time provided by the IB from the timing simulation is calculated from the
relative time of occurrence of event in the timing diagram. For example, the 6116 address
valid event occurs at t=75ns, while theE event occurs at t=208ns. Thus the time from
address valid toCE is 208ns-75ns = 133ns. Thearginrepresents the difference between
the timing parameter provided by the IB VHDL simulation and the timing parameter
required by the input of a component. A positive margin indicates that the timing parame-
ter provided by the output of the IB meets the timing parameter requirement of the input of
the component. All timing margins were found to be positive, showing that the timing
specifications given by the component manufacturers were met and therefore indicating a

180

Timing Parameter Required Provided by IB Margin
(from data sheet) (from simulation)

Write Cycle:

6116 Address Valid té CE >0ns 208-75 = 133ns +133ns

61161 CE to Address Invalid >0ns 505-478 = 27ns +27ns

6116 Data-in Valid ta CE >50ns 478-225 = 253ns +203ns

61161 CE to Data-in Invalid >5ns 495-478= 17ns +12ns

Read Cycle:

6116 Address Valid té CE >0ns 880-845 = 35ns +35ns

61161 CE to Address Invalid >0ns 1175-1150= 25ns +25ns

68000 Data-In Valid td DTACK >-90ns 1044-1020= 24ns +114ns

680001 UDS to Data-In Invalid >0ns 1160-1140=20ns +20ns

680001 UDS tot DTACK <245ns 1163-1140= 23ns +222ns

TABLE 7-8. 68000 Interface Timing Margins
valid design from a signal timing perspective. As well, the logic levels and the sequence of

the signal events are as expected.

7.5 Timing Verification Failures

Once the Interface Designer completes the interface, it uses a chosen implementa-
tion technology with given propagation delays, setup and hold times for the ISBP parame-
ters. The Interface Designer then evaluates the timing constraints. If no timing constraints
are violated, the Interface Designer then generates the VHDL code for the interface. Since
no constraints failed the designed interface is assumed to be correct and the user can pro-
ceed directly to the synthesis of the VHDL interface code without performing a VHDL
simulation.

If a timing constraint fails, the Interface Designer will pause and present the user
with a list of the failed constraints in tHEXECUTION_LOGFILHile. The user is respon-
sible for investigating the reason for the failed timing constraint and has several options to
proceed. The choice of which option to use depends primarily on the severity of the fail-
ure.

1. After analyzing the failed timing constraint the user decides the components being con-
nected are incompatible and selects a different component.

2. If the failed constraint is within approximately two implementation technology propa-
gation delays (e.g. 20ns for LS TTL logic), the user may choose a faster implementa-
tion technology and have the Interface Designer re-evaluate the timing constraints.

181

3. If the failed constraint is within approximately half an implementation technology
propagation delay (e.g. 5ns for LS TTL logic), the user may proceed to the VHDL sim-
ulation stage to manually check if the failure also exists in the simulated interface. The
constraint evaluation process used by the Interface Designer is conservative since it
uses a worst case range of values for the ISBP parameters. The VHDL simulator on the
other hand uses a single ISBP parameter value to simulate the hardware implementa-
tion of the interface circuit and thus produces a more accurate and realistic estimate of
the interface signal timings. If the VHDL simulation indicates that all timing parame-
ters are satisfied, then the design can be used without modification.

Several components in Table 7-1 were found to be incompatible with each other and
will always generate timing constraints that fail. The 6809 microprocessor was found to be
incompatible with the Intel 2732, 2764, 27128, 27256 and 27512 EPROMSs due to a data
hold-time violation: the 6809 requires a 10ns hold time for the data from the EPROM,
while the EPROMSs only provide a hold time of zero relative to the address and chip
enable. The Intel i8255 is another device that has compatibility problems with various
microprocessors due to its data hold time requirement for a write cycle. The i8255 and
i82c55a-2 both require a 30ns hold time, while most microprocessors in the list provide
less than 30ns. The incompatibilities between components found are not unique to the
Interface Designer, but also would have been discovered by a human design engineer.
Once discovered, the design engineer has two choices: Re-design using different compo-
nents or generate an exceptional, complex interface. The Interface Designer will always
re-design using different components.

If two components are found to be incompatible, one of the components must be
replaced with a component of similar functionality and the Interface Designer must be
invoked again with the new set of components. A case data base for the incompatible com-
ponents could be constructed to avoid failures due to incompatibility in any future design.

7.6 Summary of Designs

Table 7-9 presents a summary of the designs used to test the DAME data transfer
Interface Designer. The 68000 design was presented in this chapter while others are pre-
sented in Appendix F. The designs were selected to use a cross section of devices with dif-
ferent complexity and speed.

The last table column lists the wall clock execution times to design completion,
including the generation of the VHDL code representation. The execution times shown are
only approximate and will vary according to the CPU use by other users. Due to the large
memory footprint and high CPU utilization of Knowledge Cratft, it is better to have a ded-

182

icated system to run the Interface Designer. Approximately 30% of the execution time was
required to generate the IB and ISB frames, 30% of the time was required for the timing
constraint verification, while 40% of the time was required to convert the frame represen-
tation for the 1Bs and ISBs to VHDL representation. As can be seen from Table 7-9, the
design time is approximately proportional to the total number of devices in the system
(about 4.5 minutes/device).

Master Slave Address Data Path | Total Time
Width min:sec
mc68000-8 4 *cmd6116-3 0x000000, 0x008000Q 16 bits 18:20
i8086a-2 4*cmd6116-3 | 0x00000, 0x08000 16 bits 31:09
2 * etc2716-1 0x0c000 16 bits
1 *i8255a 0x0e400 8 bits
mc68020-12.5| 4 * mcm6164-45| 0x00008000 32 bits 29:07
2*m27128 0x00000000 16 bits
1*m6810 0x0001f000 8 bits
mc6809 1 * m68b50 0xe000 8 bits 14:11
1 * m68b45 0xe800 8 bits
1 *m68b21 Oxec00 8 bits
tms32020 2 * mcm6164-45| 0x00008000 16 bits 17:19
2 *m2764a-1 0x00000000 16 bits
i8085a 1 *cmd6116-9 0x8000 8 bits 13:39
1*m27256a-1 0x0000 8 bits
1* m68bh21 0x4000 8 bits

TABLE 7-9. Summary of Designs

The simulation results for the microprocessor systems shown in Table 7-9 were all
verified with the component manufacturer’s data sheets and found to be correct. The simu-
lation results were also analyzed from a system architecture perspective and found to be
correct: Each device was activated only when required, the data from each device was sent
over the correct data bus signals and the address signals of a device were connected in the
correct sequence. The goal of this proof of concept Interface Designer was the develop-
ment of an automated interface design expert system that could produce data transfer
interface that assures that the components operate correctly according to the specifications
provided in the component manufacturers’ data sheets. The interface design examples
show that this goal has been achieved.

The designs produced by the Interface Designer are similar to that produced by a
human designer. This is primarily due to the fact that the design process developed for this
work attempts to mimic a human designer. For example, the human interface design exam-

183

ple for a 68000 to 6116 interface given in Figure 3-1 in Chapter 3, is similar in many
respects to the design generated by the Interface Designer shown in Figure 7-7: Both sys-
tems use a separate address decoder, bank select dé&xbd@Kdelay generator and they
‘combine’ the decoded address signals using an AND gate witiuib®and LDS data
strobes to generate ti@E signals on the 6116. Some minor differences exist in the use of
the AS signal and the lack of utilization of thg/pe information signals in Figure 3-1.
These differences, however, will not change the basic operation of the interface and it
would be difficult to decide which design is more optimal.

The completion times for the Interface Designer shown in Table 7-9 indicate that a
complete interface for a simple system can be designed in 15 to 30 minutes. From experi-
ence this should be faster than an expert human designer solving the same problem. In
addition, it includes the generation of machine readable VHDL code and a complete veri-
fication of component timing parameters. An expert designer may be able to draw up an
interface in 15 minutes, but he may not be able to perform a thorough check of the timing
parameters. Furthermore, a manual process is more prone to human errors. With new,
faster computer workstations becoming available every day, the Interface Designer will be
able to complete a design within minutes, giving the user the ability to experiment and try
out many different configurations in a short time.

184
Chapter 8

Conclusions and Future Work

This chapter presents the conclusions of this work and provides an overview of the
contributions of this research in the fields of microprocessor system design, expert sys-
tems and knowledge representation techniques. Further research areas of interest are also
discussed.

8.1 Conclusions

This work develops an expert system that is capable of designing the data transfer
interface of a customized microprocessor system. One of the most difficult aspects of
automating the interface design is the existence of the many subtle variations of the inter-
face protocols. Based on the central premise that interface design could be automated by
developing a limited number of representative timing patterns to represent the signal pro-
tocols and making design decisions based on the recognition these patterns, an automated
interface designer is built to design microprocessor system interfaces using commonly
available components.

The overall approach of this work is to perform design based on the recognition of a
standard set of timing patterns. Any signal on the component or the interface must follow
one of the standard timing patterns. To perform interface design, the Interface Designer
must be able to make certain assumptions about the behavior of signals through circuit
elements such as wires: a human designer simply assumes that a wire delay is so small,
that the timing pattern will not change from one end of a wire to the other. To give the
Interface Designer the capability to use this assumption requires the development of a
property of the timing patterns called small delay invariance: the type of timing pattern
that a signal follows will not be changed by a small delay. All timing patterns developed
for this work are small delay invariant.

There are several advantages of using this pattern matching approach for interface
design and using a limited number of timing patterns for making design decisions:

* Rules can be used to capture human designer’s expertise for interconnecting signals
with different timing patterns using primitive circuits. In addition the Interface
Designer does not require a sub-system capable of generating the primitive circuits
themselves, since the required primitive circuits can be pre-designed.

185

* There is a reduction in the level of detail, and hence the complexity, of the design pro-
cess and the information that must be modeled and represented by the Interface
Designer: The level of detail needs only be sufficient to allow the pattern matching
rules to select one of the pre-designed primitive circuits.

» The timing patterns provide a powerful tool for simplifying the representation of the
timing behavior of a component. Essentially, the timing patterns model only those
aspects of a signal’s timing that are required for interface design.

» Any component whose data transfer interface protocol can be represented by the timing
patterns developed can be added to the component library database. Once in the compo-
nent library database, the component can be used immediately in designs, without
changes to the design rule base.

» The number of different rules required to perform the interface design is limited by the
small number of different timing patterns. Using a human designer’s expertise, the
number of rules can be further reduced by eliminating the impossible or improbable
cases.

* The system can be extended to use new timing pattern with relatively little effort. The
only addition to the design rule base will normally be rules to manipulate the new tim-
ing pattern. Once the new rules are added to the Interface Designer, it will be able to
generate designs with component using the new timing pattern.

The approach to interface design used in this work is shown to be valid by generat-
ing a number of microprocessor systems using a variety of different components and veri-
fying the design using simulation tools. The designs produced are of similar complexity
and speed as that of a human designer. However, there are some potential problems associ-
ated with the timing pattern based approach:

» Interface design may fail with a given set of components: the interface will be function-
ally correct, but some timing parameters may be violated. The timing violation is
caused by the Interface Designer choosing interface primitive circuits based on the tim-
ing patterns without knowing the actual timing parameters of the finished interface. The
Interface Designer will detect such problems, but currently can not redesign the inter-
face when a timing parameter violation is found. Similar to what a human designer will
do, another design is to be generated using more compatible components, instead of
producing an overly complex design.

* A component may have a complex interface that uses signal timings which can not be
modelled using the developed timing patterns. In such a case it may not be feasible to
develop a new timing pattern due to the complexity of the protocol. This may occur
with new microprocessors such as the Pentium Il microprocessor, where the designer is
expected to use third party interface components between any peripherals and the
microprocessor. The signals between these interface chips and the microprocessor can
be considered tightly coupled and will usually be connected directly. In these cases, an
automated interface designer that connects the required signals directly will be suffi-
cient to accomplish the interface design.

186

The Interface Designer is given the design expertise to manage the representative
timing patterns in the form of rules. In essence, the system is provided with the knowledge
of how to connect signals that follow certain timing patterns using a set of pre-defined
primitive circuits. However, the design of a data transfer interface can not be accomplished
with just these rules since they effectively only address the issue of when signals change
state (i.e. their timing behavior), but not what the different state of the signals represent.
Furthermore, to accomplish interface design, the Interface Designer must know the pur-
pose and the source or destination of the information represented in the states of the sig-
nals. To address this issue, a novel representation of the signal behavior is developed that
represents the data transfer protocol of a component as a series of information transfers.
Each information transfer has a specific purpose in the protocol of a capability and con-
sists of two parts: the state information indicating what the information encoded in the
state of signals represents, and timing information representing when the state information
is valid. Once this approach is taken, it is relatively simple to analyze the protocol of com-
ponents to isolate the different types of information transferred: data, address, direction,
type, size, width, request and delay information.

The advantages provided by the technique of representing the data transfer protocol
as a series of information transfers proves to be quite far reaching:

* It provides a simple method to represent the purpose and function of an information
transfer by assigning it a unique type. A design expert’s knowledge on how to connect
signals with a specific type could then be represented as rules that recognize and con-
nect specific information transfer types.

* Furthermore, once the Interface Designer has indicated that signals involved in an
information transfer must be connected, the connection process can be accomplished
without consideration of the type of information using the timing pattern matching
rules and state information management rules.

* It provides a method for abstraction and information hiding. It allows the component to
be represented as a hierarchial network of frames where each lower level of the hierar-
chy reveals more detail about a component. At a given abstraction level, corresponding
rules at that specific level perform design without having to know specific details from
the lower levels.

The primary disadvantage of this method is encountered when developing the
design rules that must handle the state and timing information separately. When a signal
enters an interface block, it is relatively simple to determine how the state must be
changed and how the timing behavior must be changed, but it is difficult to develop a gen-
eral method to design an interface block that can accomplish both changes. To overcome
this problem, different microprocessor system designs were analyzed to see if a common

187

method could be determined. It was found that the timing information of a signal can be
changed using primitive circuits such as a Flip-Flop, followed by a change of the state
information using a combinatorial circuit. This work uses the same approach, since it fits
in very well with the state and timing information based information transfers.

Once the design is completed, an interface implementation technology is chosen and
each of the interface primitive circuit parameters is assigned a range of values specified as
an upper limit, lower limit and typical value. Each input timing parameter that must be sat-
isfied by an interface output timing parameter is represented as a timing constraint. Each
timing constraint is verified at the maximum and minimum values of the interface parame-
ters. The approach taken for the analysis of the timing constraints was conservative. An
approach based on probabilistic evaluation of timing constraints as proposed by Escalante
[26] may provide a more accurate estimation of the actual behavior and performance of
the interface.

The primary goal of this work is to produce real-world designs: an automated sys-
tem that actually generates a data transfer interface between components. In producing
such a design it was found that a method had to be developed that allows testing and
implementation of the data transfer interface. The method developed generates a VHDL
representation of the interface which can be simulated and synthesized using standard
VHDL tools.

The organization of the component and interface models as hierarchial networks of
frames and design rules that utilize information from the frame networks allows design to
proceed in a top down, divide and conquer fashion, starting with the high levels, working
towards the more detailed lower levels. The hierarchial interface generated using this
method greatly facilitates the generation of VHDL code for the interface, since there is a
direct mapping from the hierarchial interface frames to a VHDL representation.

To summarize, the major contributions of this work are:

* The development of a set of standard timing patterns to represent the timing behavior of
signals involved in data transfer.

* The development of a representation of the data transfer protocols in terms of informa-
tion transfers, where each information transfer is based on one of the timing patterns.

» The development of a simple and complete hierarchial frame based representation of
the components.

» The development of a hierarchial frame based representation of the interface.

188

* The development of a set of forward chaining rules that build up the data transfer inter-
face.

* The development of a set of primitive circuits used by the interface design rules as the
basic building blocks of the components.

* The development of parallel abstraction levels for the component model, interface
model and the interface design process so that independent interface design rules can
carry out the design at each abstraction level.

» The development of a method to verify that the timing behavior of the interface satisfies
the timing behavior of the components being connected.

» The development of a method to translate the interface frames into VHDL code to
allow implementation and testing of the interface in real-world applications.

» The development of a method to automatically generate a VHDL test bench that allows
simple verification of the operation of the interface.

» The implementation and testing of the Interface Designer using real-world interface
design examples.

8.2 Future Work

Based on the success of the simple automated Interface Designer developed for this
work we believe it is worthwhile to further develop and extend the DAME microprocessor
design system. This section elaborates on how the Interface Designer's capabilities could
be extended and discusses some areas of interest for future research.

One area of focus for the DAME system should be the development of an intelligent
component editor. The intelligent component editor would assist the design engineer in the
entry of new components. An extension of the work by Li [49] using model frames as out-
lined in Appendix G would allow an intelligent component editor that guides the knowl-
edge engineer during component entry. This would remove many of the problems and
errors introduced during manual component entry and it would allow the component data
structures to be verified before they are entered into the component library.

The DAME system should be extended to include design optimization information
in the knowledge base. This would allow microprocessor systems to be produced that are
optimized according to a requirement such as lowest cost, highest speed or lowest power
consumption. The knowledge representation techniques developed for this work lend
themselves readily to the inclusion of such information. For example, for memory devices,
information could be included that indicates lowest power consumption is achieved when
chip select is negated. This information could then be utilized when trying to minimize
power consumption.

189

The primary focus of the DAME system to this point has been the generation of the
interface between components. The higher levels of the DAME system should be devel-
oped to allow a complete microprocessor system to be generated using only original spec-
ifications. When developing the higher design levels, a case history knowledge base could
be integrated into the DAME system that avoids the use of incompatible components.
Designs using components that have been previously found to be incompatible and requir-
ing time consuming redesign of the interface could thus be avoided.

The integration of VHDL simulation tools directly into the DAME system to allow
direct simulation of the designed interface would enhance the utility of the system. Ideally,
a VHDL representation of each of the components in the component library should be
developed which would allow full functional simulation of the designed interface. Further-
more, the development of a method for cross annotation of primitive circuit parameters
between the Interface Designer and the VHDL (or other) synthesis tools would allow tim-
ing constraints to be re-checked after implementation using actual timing parameters.

Further research should be directed to the development of techniques for redesign if
a design fails for some reason. The current system simply requires complete redesign
using different components. An investigation into the feasibility of backtracking would be
required. This would allow some of the already generated design to be reused, avoiding
complete redesign.

Another useful area of research would be the development of a more theoretical and
formalized representation of the timing templates. This may allow automatic generation of
the primitive circuits used for interconnecting signals with given timing patterns. For this
work, the connection of signals following given timing pattern was accomplished by spe-
cific rules. Rules were provided for all timing patterns. By adding a representation of the
timing patterns as signal transition graphs as used by Escalante [27][28], it may be possi-
ble to replace these rules using a design system that will generate primitive circuits auto-
matically. This would avoid the tedious and error prone task of manually designing and
writing the rules that generate the primitive circuits.

Research should address the development of a method for representing timing links
between timing templates, and/or timing links between the timing templates and a com-
mon clock, to allow representation of more complex timing relationships found on some
of the newest microprocessors. This research could be further extended to the develop-
ment of timing templates for other component capabilities such as interrupt and bus arbi-
tration. The new capabilities will require completely new timing templates to be

190

developed that allow the protocol of these capabilities to be represented using information
transfers.

Further research efforts should also be directed at methods for finding an optimal set
of primitive circuit propagation delays. These propagation delays could then be passed to
the synthesis/layout tools for the interface as guidelines. The current system uses fixed
intervals for the primitive circuit propagation delays that are dependant on the implemen-
tation technology chosen. By telling the layout/synthesis tool what the propagation delay
should be, it will be more likely that the resulting interface will not violate any timing con-
straints, resulting in less requirement for redesign.

An extension of the DAME design system could be an useful interactive tool for
educational institutions as a teaching aid for microprocessor system design. Such an
expert system could systematically guide the student towards designing a complete micro-
processor system. It could present the student with the components being connected, high-
light the different signals that must be connected and present the student with explanations
of why certain design decisions are made as the design proceeds. The system could either
produce the design automatically, illustrating the different steps taken, or it could let the
student make the design decisions, pointing out errors or suggesting alternative designs.

A commercial product based on the DAME interface designer should be feasible
and will require further development of the current system. A commercial automated
design system will most likely be only used for microprocessor systems based on simpler
microprocessor and memory components. Designs involving more complex design issues
such as caches or synchronous DRAM using burst data transfer will still require manual
design. However, even with such restrictions, there would be a large market for an auto-
mated design system since more and more commercial products include custom micropro-
cessor systems.

191
Bibliography

[1] Aylor, J. H., R. Waxman and C. Scarratt, “VHDL - Feature Description and Analy-
sis”, IEEE Design & TestVol. 3 No. 2 pp. 17-27, April 1986.

[2] Ashenden, P. JThe Designer’'s Guide to VHDIMorgan Kaufmann Publishers Inc.,
San Francisco, California996.

[3] Baer, J.Computer Systems Architectu@omputer Science Press, Rockville, Mary-
land, 1980.

[4] Baldwin, D., “A Model for Automatic Design of Digital CircuitsTechnical Report
188, University of Rochester, Department of Computer Science, July 1986.

[5] Balph, T.,VMEDbus - A Microprocessor Bus for the FutuMotorola Semiconductor
Products Inc., Phoenix Arizona, 1982.

[6] Bansal, V. K.,Design of Microprocessor Based Systedahin Wiley & Sons, Tor-
onto, 1985.

[7] Begg, VivienneDeveloping Expert CAD Systemdsichor Press Limited, London,
1984.

[8] Bennets, R. GDesign of Testable Logic Circujtdddison-Wesley Menlo Park,
California, 1984.

[9] Bibbero, R. J. and David M. Sterilicroprocessor Systems, Interfacing and Appli-
cations John Wiley and Sons, Toronto, 1982.

[10] Birmingham, P. W. and A. P. Gupta, “The Micon System for Computer Design”,
IEEE Micro, Vol. 9 No. 5 pp. 61-69, October 1989.

[11] Birmingham, P. W., MICON: “A Knowledge Based Single Board Computer
Designer”, Technical ReportResearch Report No. CMUCAD-83-21, Dec 1983.

[12] Bowen, B. A. and R. J. A. BuhFhe Logical Design of Multiple-Microprocessor
SystemsPrentice-Hall Inc., New Jersey, 1980.

[13] Breuer, M. A. and A. D. Friedmamiagnosis & Reliable Design of Digital Systems
Computer Science Press Inc., Rockville, Maryland, 1976.

[14] Brozozowski, J. A. and M. YoelDigital Networks Prentice-Hall Englewood Cliffs,
N. J., 1976.

[15] Bushnell, M. L.,Design AutomationAcademic Press Inc., New York, 1988.

[16] Carnegie Group Incknowledge Craft Manual (Version 3.2), VolumeChrnegie
Group Inc., Pittsburgh, PA, 1988.

192

[17] Carnegie Group Incknowledge Craft Manual (Version 3.2), VolumeC2arnegie
Group Inc., Pittsburgh, PA, 1988.

[18] Clements A., Mtroprocessor System DesigtWWS-Kent Publishing Company, Bos-
ton, MA, 1992.

[19] Conley, W.,Computer Optimization Techniqyé2etrocelli Books, New York, 1980.

[20] Comer, D. J.Microprocessor Based System Desigolt, Reinhart and Winston,
Toronto Ontario, 1986.

[21] Davis, R. H. Austin, I. Carlbom, B. Frawley, et al., “The Dipmeter Advisor: Interpre-
tation of Geological SignalsSeventh International Joint Conference on Atrtificial
Intelligence Vancouver, British Columbia, Canada, 1981.

[22] Dimopoulos, N.J., K.F. Li, and E.G. Manning, “DAME: A Rule Based Designer of
Microprocessor Based SystemBybceedings of the 2nd International Conference
on Industrial & Engineering Applications of Artificial Intelligence & Expert Sys-
tems vol. 1 pp. 486-492, Tullahoma, Tennessee, June 6-9, 1989.

[23] Dimopoulos, N. J., B. T. Huber, K. F. Li, D. Caughey, M. Escalante, D. Li, R. Bur-
nett and E. G.Manning. “Modelling Components in DAME,Hroceedings of the
3rd International Conference on Industrial & Engineering Applications of Artificial
Intelligence and Expert Systen@harleston, South Carolina, pp. 716-725, July 15-
18, 1990.

[24] Dimopoulos, N. J., K. F. Li, E. G. Manning, B. T. Huber, M. Escalante, D. Li, D.
Caughey. “DAME: An Expert Microprocessor-Based-Systems-Designer. An Over-
view and Status Report,” lBroceedings of the IEEE Pacific Rim Conference on
Communications, Computers and Signal Processifigjoria, British Columbia, pp.
388-391, May 9-10, 1991.

[25] Dimopoulos, N. J. and C. H. Lee, “Experiments in Designing with DAME: Design
Automation of Microprocessor Based Systems using and Expert Systems
Approach,” InProceedings of the International Computer Symposium 1G88CS,
Tainan, Taiwan, pp. 1858-1867, Dec. 1986.

[26] Escalante, M. A.Probabilistic Timing Verification and Timing Analysis for Synthe-
sis of Digital Interface Controller®?h.D Dissertation, Dept. of Electrical and Com-
puter Engineering, University of Victoria, 1998.

[27] Escalante, M. A.Bus Arbitration Modelling and Design in DAME: an Expert
Microprocessor-Based-Systems DesighktA.Sc. Thesis, Dept. of Electrical and
Computer Engineering, University of Victoria, 1991.

[28] Escalante, M., N. J. Dimopoulos, B. T. Huber, K. F. Li., D. Li and E. G. Manning
“Generic Design Rules for the Design of Microprocessor Based Systems in DAME:

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

193

Bus Arbitration Subsystems,” lAroceedings of the 1991 IEEE International Sym-
posium on Circuit and Systen&ngapore, pp. 3166-3169, June 11-14, 1991.

Ferguson, JMicroprocessor Systems Engineeridgldison-Wesley Publishing
Company, Don Mills, Ontario, 1985.

Fletcher, W. I.Engineering Approach to Digital DesigPrentice-Hall, Inc., Engle-
wood Cliffs, New Jersey, 1980.

Freedman, M.D. and L. B. Evar3esigning Systems With Microcomputd?sen-
tice-Hall Inc., New Jersey, 1983.

Gilman, A. S., “WHDL - The Designer EnvironmentEEE Design & Test\Vol. 3
No. 2 pp. 42-47, April 1986.

Greenbaum, J. R. and R. Osann, “Digital Design and Analys&sihatysis and
Design of Electronic Circuits Using PCgan Nostrand Reinhold Company, New
York, 1988, pp. 138-157.

Hall, D. V., Microprocessors and Digital SysteppMcGraw-Hill Book Company,
Toronto, 1983.

Hamacher, V. C., Zvonko G. Vranesic and Safwat G. Z&gmputer Organization
Third edition, McGraw-Hill Publishing Company, Montreal, Quebec, 1990.

Hansen, G. R. and E. V. Hathaw&AD Applications Delmar Publishers Inc., New
York, 1986.

Hayes, J. Pintroduction to Digital DesignAddison-Wesley, Don Mills, 1993.

Huber, B., K.F. Li, N.J. Dimopoulos, D. Li, R. Burnett, E.Manning, “Modelling Sig-
nal Behavior in DAME,Proceedings of the 1990 International Symposium on Cir-
cuits and Systemslew Orleans, La., Vol. 2 pp. 1497-1500, Apr. 29 - May 3, 1990.

Huber, B. T., K. F. Li, N. J. Dimopoulos, M. Escalante, E. G. Manning,. “Modeling
Data Transfer Signals in DAME,” IRroceedings of the IEEE Pacific Rim Confer-
ence on Communications, Computers and Signal Proceséitgria, British
Columbia, pp. 505-509, May 19-21, 1993.

Huber, B. T., K. F. Li, N. J. Dimopoulos, E. G. Manning,. “Data Transfer Interface
Design in DAME,” InProceedings of the IEEE Pacific Rim Conference on Commu-
nications, Computers and Signal Processivigtoria, British Columbia, pp. 510-

513, May 19-21, 1993.

Intel, Microprocessor and Peripheral Handbook Volume |: Microprocesdatsl
Corporation,1988.

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]
[55]

[56]

[57]

[58]

194

Intel, Microprocessor and Peripheral Handbook Volume II: Peripheraigel Cor-
poration, 1988.

Intel, Intel Component Data Catalointel Corporation, Santa Clara, CA, 1982.
Intel, Intel Memory Componentitel Corporation, Santa Clara, CA, 1986.

Kuo, Y.,L. Kung, C. Tzeng, H. Jeng, W. Chia, “KDMS: An Expert System for Inte-
grated Hardware/Software Design of Microprocessor-Based SystdtEE?’ Micro,
Vol. 3 No. 2 pp. 32-35, pp. 86-92, August 1991.

Lam, H. and J.O'Malleysundamentals of Computer Engineeridghn Wiley &
Sons, New York, 1988.

Lawrence, G. EDesigning with Microprocessorscience Research Associates,
Toronto, Ontario, 1985.

Lesa, A. and Rodnay Zakdlicroprocessor Interfacing TechniqueSybex, Berke-
ley, California, 1978.

Li, Dongni, The DAME Editor: A User Interface for Data Acquisition in an Expert
Microprocessor-based-Systems DesigheA.Sc. Thesis, Dept. of Electrical and
Computer Engineering, University of Victoria, 1993.

Mano, M. M.,Computer Logic DesigrPrentice Hall, Englewood California, 1972.

McDermott, J., “R1: A Rule-Based Configurer of Computer SysteArsificial
Intelligence No. 19 pp. 39-88, 1982.

McFarland, M. C., A.C. Parker and P. Camposano, “The High-Level Synthesis of
Digital Systems”Proceedings of the IEEB/OI. 78, No. 2, February 1990.

McGllynn D. R.,Modern Microprocessor System Design: Sixteen-Bit and Bit-Slice
Architecture John Wiley & Sons, Toronto, Ontario, 1980.

Mostek,Byte Wide Memory Data Booklostek Inc., 1981.
Motorola, MC68000 16-/32-Bit Microprocessdvlotorola Inc., Austin, Texas, 1985.

MotorolaMC68020 32-Bit Microprocessor User’'s ManuRrentice-Hall Inc.,
Englewood Cliffs, NJ, 1984.

Motorola, Motorola Microprocessors Data ManydWotorola Inc., Austin, Texas,
1983.

Motorola, Motorola 8-Bit Microprocessors & Peripheral Datilotorola Inc., Aus-
tin, Texas, 1985.

[59]
[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

195

Motorola, Motorola Memory DataMotorola Inc., Austin, Texas, 1988.
Motorola,VMEbus Specification ManljaMotorola Inc., Rev B, 1982.

Napper, Simon, “Embedded System Design Plays Catch48g%E Computer\Vol.
29 No. 8 pp. 118-120, August 1998.

Motorola FAST and LS TTL Datéotorola Inc., Fifth Edition, Motorola Inc., 1992.

Odgin, C.,Tutorial: Microcomputer System Design and TechniqUeEE Computer
Society, 1980.

Patterson, A. D. and John L. Hennesaymputer Architecture. A Quantitative
Approach Morgan Kaufman Publishers Inc., San Mateo, California, 1990.

Protopapas, D. AMicrocomputer Hardware DesigPrentice-Hall Inc., Englewood
Cliffs, New Jersey, 1988.

Parsaye, K. and Mark M. Chingneltxpert Systems for Expertkohn Wiley & Sons,
Inc., Toronto, 1988.

RCA, RCA CMOS Microprocessors, Memories and PeripheR(A Solid State,
Somerville, NJ, 1984.

Ronald, C.G., “PECOS - An Expert Hardware Synthesis Syst@éechnical Report
US Army Research Office, Triangle Park, NC, 1985.

Rosenblum L. Y. and A. V. Yakovlev, “Signal Graphs: From Self-timed to Timed
Ones,” inProceedings of the International Workshop on Timed Petri [gpts] 99-
207, IEEE Computer Society press, July 1985.

Schnupp, PRroductive Prolog ProgrammindPrentice Hall, Englewood Cliffs,
1986.

Shaw A. W. Logic Circuit DesignSaunders College Publishing, Toronto, 1993.

Shaw, M., “Abstraction Techniques in Modern Programming Langualgest
Software Vol. 3x No. 2x pp. 10-26, August 1984.

Shiva, S. G.Computer Design and Architectyidarper Collins, New York, 1991.

Shortliffe, E. H.,.Computer-Based Medical Consultation: MYCHsevier, New
York, 1976.

Siddall, M. F. Expert Systems for Engineghdarcel Dekker, New York, 1990.

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]
[89]

196

Siewiorek, D. P., D. Giuse, W. P. Birmingham, “Proposal for Research on Demeter:
A Design Methodology and EnvironmenTechnical ReportCarnegie-Mellon Uni-
versity, January 1983.

Smith, M. F. and J. A. Bowen, “Knowledge and Experience-based Systems for Anal-
ysis and Design of Microprocessor Applications HardwavkGroprocessors and
Microsystems\Vol. 6 No. 10 pp. 515-518, December 1982.

Staugaard, A. C6809 Microcomputer Programming & Interfacingoward W.
Sams & Co. Inc., Indianapolis, Indiana, 1981.

Tanimoto, S.The Elements of Artificial Intelligence, An Introduction using LISP
Computer Science Press, Rockville, 1987.

Texas InstrumentgIMS32020 User’s Guigdd@exas Instruments, USA, 1984.

Thomas, D.E., and Phillip R. Moorbyhe Verilog Hardware Description Language
Kluwer Academic Publishers, Boston, 1996.

Thomson Componentdjemory Data BookThomson Components, Carrollton,
Texas, 1987.

Vranesic, Z. G. and Safwat G. Zakjicrocomputer StructuresSounders College
Publishing, Toronto, Ontario, 1989.

Wagner, S. M., and W. H. Shaw Jr., “Expert Systems and Computer Aided Design: A
Productive Merger’Proceeding of the 1988 IEEE Engineering Management Con-
ference Dayton Ohio, USA, 24-26 Oct 1988, pp. 78-84.

Wakerly J. Digital Design Principles & PracticePrentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1994.

Wiatrowski, C. A. and C. H. Houskgpgic Circuits and Microcomputer Systems
McGraw Hill Book Company, New York, 1980.

Winston, P. H.Artificial Intelligence Addison-Wesley Publishing Co., Reading,
Massachusetts, 1984.

ZILOG, ZILOG Component Data BopKILOG Inc., 1984.

XILINX, The Programmable Logic Data BQokILINX Inc., San Jose, California,
1994.

197

Appendix A
Timing Templates for Modeling Data Transfer

This appendix presents a description of the different timing templates developed to
model the data transfer protocol. The timing templates are divided into two types: non-
interactive timings that have timing relations from the reference to the information signal,
and interactive timings that have timing relations from the information signal to the refer-
ence signal in addition to timing relations from the reference to the information signal.

All signals shown in a signal timing template are marked with an O for output or an
| for input, indicating the allowed direction of the signals with respect to the component.

The signal timings described in this section are illustrated by showing the timing
links between events other than those shown in Figure 4-19. The range of the allowed val-
ues for the timing parameter of the timing links are shown using the symbel——
or ———1= with respect to the reference event, as explained in Section 4.7.2, if the
timing parameter is bounded by infinity on one side and an omp delay on the other. For a
causal timing link, where the timing parameter value is bounded by 0 one side and + infin-
ity on the other, the symbo@———-— is used.

For discussion purposes, all timing links in the signal timings presented are given
names such as ‘setup time link’, ‘*hold time link’, ‘response time link’, ‘acknowledge time
link’ or ‘access time link’. The timing link names have slightly different meanings for the
different timing templates, and must be discussed in the context of the timing template in
which they are used.

A.1 Non-Interactive Timings

A.1.1 Strobe Timing

The Strobe Timing shown in Figure A-1 is used to give the timing of a signal that
has what is often called non-multiplexed timing behavior (for example the address signal
on a MC68000 microprocessor relative to tk®* signal, or the address signal on an 6116
relative to the CE* signal). For a Strobe Timing, the transition to a valid state of the infor-
mation signal typically occurs before the initiate event (called the setup time of the infor-
mation signal), while the valid state remains present until after the terminate event (called
the hold time of the information signal). The information signal and the reference signals
are either both outputs or both inputs. There are always-accompanied-by links between the
reference events and the signal events as shown in Figure A-1.

198

reference signal (O, I)
setup time Iink’/{

hold time link

always-accompanied-bly
—>

information signal (O, | >< VALID STATE
— D Ap— > (- +~
(-~ +omp) setup rang_e| I_hold range (-omp +-)

FIGURE A-1. Strobe Timing
This signal timing provides information about when the information signal is valid
and stable. The first event of the information signal is an event such as a transition from a
tristate/open or invalid to a valid state, while the second event is the complementary event
of the first event. The setup timing parameter range is (-~ +omp), while the hold timing
parameter range is (-omp +~).

A.1.2 Latch Timing

The Latch Timing is typically used to give the timing of a signal that is shared for
different functions, and is commonly called a multiplexed signal timing behavior. For
example, in a 8088 microprocessor, the address of a data transfer and the data itself are
transferred by time multiplexing the address information and the data information onto the
same signals. Time multiplexing onto the same signal means that at some point in time a
signal will contain the address, while at another time the signal will contain the data.

ref+ ref- always-accom paﬂied-b /
reference signal (O, T ™ clock hold time link
clock setup time link—— | L] \",
ALE signal (O, I) 1 ale+ ale-

setup time Iink/{ ¥\\hold time link

information signal (O, 1) >< VALID><:|

; ~ hold range (-omp +~)

(-~ +omp) setup rangeg |
clock Setup rangegq——— I~ clock hold range
-~ +omp) (-omp +-~)

FIGURE A-2. Latch Timing

In a Latch Timing, the information signal has a timing link to a clock signal (called
ALE or Address Latch Enable signal) using the setup time and hold time always-accompa-
nied-by timing links as shown in Figure A-2. The_E signal is related to the reference
events through the clock setup time and clock hold time always-accompanied-by timing

199

links. The information signal, the reference and &ieE signal are either all inputs or all
outputs.

For a Latch Timing, the transition to a valid state of the information signal typically
occurs before theALE asserted event (setup time link), while the valid state remains
present until after thé&LE negated event (hold time link). Th&LE asserted event typi-
cally occurs before the initiate event (clock setup time link), whileAh& negated event
typically occurs after the terminate event (clock hold time link). The information signal
and the reference signals are either both outputs or both inputs.

It should be noted that the ref+ event has an indirect always-accompanied-by timing
relation to the information signal events through the ale+ event. The relationship is indi-
rect since no direct timing links between the ref+ and the information signal events are
given.

This signal timing provides information about when the information signal is valid
and stable. The first event of the information signal is an event such as a transition from a
tristate/open or invalid to a valid state, while the second event is the complementary event
of the first event. The setup and clock setup timing parameter ranges are (-~ +omp), while
the hold and clock hold timing parameter ranges are (-omp +~).

A.1.3 Follows Timing

The Follows Timing is used to give the timing of signal that is the response to a ref-
erence initiate event (for example the data signals on a 6116 memory device during a
read). The information signal is always an output signal and the reference is always an

reference signal (1)

responds -with
N
setup time Iink,//*

khold time link
information signal (O VALID ><j

(0 +~) setup rangb—|> hold range (0 +~)

FIGURE A-3. Follows Timing

input signal. There is a responds-with timing link between the reference events and the
information signal events.

This signal timing provides information about when an information signal output is
valid and stable in response to an input reference signal, implying causality. The first event
of the information signal is an event such as a transition from a tristate/open or invalid to a

200

valid state, while the second event is the complementary event of the first event. The setup
and hold timing parameter ranges are (0 +~).

A.1.4 Pulse-Latch Timing

The Pulse-Latch Timing is used to give the timing of input signals that must be valid
during the terminate reference event of a device relative to an input terminate reference
event (for example a data signal on a 6116 memory during a read relative to the events on
the CE* signal). In a Pulse-Latch Timing, a valid state of an information signal is present

always-accompanied-by
—>

reference signa (1) i hold time link
{ setup time link

information signal (1) ><VALID
I hold range (-omp +~

setup range (-~ +tomp)}<t———1{

FIGURE A-4. Pulse-Latch Timing

before the terminate event (setup time link), and the valid state stays until after the termi-
nate event (hold time link). The reference signals and the information signal are both input
signals. In a Pulse-Latch Timing, the information signal has timing links to a reference

using the setup time and hold time always-accompanied-by timing links as shown in
Figure A-4.

This signal timing provides information about when an input information signal has
to be valid relative to the input reference ref- event. The first event of the information sig-
nal is an event such as a transition from an open or invalid to a valid state, while the sec-
ond event is the complementary event of the first event. The setup timing parameter range
is (-~ +omp), while the hold timing parameter range is (-omp +~).

A.1.5 Follows-Latch Timing

The Follows-Latch Timing is used to give the timing of input signals that must be
valid during the output terminate reference event of a device (for example a data signal on
a MC68000 microprocessor relative to the UDS signal during a read). In a Follows-Latch
Timing, a valid state of an information input signal is present before the terminate event
(setup time link), and the valid state stays until after the terminate event (hold time link).
The reference signal must be an output signal, while the information signal must be an

201

_ _ I expects
reference signal (O) — >

access time Iink///\‘¢\i hold time link
information signal (I ><VALID Kj setup time link

hold range (0 +~)
(-~ +omp) setup|range

(O +~) access rang@———=>
FIGURE A-5. Follows-Latch Timing

input signal. In a Follows-Latch Timing, the reference signal has expects time links to the
information signal using the setup and hold time links shown in Figure A-5.

One of the distinguishing feature of the Follows-Latch Timing is the setup time of
the expects timing link that is negative. The expects time link between the ref- and sig+
events is allowed to go negative for this timing since it is assumed there is a causal rela-
tionship between the ref+ event and the sig+ event (access time link).

This signal timing provides information about when an input information signal is
valid and stable relative to an output reference ref- event. The first event of the information
signal is an event such as a transition from an open or invalid to a valid state, while the
second event is the complementary event of the first event. The access timing parameter
range is (0 +~), the setup timing parameter range is (-~ +omp), while the hold timing
parameter range is (0 +~).

A.1.6 Logic Timing

The Logic Timing is used to give the timing of information signals that have a tim-
ing similar to the reference. For example on a Z80 microprocessor, the MREQ* signal has
a similar timing as the RD* signal. Figure A-6 illustrates the Logic Timing. The reference

accompanied-by
—

reference signal (O) N complementary-precedes

setup time link

information signal (O)NEGO L\As—/f NEGO
(-omp +omp) setup range | ﬁu

. . 1 hold range (-omp +omp)

hold time link

FIGURE A-6. Logic Timing

202

and the information signal both are outputs for a Logic Timing. The information signal
events for a Logic Timing are detectable and are therefore restricted to state changes
between ASSO and NEGO. The reference event to information signal event links are both
accompanied-by timing links. Another notable aspect of this timing is the complementary-
precedes timing link between the sig+ and sig- events. This link assures that the informa-
tion signal event sequence will be glitch free. No events are allowed on the information
signals other than those linked to the reference. The setup and hold timing parameters
have a range of (-omp +omp).

The Logic Timing allows the description of any glitch free signal that behaves simi-
lar to the reference. By definition, a reference signal behaves similar to the reference.
Therefore the Logic Timing makes it possible to give the signal timing of the reference
signal itself by specifying the setup and hold timing parameters as (0).

The importance of being able to specify the timing of the reference signals is real-
ized later in this work when every information transfer between components is given as
timing information and state information. The use of the Logic Timing allows the refer-
ence information to be given in the same way as any other information, such as address
information. Any techniques and heuristics developed for connecting information transfer
between components can then also be applied to the reference information.

Figure A-7 shows a typical application of the Logic Timing. A MC68020 micropro-

Reference Signal timing of the
DS* signal of a
4@) Qo)_ MC68020
DS*

FIGURE A-7. Logic Timing Example

cessor has thBS* data strobe signal, which is used as the reference signal. The signal
timing for theDS* signal is given as a Logic Timing with a setup and hold timing param-
eters of zero.

A.2 Interactive Timings

A.2.1 Handshake Timing

The Handshake Timing shown in Figure A-8 and Figure A-9 is an interactive timing
that is used to give the timing of an information that interacts with the reference. The

203

events on the information signals are detectable. The timing links are either responds-with
or expects timing links as shown in Figure A-8 and Figure A-9. If the information signal is
an output, the reference signal is an output, while if the information signal is an output, the
reference signal will be an input. A typical example of the Handshake Timing is the signal

reference signal (O) respongs-with

expects
acknowledge time Iink///Z \ hold time link

information signal (1) response time link

acknowledge range (0 +@—F——>
wledge range (o ~ response range (0 +~)
@ hold range (0 +~)

FIGURE A-8. Handshake Timing (Information Signal is Output)

reference signal (1) respongls-with
expects
acknowledge time link—— | R hold time link
information signal (O) I response time link
acknowledge range (0 +
-~ response range (0 +~)

@ — holdrange (0 +~)

FIGURE A-9. Handshake Timing (Information Signal is Input)

relationship between th&IDS*/LDS* signals and thddTACK* signal in a MC68000
microprocessor.

The acknowledge, response and hold timing parameter range is (0 +~). The Hand-
shake Timing presents the timing of an information signal that can be used to adjust the
time from the reference initiate to terminate event by changing the acknowledge timing
parameter.

A.2.2 Wait Timing

The Wait Timing shown in Figure A-10 and Figure A-11 is another interactive tim-
ing that is used to give the signal timing of an information signal that interacts with the
reference. There are responds-with and expects timing links as shown in Figure A-10 and
Figure A-11. There is an complementary-precedes link between the sig+ and sig- events

204

(acknowledge time link). There is also a complementary-precedes link between the ref+
and ref- events. (minimum time link). The events on the information signals are detect-
able. If the reference signal is an input, the information signal is an output, while if the ref-

minimum time responds-with
—>
, —~— — expects
reference signal (O)

b d complementaryireced PS

setup timelink ~~ ——
——————— response time link

acknowledge time linK

information signal (1) —51

@ minimum range 0, +~)
@ setup range (0, +~)

@ acknowledge range (0, +~)
@ response range (0, +~)

FIGURE A-10. Wait Timing (Information Signal is Output)
erence is an output, the information signal will be an input.

minimum time responds-with
—\ _ expects
reference signal (1) P

complementary-preced
setup time link

D
(72}

——————— response time link
—————— — acknowledge time link

information signal (O) -

____~ minimum range (0, +~)
::_,> setup range (0, +~)
@ acknowledge range (0, +~)

@ — response range (0, +~)

FIGURE A-11. Wait Timing (Information Signal is Input)

A typical example of the Wait Timing is the relationship between the MREQ* signal
and the WAIT* signal on a Z80 microprocessor. The minimum, setup, response and the
acknowledge timing parameter range is (0 +~). The acknowledge timing parameter can be
used to adjust the time interval between the reference initiate to terminate events.

The Wait Timing from Figure A-10 has an interesting property: if the information
signal does not have an event after the reference initiate event (i.e. the information signal
stays negated), then the initiate to terminate time interval will be given by the timing
parameter of the minimum time link.

205
A.2.3 Pulse Timing

The Pulse Timing shown in Figure A-12 is an interactive timing that is used to give
the signal timing of the terminate reference event relative to the initiate reference event.
The Pulse Timing is used in components where the time from the initiate to the terminate
event is fixed. For example the E signal on a 68HC11 microprocessor provides a fixed
time interval from the initiate to terminate reference event. The Pulse Timing has a com-
plemetary-precedes link between the ref+ and ref- events (access time link). The access

__ Complementary-precedes
Information Signal / Reference (O, ———— >

T access time link
o = access range

FIGURE A-12. Pulse Timing

timing parameter range is (0 +~). The reference signal and the information signal are the
same for this timing. The reference / information signal can be an input or an output.

206

Appendix B
The Component and Interface Frame Hierarchy

B.1 The Component Frames

A microprocessor system component, such as a MC68000, is represented by a com-

MICROPROCESSOR Device Frame
tybe \is-a Prototype Frame
\
Master MC68000
. uses-voltage
has-S|gnarI/ \g
ALAZ, e
VCC, GND . . "
has-capability ~ has-capability ~ has-capability
BUS-ARBITRARTION DATA-TRANSFER| | INTERRUPT-
-CAPABILITY1 -CAPABILITY1 CAPABILITY1

FIGURE B-1. The MC68000 Component Device Frame

ponent device frame. The component device frame will specify the component’s charac-
teristics, behavior and attributes. These characteristics include items such as the number
and names of signals pins, power consumption, voltage requirements, tasks the device can
perform and how the device will perform those tasks.

Figure B-1 shows the organization ofMC68000 microprocessor device frame.
The MC68000 inherits all the properties of a microprocessor (such\tgpe ‘Master’)
from theMICROPROCESSQRRototype frame. Th#1C68000 device has bus arbitration,
data transfer and interrupt capabilities which are represented in the device frame with a
~has-capabilitylink to the BUS-ARBITRATION-CAPABILITY1, DATA-TRANS-
FER-CAPABILITY1 andINTERRUPT-CAPABILITY1 device framesMC68000sig-
nals are represented by frames linked M€68000 frame through the“has-signal
relation.

B.1.1 The Capability Device Frame

The protocol of a capability consists of a series of information transfers. Each infor-
mation transfer is represented using a state timing specification device frame inside the

207

capability device frame as shown in Figure B-2. The state timing specification frame is

Device Frame
Prototype Frame
DATA TRANSFER g iS-8 —| DATA TRANSFER
CAPABILITY CAPABILITY1 has-
reg- STATE-
spec—a{ TIMING-
has- SPEC1
type-spas.
zp P 4| STATE:
a]s-wor TIMING-
83 S€I-SPeC | spec2
. . address-
uses USES spec ha Word STATE-
sub- sub- width-spefTIMING-
DT-READ- capability capability | SPEC3
SUB-CAP
STATE- | [STATE-
\ TIMING-| | TIMING-
's-a sPecs | | sPeca
DT-READ- DT-WRITE-
SUB-CAP1 SUB-CAP1
ZAN
as- has-. . .
|daent|f|cat|on Qa - Qa ata- Qe- fentification
spec spec SPec gpec SPec
y s y))4 Y RN
STATE- | [STATE- | [STATE- STATE- | [STATE- | [STATE-
TIMING-| | TIMING-| | TIMING- TIMING-| | TIMING-| | TIMING-
sPecé || sPec7 || sPECs sPec9 | | sPecio| | sPEC11
|Sé |s T a/
is-)
Yo, — is-
STATE- /
TIMING-
sPEC

FIGURE B-2. The MC68000 Capability Device Frame

related to the capability frame using aas-xxx-specelation, where xxx represents the
class of information. For example, ttadress information is given using thehas-
address-spetelation and theequest information is given using aHas-reg-specela-

tion as shown for the data transfer capability in Figure B-2. Each of the information trans-
fer device frames, such as tI®TATE-TIMING-SPEC5 frame for the address

information, is based on &TATE-TIMING-SPEC prototype frame as shown in
Figure B-2.

A capability can often be classified further into sub-categories of the capability. For
example, data transfer capability can be classified into read and write data transfer capabil-
ities. Some information transfer protocols for the data transfer capability will be common

208

to both read and write sub-capabilities, while others will be specific to the read and write
sub-capabilities. The device frames developed for the capability model allow representa-
tion of sub-capabilities through the use of sub-capability frames subii €8EAD-SUB-
CAP1andDT-WRITE-SUB-CAP1 device frames shown in Figure B-2.

Any information transfers that are common to all the sub-capabilities are given in
the capability frame, while any information transfer specific to a sub-capability is given in
the sub-capability frame in thau8es-sub-capabilitglot. For example in Figure B-2, the
address information specification is common to both the read and write sub-capabilities
and therefore is given in the data transfer capability, whileddta information specifi-
cation changes for the read and write sub-capabilities and therefore is given in the read and
write sub-capabilities.

Table B-1 summarizes the relations used to give the state-timing device frames for
each information class within a data transfer capability.

Information Class Relation

Request has-reg-spec

Address "has-address-spec

Type "has-type-spec

Word "has-word-select-spec

Direction Auses-sub-capability / has-identification-spec
Width "has-word-width-spec

Delay ~has-del-spec

Data "has-data-spec

TABLE B-1. Relations Used to give the State-Timing Frames for Data Transfer Capability

B.1.2 A Note About Choosing the Name of a Frame

The names for the device and prototype frames used to build up a component are
chosen to assist the human user in identification of the function of a frame. For example
DT-READ-SUB-CAP1 frame is the Data Transfer Read Sub-Capability frame in
Figure B-1. Instantiation of prototype frames are usually given the name of the prototype
frame with a unique number attached to the end of the name. For example in Figure B-1
the STATE-TIMING-SPECS frame is used to represent an instance of the state timing
specification prototype fram8TATE-TIMING-SPEC. Component device frames which
represent actual components (such asNM@68000 frame in Figure B-1) are given a
name indicating the component’s name from the manufacturer, instead of the name of the
prototype frame extended by a number.

209
B.1.3 The State-Timing Specification Device Frame

Each information transfer is represented using a state-timing specification frame,
which consists of a frame representing the timing information and a frame representing
the state information of the information transfer. The example shown in Figure B-3 gives

Device Frame

hai—address-spec

STATE-
_—"] TiminG-

Prototype Frame

is-a SPECS5

STATE- /

TIMING- . r/

SPEC uses-timing uses-state

RN
< o TIMING3 STATE3
STROBE. &
is-a_ TIMING
TIMING & /is-a
STATE

FIGURE B-3. State Timing Specification

the address information specificati®TATE-TIMING-SPECS5 device frame which is
linked to a capability frame using @das-address-speelation. TheSTATE-TIMING-
SPECS5frame is broken into the timing information transfer and the state information
transfer in the form of th@IMING3 device frame and thETATE3device frame, which
are related to the state-timing frame usihgses-timingelation and*uses-stateelations
respectively.

B.1.4 The State Specification Device Frame

The purpose of a state specification device frame is to associate a set of states with
some kind of abstract meaning or interpretation. If a state specification includes n binary
signals, then the set of possible states will consist"aftates. Two different methods are
used to associate a set of states to an interpretation of the set of states.

The first method applies when the set of states that must be represented by the state
information is complete and regular: for n binary signal8, s2ates have meaning.
Address state information falls into this category: 10 address signals can be used to rep-

210

resent 1024 states, each state indicating the address of a single memory location. A short-
hand notation is used to represent this type of state information because of the large

STATE-TIMING-SPEC5 Device Frame
(Address Information)

Prototype Frame

uses-timing uses-state

STATE-MAG-TABLE1
Signal Weight
.~ AO 0
is-a
~ Al 1
STATE-MAG-TABLE A7 5
Al10 10

FIGURE B-4. State Information for Address Information Transfer

number of states: the binary weight of each signal is given in a magnitude state informa-
tion device framé&TATE-MAG-TABLE] as shown in Figure B-4.

The second method for representing state information is used when there is more
than one state associated with an information transfer, but the set of states is either not
complete (i.e. not all binary states must be represented) or is irregular (i.e. each state in the
set of states has a different meaning unrelated to the other states). An example of this kind
of state information is shown in Figure B-5 for tigoe information of the MC68000
microprocessor: the binafyCO, FC1 andFC2 signals used to generate the states for the
type information can represent eight unique states, but only five of which are used. The
five that are used represent the supervisor and user program space, the supervisor and user
data space, and the interrupt acknowledge data space. They are given in the state informa-
tion device fram&TATE-TABLEL as shown in Figure B-5.

B.1.5 The Timing Specification Device Frame

The purpose of the timing specification device frame is to provide the timing behav-
ior of the signals used in the state specification device frame. A timing specification device
frame represents the timings of signals as discussed in Section 4.7.4. The prototype of a

211

STATE-TIMING-SPEC?2 _
(Type Information) Device Frame

Prototype Frame
uses-timing

uses-state

STATE-TABLE1
Keyword (Meaning) State

'User Data’ ((ASSO FCO)(NEGO FC1)(NEGO FC2))
'User Program’ ((NEGO FCO0)(ASSO FC1)(NEGO FC2))

'Supervisor Data’ ((ASSO FCO)(NEGO FC1)(ASSO FC2))
'Supervisor Program’ ((NEGO FCO0)(ASSO FC1)(ASSO FC2))

‘Interrupt Acknowledge’ ((ASSO FCO)(ASSO FC1)(ASSO FC2))

. 7
IS-a

STATE-TABLE

FIGURE B-5. State Information for MC68000 Type Information Transfer
timing device frame corresponds to the timing template on which the timing device frame
is based. For example in Figure B-6, tiéMING1 device frame is based on the
STROBE-TIMING prototype.

The events and timing parameters found in the timing device frame are given in the
slot and filler format as shown in Figure B-6. The slot name is the name of the event or
timing parameter, while the filler gives the value assigned to the event or timing parameter.
In this timing, eventl and event3 represent the reference events while event2 and event4
represent information signal events as shown in Figure B-7.

B.1.6 The Signal Device Frame

A component has electrical signal wires over which information is transferred or
which supply power and ground reference voltages. The electrical connection points are
called signals and the information about these signals is stored in a signal device frame,
which is linked to the component device frame usindhastsignakelation. Each individ-
ual signal will have electrical characteristics such as voltage levels and drive capability, a
device pin number and a polarity associated with it. This information will be given in slots
containing the appropriate information as shown in Figure B-8.

212

STATE-TIMING-SPECS

Device F [
evice Frame (Address Information)

Prototype Frame

uses-timing
TIMING1
(Timing Information Frame)
Slot Filler

STROBE-TIMING «——is-a— js-a Strobe-Timing

eventl (! ASSO DS*)
event2 (! VALIDO A1)
event3 (! NEGO DS*)
event4 (' INVALIDO A1)
time2 (-20 -10)

time4 (10 20)

FIGURE B-6. Example Strobe Timing Information Frame

eventl event3

reference signal .
timeZv/ time4

information signal Valid STATE

event2 event4

FIGURE B-7. Event Names for Strobe Timing

B.1.7 Overview of the Component Organization

A component is assembled by building up a hierarchical set of device frames which
are created by instantiating prototype frames. Figure B-9 gives an overview of how the
component model is organized by presenting some prototype, device and instance frames
for a MC68000 microprocessor. TIMC68000 frame inherits the type ‘Master’ from the
MICROPROCESSORrototype frame. The data transfer capability is represented by the
DT-CAP-MICRO11 device frame which is based on tiEl-CAP-MICRO prototype
frame. The data transfer capability in turn has a read sub-capability dalleRD-

CAP33 The sub-capability has delay specificat®MATE-TIMING5 which consists of

213

MC68000 Device Frame
has-signal Prototype Frame
MC68000-Al
Slot Filler
|§-a SIGNAL ~is-a
pin number 30
drive-capability 10ma SIGNAL
Polarity (ASSO 0V)

FIGURE B-8. Example Signal Frame

signal timingTIMING14 . TIMING14 is based on thelANDSHAKE-TIMING prototype
frame.

The instance of a component such @%, are created during the system design
phase. As the system is designed, decisions are made about what components should be in
the system, and the appropriate instances are created. Device frames such as the
MC68000 frame are created when components are entered into the component library
data base, which is independent of the system design phase. Prototype frames are created
when the rules are written that will accomplish the interface design. The prototype frames
must be flexible and universal enough to be used as building blocks for any components
that will be created and entered into the component library. The developer of the prototype
frames must assure that any frames instantiated from the prototype contain all the relevant
information required for interface design.

B.1.8 Examples of Component Frame Hierarchy

This section presents a more detailed overview of the frame hierarchy for the
MC68000 microprocessor (Figure B-10) and the MK6116 static RAM (Figure B-11). It
should be noted that these diagrams only show a partial set of the device frames as the full
set is too complicated to show in a single figure. This is the hierarchy that was used for
implementing the frames to represent components in Knowledge Cratft.

B.1.9 Examples of Component Frames

This section presents some examples device and prototype frames as they were
implemented in Knowledge Craft in the DAME Interface Designer.

214

Device Frame

uses-sub-cap

DT-RD-CAP g

-
Prototype Frame: _: Instance Frame© Attribute / Value

uses-sub-cap

¢

COMPONENT < is-a— MICROPROCESSOR-g is-a —| MC68000 Ul

/ 7 -
has-proper Type r -U.2. -,
/ has-capability instance-of '~ - - - .
(Uses Powdr has-capability us !

y

DT-CAP '«g—is-a— DT-CAP-MICRO -g¢— is-a— DT-CAP-MICRO11

uses-sub-cap

DT-RD-CAP33

has-del-spec

¥

has-del-spec

v

STATE-TIMING & is-a STATE-TIMING5
use;nmmg uses-timing
HANDSHAKE-TIMING =& is-a TIMING14
eventl

is-q eventl
/ * (! (OR (ASSO UD
TIMING (ASSO LDS)))

FIGURE B-9. Prototype, Device and Instance Hierarchy

B.1.9.1 Example of a Timing Information Frame

Table B-2 gives the frame representing the timing of the address signals for the
MC68000 microprocessor. The address signal timing are based on a Strobe Timing. The
reference signals, which consists of t€68000-LDS andMC68000-UDS signals,

215

Device Frame

-
Prototype Frame :

[
¢ Instance Frame

_ 7 UL
Instance-0 it
-
A1-A23, D0-D15 MC68000 |-
UDS, LDS, AS |4~ uses-timing 1S-a
DTACK, etc.
. [MICROPROCESSOH
has-capabilit
has-capability
DATA BUS
ARBITRATION1
DATA TRANSFER
CAPABILITY34 has-
UDS/LD$
. c—»| ST
uses-timing ail? ngc
type-sp
h FCO-FC]
DS AS has-size |57]
Timing 88 -Spec SPEC
- . addre
USES USeS- spec has W|dth UDS/LD$
sub- sub- -sp D0-D15
capability capability \ ST-SPE(
Al A23 | [D0-D15
DTACK
SPEC ST-SPE(
DT READ DT WRITE
SUB-CAP2 SUB-CAP3
as-/\
|daent|f|cat|on/{& Qata— Qata Qg‘ﬁ |daent|f|cat|on-
o i A
RIW DTACK DO D15 D0-D15 | [DTACK | [R/W
ST ST ST ST ST ST
spem SPEC1 || SPEC1 SPEC2 | | SPEC2 | | SPEC2
uses- tlmlng \ . use\s -timing uses- %lmlng . uses- {imin
* uses- tlmlng * * uses- tlmlng*
Y
DS DS DS DS DS DS STATE7
RMW-RD || DTACK | | D0-D15 D0-D15 || DTACK ||RM-WR [STATE? |
TIMING || TIMING1| | TIMING1 TIMING2| | TIMING2| | TIMING
%is-a isa
is-a” ~is-a is-a is-a
y \M Y
Follows-Latch Timing ' Strobe Timing
A

Handshake Timing

S T b T =

FIGURE B-10. Component Hierarchy for MC68000

216

Device Frame Prototype Frame : : Instance Frame
1 U2]
instance-of 7~
-
A0-Al1, DO-D7 _ MK6116 |
CE. OE. WR - uses-timing’ is-a
VCC, GND
MEMORY|
has-capability
DATA TRANSFER
CAPABILITY37 has-
reg- CE,OE
spec— WR
ST-SPE(
has-size
h88 -spec
- . address-
uses uses Spec CE
sub- sub-
capability capability ST-SPE(
CE
ADDR
ST-SPE(
DT READ DT WRITE
SUB-CAP7] SUB-CAPY
has-.. as- as-/\h S-..
identification- g5 Qata— Qatav QQE' idfentification-
spec / s'pec sp‘ec ;pec spgc spsi
OE CE, OE || Do-D7 DO-D7 CE,WR| [WR
ST ST ST ST ST ST
SPEC1 || sPEC1 || SPEC1 SPEC2 | | sPEC2 | | SPEC2
~ . . .
uses-timing \ . use\s-timing uses-flmlng \ _uses-timin
uses-timing \ * uses-timing
ay \/.3
CE,OE |[CE, OE CE, WR | [CE, WR STATE6
DO-D7 DO-D7
TIMING || TIMING TIMING || TIMING
%is-a isra is-a
Follows Timing Pulse Timing Pulse-Latch Timing
A % E A b= A \:é
B B

FIGURE B-11. Component Hierarchy for MK6116

217

are given in the”signall slot. The information signals consist of the MC68000-
ADDRESS-BUSare given in the'signal2 slot. The reference events are given in the
~eventland”event3slots, while the information signal events are given in‘teeent2and
~eventdslots. The timing parameters for the setup and hold times are given fithe2

and time4slots. The'time2timing parameter is associated with theventl-> “event2
relation, while the‘time4timing parameter is associated with trevént3-> “event4rela-

tion. The events and timing parameters are represented usvenkexpressiorsand
<time> notation as developed in the Section 4.3 and Section 4.5. Figure B-12 gives a

(defschema MC68000-ADDRESS-TIMING
(is-a STROBE-TIMING)
(signall MC68000-UDS MC68000-LDS)
(signal2 MC68000-ADDRESS-BUS)
(eventl (! (OR (ASSO MC68000-UDS) (ASSO MC68000-LDS)))
(event3 (! (NOT ((OR(ASSO MC68000-UDS) (ASSO MC68000-LDS))))
(event2 (! VALIDO MC68000-ADDRESS-BUS))
(event4 (' INVALIDO MC68000-ADDRESS-BUS))
(time2 (-~ -10))
(timed (10 +~)))

TABLE B-2. Example Frame for MC68000 Address Timing Information Frame

graphical representation of the timing shown in Table B-2.

eventl event3
ubDS
reference LDS i

setup time link % hold time link
time2 = (-~ -10) time4 = (10 +~)

ADDRESS-BUS % Valid STATE

event2 eventd

FIGURE B-12. Strobe Timing for MC68000 Address Signals

The MC68000-ADDRESS-TIMING device frame is based on the Strobe Timing
prototype frame shown in Table B-3. The timing links between events and their allowed

218

timing parameter range are stored in ti@$-timing-relationslot of the timing template.

(defschema STROBE-TIMING

(is-a TIMING)

(has-model STROBE-TIMING-MODEL)

(has-timing-relations

(eventl COMPLEMENTARY-PRECEDES event3 @ (0 +~))
(event3 COMPLEMENTARY-PRECEDES eventl @ (0 +~))
(event2 COMPLEMENTARY-PRECEDES event4d @ (0 +~))
(event4 EVENTUALLY-PRECEDES event2 @ (0 +~))
(eventl ALWAYS-ACCOMPANIED-BY event2 @ time2 (-~ +OMP))
(event3 ALWAYS-ACCOMPANIED-BY event4 @ time4 (-OMP +~)))
(signall)

(signal2)

(eventl)

(event3)

(event2)

(event4)

(time2)

(time4))

TABLE B-3. Frame for Strobe Timing

For the Strobe Timing the allowed range for the setup timing parametee2is given as

(-~ +OMP) which means a range from negative infinity to a positive omp delay, while the
hold timing parameteftime4is given as (-OMP +~) which means a range from negative
omp delay to positive infinity.

B.1.9.2 Example of a State Information Frame

A state information frame associates a set of states with a meaning or interpretation.
For this work, the meaning of a state will be given as a key word, while the state itself will
be given using the signal-state notation developed in Section 4.3. If the state involves n
binary signals, a maximum of possible states exist.

To illustrate the concept of a state and its meaning, this section gives the type state
information frame of the MC68000 microprocessor (Table B-4). There are three signals
associated with the type informatioRCO, FC1 and FC2. These are binary signals that
can only be asserted and negated. The three signals can be used to indicate access to five
different type spaces: the user data space, the supervisor data space, the user program

219

space, the supervisor program space and the interrupt acknowledge space. Each of the dif-

(defschema MC68000-TYPE-STATE

(is-a STATE-TABLE)

(condition-signals MC68000-FC0 MC68000-FC1 MC68000-FC2)

(selects USER-DATA USER-PROGRAM SUP-DATA SUP-PROGRAM INT-ACK)

(access-table
(USER-DATA (AND (NEGO MC68000-FC2) (NEGO MC68000-FC1) (ASSO MC68000-FCO)))
(USER-PROGRAM(AND (NEGO MC68000-FC2) (ASSO MC68000-FC1) (NEGO MC68000-FC{)))
(SUP-DATA (AND (ASSO MC68000-FC2) (NEGO MC68000-FC1) (ASSO MC68000-FC0)))
(SUP-PROGRAM (AND (ASSO MC68000-FC2) (ASSO MC68000-FC1) (NEGO MC68000-FCO)))
(INT-ACK (AND (ASSO MC68000-FC2) (ASSO MC68000-FC1) (ASSO MC68000-FC0)))))

TABLE B-4. Example Frame for the MC68000 Type State Information

ferent type spaces is assigned a key wi8ER-DATASUP-DATA, USER-PROGRAM,
SUP-PROGRANMand INT-ACK which are listed in the'selectsslot. Each key word in
Table B-4 has the appropriate state of B0, FC1 andFC2 signals associated with it in

the "access-tableslot. The access-table can be viewed as a dictionary that associates a
keyword with a signal state. The signal states are given using the notation fosttite <
expression as given in Section 4.3.

A state information frame as shown in Table B-4 will be utilized during interface
design for determining the appropriate states of signals for specific conditions. For exam-
ple, if a system is being designed with a memory bank in the supervisor data space, the
SUP-DATAKey yields the state expression:

(AND (ASSO MC68000-FC2) (NEGO MC68000-FC1) (ASSO MC68000-FCO0)) (EQ 8-1)
This state expression can then be used to design a combinatorial decoder that can
generate a signal that is active whenever the MC68000 accesses the supervisor data space.

B.2 The Interface Frames

This section gives some simple example frames for the interface and their ISBs. The
frames shown are simplified for illustration purposes, and only important overall aspects
are discussed.

The organization of the frames used to build the interface follows the hierarchy
developed in Chapter 5. An IB frame is made up of more detailed ISB frames, which in
turn are made up of ISBP frames. At each level of the frame hierarchy more detail is
revealed about the interface. Each ISB will have a specific purpose attached to it. The
organization for the IB frames can be seen in Figure B-13. A single IB fréBag, rep-

220

Prototype Frame Device Frame
Less Detail More Detail
ISB-5
IB ISB-l
has-sub-block
has-sub- bIock
is-a ISB-2 has-sub-biock * | ISB-6
| has- sﬁmk'
IB-1 has-sub-block
N ISB-7
has- sub block
connection-req
ISB-
\‘ ISB-4 | has-subeblock | =88

Connection-Request-1 IS-a
s, 2 ISB
i A Primitive
Connection-Request ISB Circuit

FIGURE B-13. Interface Block Organization
resents the interface designed for a specific connection reqesnhection-
Request-1 . A connection requess$ a simple frame that instructs the Interface Designer
to initiate the interface design process. The IB frame can contain any number of ISB
frames linked to the parent frame withta8-sub-blockelation.

The frames that are used to build up the interface are called the interface device
frames. IB and ISB device frames are created during the interface design process by
instantiating the prototype IB and ISB frames. An interface device frame is related to a
prototype frame through theista relation. For example, théB-1 device frame in
Figure B-13 is created by instantiating th& prototype frame. Similarly the connection
request device frames are created during the interface design process by instantiating the
Connection-Request prototype frame.

B.2.1 Frame Representation of the Interface Block

A typical frame representing an IB is given in Table B-5. This frame is presented to
show the general organization of the IB frames. Thast*sub-bloclslot will normally
contain the frames making up the next more detailed level of the interfé8e % and

221

(defschema IB_1 RW_CONNECT
(has-sub-block ISB_5I1SB_17)
(has-internal-signal INT_SIG_1)
(purpose DATA_TRANSFER CONNECT)
(function DATA_CONN)

(needs-function ADD_CONN)

(componentl Ul)

(component2 U2 U3 U4 U5)

(devicel MC68000)

(device2 MK6116)

(connection-req CONNECTION_REQUEST 1))

TABLE B-5. Interface Block Frame
ISB_17 in Table B-5). The*has-internal-signaslot is used to store any signal internal to

the IB after they are created during the design proci®E (SIG_1 in Table B-5). The
~unction / “needs-functioslots are used to control the design of different aspects of the
interface. For example, th®DD_CONIKeyword in the fieeds-functioslot indicates that

the address must still be connected for this interface, whileO#t&A_ _CONNeyword in

the functionslot indicates that the data signals have been connected. Once the address
signals are connected, tAdD CONIKey word will be moved from théneeds-function

to Munctionslot. The deviceXslots indicate the components being connected (such as
MK6116 andMC68000), while the ‘componentXlots indicate the instances of the com-
ponents being connected (suchlk, U2, U3 etc.). A link to the connection request

that was used to create the IB is provided imt@nection-reglot.

A VHDL representation of the frame from Table B-5 is shown in Table B-6. The

entity IB_1_ RW_CONNECT is
port (MC68000 _UDS : IN std_logic, etc....);
end IB_1_RW_CONNECT;

architecture ONLY of IB_1_RW_CONNECT is
signal INT_SIG_1: std_logic;
begin
PART_1:ISB_17
port map (
INT_SIG_1=>INT_SIG_1,
MC68000_UDS => MC68000_UDS);
PART_2: etc...
end ONLY;

TABLE B-6. VHDL Representation of Example Interface Block Frame

VHDL representation will be generated by the Interface Designer once the IB and its ISBs
have been designed completely. The Interface Designer will produce a structural architec-
ture of the IB frame in terms of its ISBs. For example, the architecture of the
IB_1 RW_CONNECTVHDL entity is given by instantiating thdSB_17 entity as

222

PART_1 It should be noted that the VHDL frame above is highly simplified for illustra-
tion purpose.

B.2.2 Frame Representation of an ISBP

A typical frame representing a Combinatorial ISBP is shown in Table B-7. The

(defschema ISB_4_REQ_INT
(instance INTERFACE_SUB_BLOCK
(has-sub-block ISB_8 ISB_9)
(purpose INTERNAL REQUEST GENERATE)
(function REQUEST _IN)
(needs-function))
(hardware-function COMBINATORIAL)
(parameters (pdelay (8 12 9)))
(input-signals MC68000_LDS MC68000_UDS)
(input-timings MC68000_UDS/LDS_TIMING)
(input (OR (ASSO MC68000_UDS)(ASSO MC68000_LDS)))
(output-timing REQ_INT_TIMING_1)
(output-state (ASSO REQ_INT_SIGNAL))
(output-signals REQ_INT_SIGNAL))

TABLE B-7. Combinatorial ISBP

~purposeslot is provided to indicate the purpose of this specific ISB. This slot is currently
used primarily for debugging purposes. Aardware-functiorslot indicates that this is a
Combinatorial ISBP, with the propagation delay parameter given inpheafnetersslot.

For this Combinatorial ISBP the propagation de(@y 12 9) indicates a minimum
delay of 6 ns, a maximum delay of 12 ns and a typical delay of 9 ns. ifipait'siot con-

tains the input state expression which is the combinatorial equation that maps the inputs of
the ISB to the outputs. Slots are provided for the ISB input and output signals and timing.
The "output-stateslot is provided to indicate the required output state when the input state
expression is true. The required information for filling in the combinatorial ISBs is found
either by analyzing the different information state specification of the components being
connected, and/or by analyzing the overall architecture of the complete design.

The example in Table B-7 gives an ISBP that generates the internal request signal
REQ_INT_SIGNAL This Combinatorial ISBP has two inputs)C68000_LDS and
MC68000_UDS and implements the state expressions: (OR (AS®C68000 UDS
(ASSOMC68000_LDS). The output state slot indicates that REQ_INT_SIGNAL s
asserted whenever the state expression is true. A schematic representation of the ISBP
frame of Table B-7 is shown in Figure B-14. A VHDL representation of the frame from
Table B-7 is shown in Table B-8. The VHDL representation will be generated by the Inter-
face Designer, once the ISBP frame has been completed, by systematically mapping the
contents of frame slots to the VHDL entity and architecture. For exampléjrnpet-sig-

223

ISB_4 REQ_INT
MC68000_UDS(L)
%_ REQ_INT_SIGNAL(H)
MC68000_LDS(L)
From MC68000, Internal Request Signal
(asserted low) (asserted High)

FIGURE B-14. Schematic Representation of Example ISBP Frame

entity ISB_4 REQ_INT is
generic (TPD : time := 9 ns);
port (MC68000 _UDS U1 : IN std_logic;
MC68000_LDS U1:IN std_logic;
REQ_INT_SIGNAL : OUT std_logic);
end ISB_4_REQ _INT;

architecture ONLY of ISB_4 REQ INT is
begin
REQ_INT_SIGNAL <=
(not MC68000_UDS)or (not MC68000_LDS)after TPD;
end ONLY;

TABLE B-8. VHDL Representation of Example ISBP Frame
nals and”output-signalsare mapped to input ports and output ports of the VHDL entity.

While the input state equation is mapped to a concurrent statement in the architecture
body.

224

Appendix C
VHDL Code for ISBPs

C.1 Package Declaration for ISBPs

LIBRARY damelib;
USE ieee.std_logic_1164.all;
PACKAGE primitive IS
CONSTANT time_prop_delay : TIME := 3 ns;
CONSTANT time_en_delay : TIME := 2 ns;
CONSTANT time_clock_delay : TIME := 2 ns;
CONSTANT time_pure_delay : TIME := 55 ns;
COMPONENT and2p
GENERIC (tpd : TIME := time_prop_delay);
PORT (in1, in2 : IN std_logic;
outl : OUT std_logic);
END COMPONENT;
COMPONENT or2p
GENERIC (tpd : TIME :=time_prop_delay);
PORT (in1, in2 : IN std_logic;
outl : OUT std_logic);
END COMPONENT;
COMPONENT xor2p
GENERIC (tpd : TIME := time_prop_delay);
PORT (in1, in2 : IN std_logic;
outl : OUT std_logic);
END COMPONENT;
COMPONENT invp
GENERIC (tpd : TIME :=time_prop_delay);
PORT (inl : IN std_logic;
outl : OUT std_logic);
END COMPONENT;
COMPONENT dlatchp
GENERIC (tpd : TIME := time_prop_delay;
tpd_en : TIME := time_en_delay);
PORT (in1, latch_en : IN std_logic;
outl : OUT std_logic);
END COMPONENT;
COMPONENT edge dffp
GENERIC (tpd_clock, tpd_res : TIME := time_prop_delay);
PORT (in1, clk, clr : IN std_logic;
outl : OUT std_logic);
END COMPONENT;
COMPONENT pure_delayp
GENERIC (tpd : TIME := time_pure_delay);
PORT (inl : IN std_logic;
sys_reset : IN std_logic;
sys_clock : IN std_logic;
outl : OUT std_logic);
END COMPONENT;
COMPONENT Ieadlng edge_delayp
GENERIC (tpd_edge : TIME :=time_pure_delay;
tpd : TIME :=time_prop_delay);
PORT (inl : IN std_logic;
sys_reset : IN std_logic :='0’;
sys_clock : IN std_logic :=‘0’;
outl : OUT std_logic);
END COMPONENT;
COMPONENT tra|I|ng edge_delayp
GENERIC (tpd_edge : TIME :=time_pure_delay;
tpd : TIME := time_prop_delay);
PORT (inl : IN std_logic;
sys_reset : IN std_logic :='0’;
sys_clock : IN std_logic :=‘0’;
outl : OUT std_logic);
END COMPONENT;
COMPONENT tri_state_bufferp
GENERIC (tpd : TIME := time_prop_delay;
tpd_tri : TIME :=time_en_delay);

PORT (in1, tri_out : IN std_logic;
outl : OUT std_logic);
END COMPONENT;
COMPONENT oc_bufferp
GENERIC (tpd : TIME :=time_prop_delay);
PORT (inl : IN std_logic;
outl : OUT std_logic);
END COMPONENT;
END primitive;

C.2 Entity and Architecture Declaration for ISBPs

C.2.1 2 Input AND Entity

USE ieee.std_logic_1164.all;
ENTITY and2p IS
GENERIC (tpd : TIME);
PORT (in1, in2 : IN std_logic;
outl : OUT std_logic);
END and2p;

ARCHITECTURE pcircuit OF and2p IS
BEGIN

outl <=in1 AND in2 AFTER tpd;
END pcircuit;

C.2.2 2 Input OR Entity

USE ieee.std_logic_1164.all;
ENTITY or2p IS
GENERIC (tpd : TIME);
PORT (in1, in2 : IN std_logic;
outl : OUT std_logic);
END or2p;

ARCHITECTURE pcircuit OF or2p IS
BEGIN

outl <=inl1 OR in2 AFTER tpd;
END pcircuit;

C.2.3 2 Input XOR Entity

USE ieee.std_logic_1164.all;
ENTITY xor2p IS
GENERIC (tpd : TIME);
PORT (in1, in2 : IN std_logic;
outl : OUT std_logic);
END xor2p;

ARCHITECTURE pcircuit OF xor2p IS
BEGIN

outl <=inl XOR in2 AFTER tpd;
END pcircuit;

C.2.4 Inverter Entity

USE ieee.std_logic_1164.all;
ENTITY invp IS
GENERIC (tpd : TIME);
PORT (inl : IN std_logic;
outl : OUT std_logic);
END invp;

ARCHITECTURE pcircuit OF invp IS
BEGIN

outl <= NOT inl AFTER tpd;
END pcircuit;

225

226

C.2.5 D-Latch Entity

USE ieee.std_logic_1164.all;
ENTITY dlatchp IS
GENERIC (tpd, tpd_en : TIME);
PORT (in1, latch_en : IN std_logic;
outl : OUT std_logic);
END dlatchp;

ARCHITECTURE pcircuit OF dlatchp IS
SIGNAL del_sig : std_logic;
SIGNAL en_sig : std_logic;

BEGIN
en_sig <= latch_en after tpd_en;

state_changeO : PROCESS (inl)
BEGIN
IF (inl='0"0ORin1 =‘1") THEN
del_sig <= in1 after tpd;
ELSE
del_sig <= ‘X’ after tpd;
END IF;
END PROCESS;

state_changel : PROCESS (en_sig, del_sig)
BEGIN
IF (To_bit(en_sig) = ‘1") THEN
outl <= del_sig after O ns;
END IF;
END PROCESS;
END pcircuit;

C.2.6 D-Flip-Flop Entity

USE ieee.std_logic_1164.all;
ENTITY edge_dffp IS
GENERIC (tpd_clock, tpd_res : TIME);
PORT (in1, clk, clIr : IN std_logic;
outl : OUT std_logic);
END edge_dffp;

ARCHITECTURE pcircuit OF edge_dffp IS
BEGIN
state_change : PROCESS (clk,clr)
BEGIN
IF (To_bit(clr) = ‘1") THEN
outl <= ‘0" AFTER tpd_res;
ELSIF (clk'event AND clk =‘1') THEN
IF (in1='0"OR in1 =‘1") THEN
outl <= inl after tpd_clock;
ELSE
outl <= ‘X’ after tpd_clock;
END IF;
END IF;
END PROCESS;
END pcircuit;

C.2.7 Pure Delay Entity

LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY damelib;
USE damelib.primitive.edge_dffp;
ENTITY pure_delayp IS
GENERIC (tpd : TIME);
PORT (inl : IN std_logic;
sys_reset : IN std_logic;
sys_clock : IN std_logic;
outl : OUT std_logic);
END pure_delayp;

227

ARCHITECTURE pcircuit OF pure_delayp IS
BEGIN

outl <=inl after tpd;
END pcircuit;

C.2.7.1 D-Flip-Flop Implemenation of 50 ns Pure delay

ARCHITECTURE del50ns OF pure_delayp IS
FOR ALL : edge_dffp
USE entity damelib.edge_dffp(pcircuit);
SIGNAL sigl : std_logic;
BEGIN
partl : edge_dffp
PORT MAP (inl, sys_clock, sys_reset, sigl);
part2 : edge_dffp
PORT MAP (sigl, sys_clock, sys_reset, outl);
END del50ns;

C.2.8 Leading Edge Delay Entity

USE ieee.std_logic_1164.all;
LIBRARY damelib;
USE damelib.primitive.and2p;
USE damelib.primitive.pure_delayp;
ENTITY leading_edge_delayp IS
GENERIC (tpd_edge, tpd : TIME);
PORT (inl : IN std_logic;
sys_reset : IN std_logic;
sys_clock : IN std_logic;
outl : OUT std_logic);
END leading_edge_delayp;

ARCHITECTURE pcircuit OF leading_edge_delayp IS
FOR all : and2p
use entity damelib.and2p(pcircuit);
FOR all : pure_delayp
use entity damelib.pure_delayp(pcircuit);
SIGNAL idel : std_logic;
BEGIN
nl:and2p
GENERIC MAP (tpd => tpd)
PORT MAP (inl => idel, in2 =>in1, outl => outl);
n2 : pure_delayp
GENERIC MAP (tpd => tpd_edge)
PORT MAP (inl1 =>in1,
Sys_reset => sys_reset,
sys_clock => sys_clock,
outl => idel);
END pcircuit;

ARCHITECTURE del50ns OF leading_edge_delayp IS
FOR all : and2p
use entity damelib.and2p(pcircuit);
FOR all : pure_delayp
use entity damelib.pure_delayp(del50ns);
SIGNAL idel : std_logic;
BEGIN
nl:and2p
GENERIC MAP (tpd => tpd)
PORT MAP (inl => idel, in2 =>in1, outl => outl);
n2 : pure_delayp
GENERIC MAP (tpd => tpd_edge)
PORT MAP (inl1 =>in1,
Sys_reset => sys_reset,
sys_clock => sys_clock,
outl => idel);
END del50ns;

C.2.9 Trailing Edge Delay Entity

USE ieee.std_logic_1164.all;
LIBRARY damelib;
USE damelib.primitive.and2p;
USE damelib.primitive.invp;
USE damelib.primitive.pure_delayp;
ENTITY trailing_edge_delayp IS
GENERIC (tpd_edge, tpd : TIME);
PORT (inl : IN std_logic;
sys_reset : IN std_logic;
sys_clock : IN std_logic;
outl : OUT std_logic);
END trailing_edge_delayp;

ARCHITECTURE pcircuit OF trailing_edge_delayp IS

FOR all : and2p
use entity damelib.and2p(pcircuit);
FOR all : invp

use entity damelib.invp(pcircuit);
FOR all : pure_delayp
use entity damelib.pure_delayp(pcircuit);
SIGNAL idel, inv_idel : std_logic;
BEGIN
nl:and2p
GENERIC MAP (tpd => tpd)
PORT MAP (inl1 => inv_idel, in2 => in1, outl => outl);
n2 : pure_delayp
GENERIC MAP (tpd => tpd_edge)
PORT MAP (inl =>in1,
Sys_reset => sys_reset,
sys_clock => sys_clock,
outl => idel);
n3:invp
GENERIC MAP (tpd => tpd)
PORT MAP (inl => idel, outl => inv_idel);
END pcircuit;

ARCHITECTURE del50ns OF trailing_edge_delayp IS

FOR all : and2p
use entity damelib.and2p(pcircuit);
FOR all : invp

use entity damelib.invp(pcircuit);
FOR all : pure_delayp
use entity damelib.pure_delayp(del50ns);
SIGNAL idel, inv_idel : std_logic;
BEGIN
nl:and2p
GENERIC MAP (tpd => tpd)
PORT MAP (inl => inv_idel, in2 => in1, outl => outl);
n2 : pure_delayp
GENERIC MAP (tpd => tpd_edge)
PORT MAP (inl1 =>in1,
sys_reset => sys_reset,
sys_clock => sys_clock,
outl => idel);
n3:invp
GENERIC MAP (tpd => tpd)
PORT MAP (inl => idel, outl =>inv_idel);
END del50ns;

C.2.10 Tri-Sate Buffer Entity

USE ieee.std_logic_1164.all;
ENTITY tri_state_bufferp IS
GENERIC (tpd : TIME; tpd_tri : TIME);
PORT (in1, tri_out : IN std_logic;
outl : OUT std_logic);
END tri_state_bufferp;

ARCHITECTURE pcircuit OF tri_state_bufferp IS

228

SIGNAL del_sig : std_logic;

SIGNAL tri_sig : std_logic;
BEGIN

tri_sig <= tri_out after tpd_tri;

state_change0 : PROCESS (inl)
BEGIN
IF (in1='0"0ORinl1="1) THEN
del_sig <=in1 after tpd;
ELSE
del_sig <= ‘X’ after tpd;
END IF;
END PROCESS;

state_changel : PROCESS (tri_sig, del_sig)
BEGIN
IF (To_bit(tri_sig) = ‘1") THEN
outl <= del_sig after O ns;
ELSE
outl <= ‘Z’ after O ns;
END IF;
END PROCESS;
END pcircuit;

C.2.11 Open Collector Buffer Entity

USE ieee.std_logic_1164.all;
ENTITY oc_bufferp IS
GENERIC (tpd : TIME);
PORT (in1 : IN std_logic;
outl : OUT std_logic);
END oc_bufferp;

ARCHITECTURE pcircuit OF oc_bufferp IS
BEGIN
state_change : PROCESS (inl)
BEGIN
IF (To_bit(in1) = ‘0’) THEN
outl <= ‘0’ after tpd;
ELSE
outl <= ‘Z’ after tpd,;
END IF;
END PROCESS;
END pcircuit;Abstraction Levels for Information Transfers

229

230

Appendix D
CRL Frames for Design Example from Section 7.4

D.1 CRL Frames for the Motorola MC68000 Microprocessor

The component frames are divided into two parts. First, the body frames only con-
tain the timing independent frames. The body frames are the same for all speed versions of
a component. Second the timing frames contain the frames that are specific to a certian
speed component.

D.1.1 CRL Frames MC68000 Body

Note: some address and data signals have been deleted for brevity.

(defschema m68000
:parallel
(is-a microprocessor)
(has-capability
m68000_data_transfer_cap m68000_bus_arb
m68000_interrupt)
(has-signal
m68000_as m68000_uds m68000_lIds
m68000_dtak m68000_rd
m68000_fcO m68000_fc1 m68000_fc2
m68000_br m68000_bg m68000_bgack
m68000_d0 m68000_d1 m68000_d2 m68000_d3
m68000_d4 m68000_d5 m68000_d6 m68000_d7
m68000_d8 m68000_d9 m68000_d10 m68000_d11
m68000_d12 m68000_d13 m68000_d14 m68000_d15
m68000_al m68000_a2 m68000_a3
m68000_a4 m68000_a5 m68000_a6 m68000_a7
m68000_a8 m68000_a9 m68000_al0 m68000_all
m68000_al2 m68000_al3 m68000_al4 m68000_al5
m68000_al6 m68000_al7 m68000_al8 m68000_al9
m68000_a20 m68000_a21 m68000_a22 m68000_a23)
(has-bus
m68000_data_bus m68000_address_bus
m68000_control_bus m68000_data_transfer_bus))
(defschema m68000_as
:parallel
(is-a signal)
(pin-number 6)
(polarity (ass 0))
(sim-name)
(sim-timing m68000_ds_as_timing)
(sim-function s)
(i-o output))
(defschema m68000_dtak
:parallel
(is-a signal)
(pin-number 10)
(polarity (ass 0))
(driver-type open_collector)
(sim-name)
(sim-timing m68000_control_timing)
(sim-function k)
(i-o input))
(defschema m68000_uds
:parallel
(is-a signal)
(pin-number 7)

(polarity (ass 0))
(sim-name)
(sim-timing m68000_uds_lds_timing)
(sim-function s)
(i-o output))
(defschema m68000_Ids
:parallel
(is-a signal)
(pin-number 8)
(polarity (ass 0))
(sim-name)
(sim-timing m68000_uds_Ids_timing)
(sim-function s)
(i-o0 output))
(defschema m68000_rw
:parallel
(is-a signal)
(pin-number 9)
(polarity (ass 0))
(sim-name)
(sim-timing m68000_ds_rw_timing)
(sim-function w)
(i-o output))
(defschema m68000_fc0
:parallel
(is-a signal)
(pin-number 28)
(polarity (ass 1))
(sim-name)
(sim-timing m68000_ds_fc_timing)
(sim-function 0a)
(i-o0 output))
(defschema m68000_fc1
:parallel
(is-a signal)
(pin-number 27)
(polarity (ass 1))
(sim-name)
(sim-timing m68000_ds_fc_timing)
(sim-function 1a)
(i-o output))
(defschema m68000_fc2
:parallel
(is-a signal)
(pin-number 26)
(polarity (ass 1))
(sim-name)
(sim-timing m68000_ds_fc_timing)
(sim-function 0a)
(i-o output))
(defschema m68000_al
:parallel
(is-a signal)
(pin-number 29)
(polarity (ass 1))
(sim-name (M68000_a 1))
(sim-timing m68000_address_timing)
(sim-function al)
(i-o output))

(defschema m68000_a23
:parallel
(is-a signal)
(pin-number 52)
(polarity (ass 1))
(sim-name (M68000_a 23))
(sim-timing m68000_address_timing)
(sim-function a23)
(i-o output))
(defschema m68000_d0

231

232

:parallel

(is-a signal)

(pin-number 5)

(polarity (ass 1))

(sim-name (m68000_1d 0))

(sim-timing m68000_write_data_timing)
(sim-function dO)

(i-0 input output))

(defschema m68000_data_transfer_bus
:parallel
(is-a signal_bus)
(has-signal
m68000_d0 m68000_d1 m68000_d2 m68000_d3
m68000_d4 m68000_d5 m68000_d6 m68000_d7
m68000_d8 m68000_d9 m68000_d10 m68000_d11
m68000_d12 m68000_d13 m68000_d14 m68000_d15
m68000_al m68000_a2 m68000_a3
m68000_a4 m68000_a5 m68000_a6 m68000_a7
m68000_a8 m68000_a9 m68000_al0 m68000_all
m68000_al2 m68000_al3 m68000_ald m68000_als
m68000_al6 m68000_al7 m68000_al8 m68000_al9
m68000_a20 m68000_a21 m68000_a22 m68000_a23
m68000_rw m68000_as m68000_dtak m68000_uds m68000_Ids

)
(defschema m68000_data_bus
:parallel
(is-a signal_bus)
(sim-timing m68000_write_data_timing m68000_read_data_timing)
(has-signal
m68000_d0 m68000_d1 m68000_d2 m68000_d3
m68000_d4 m68000_d5 m68000_d6 m68000_d7
m68000_d8 m68000_d9 m68000_d10 m68000_d11
m68000_d12 m68000_d13 m68000_d14 m68000_d15))
(defschema m68000_address_bus
:parallel
(is-a signal_bus)
(sim-timing m68000_address_timing)
(has-signal
m68000_al m68000_a2 m68000_a3
m68000_a4 m68000_a5 m68000_a6 m68000_a7
m68000_a8 m68000_a9 m68000_al0 m68000_all
m68000_al2 m68000_al3 m68000_ald m68000_als
m68000_al6 m68000_al7 m68000_al8 m68000_al9
m68000_a20 m68000_a21 m68000_a22 m68000_a23))
(defschema m68000_control_bus
:parallel
(is-a signal_bus)
(has-signal m68000_rw m68000_Ilds m68000_uds m68000_dtak m68000_as
'm68000_br m68000_bg m68000_bgack))
(defschema m68000_data_transfer_cap
:parallel
(is-a data_transfer_cap_micro)
(has-dt-type-spec m68000_dt_type_spec)
(has-dt-reg-spec m68000_dt_req_spec)
(has-word-select-spec m68000_word_select_spec)
(has-word-width-spec none)
(has-address-spec m68000_address_spec)
(uses-protocol m68000 _dt_write_protocol m68000_dt_read_protocol)
(uses-timing m68000_ds_as_timing))
(defschema m68000_dt_read protocol
:parallel
(is-a read_protocol)
(has-identification-spec m68000_read_spec)

(has-del-spec m68000_del_spec)
(has-data-spec m68000_read_data_spec))
(defschema m68000_dt_write_protocol

:parallel
(is-a write_protocol)
(has-identification-spec m68000_write_spec)

(has-del-spec m68000_del_spec)

(has-data-spec m68000_write_data_spec))
(defschema m68000_read_spec

:parallel

(is-a state_timing_spec)

(uses-state m68000_read_state)

(uses-timing m68000_ds_rw_timing))
(defschema m68000_read_state

:parallel

(is-a state_spec)

(state-signals m68000_rw)

(state (nego m68000_rw)))
(defschema m68000_write_spec

:parallel

(is-a state_timing_spec)

(uses-state m68000_write_state)

(uses-timing m68000_ds_rw_timing))
(defschema m68000_write_state

:parallel

(is-a state_spec)

(state-signals m68000_rw)

(state (asso m68000_rw)))
(defschema m68000_data_magnitude

:parallel

(is-a lookup_table)
(selects0123456789101112131415)
(access-table (0 m68000_d0) (1 m68000_d1) (2 m68000_d2)
(3 m68000_d3) (4 m68000_d4) (5 m68000_d5)
(6 m68000_d6) (7 m68000_d7) (8 m68000_d8)
(9 m68000_d9) (10 m68000_d10) (11 m68000_d11)
(12 m68000_d12) (13 m68000_d13) (14 m68000_d14)
(15 m68000_d15)))
(defschema m68000_read_data_spec
:parallel
(is-a state_timing_spec)
(uses-state m68000_data_magnitude)
(uses-timing mM68000_read_data_timing))
(defschema m68000_write_data_spec

:parallel

(is-a state_timing_spec)

(uses-state m68000_data_magnitude)

(uses-timing m68000_write_data_timing))
(defschema m68000_address_magnitude

:parallel

(is-a lookup_table)

(selects 12345678910111213 14151617 1819 20 21 22 23)

(access-table (1 m68000_al)
(2 m68000_a2) (3 m68000_a3) (4 m68000_a4)
(5 m68000_a5) (6 m68000_a6) (7 m68000_a7)
(8 m68000_a8) (9 m68000_a9) (10 m68000_al0)
(11 m68000_all) (12 m68000_al2) (13 m68000_al3)
(14 m68000_al4) (15 m68000_al5) (16 m68000_al6)
(17 m68000_al7) (18 m68000_al8) (19 m68000_al9)
(20 m68000_a20) (21 m68000_a21) (22 m68000_a22)
(23 m68000_a23)))
(defschema m68000_address_spec
:parallel
(is-a state_timing_spec)
(uses-state m68000_address_magnitude)
(uses-timing m68000_address_timing))
(defschema m68000_dt_type_spec

:parallel

(is-a state_timing_spec)

(uses-state m68000_type_state)

(uses-timing m68000_ds_fc_timing))
(defschema m68000_type_state

:parallel

(is-a lookup_table)

(condition-signals m68000_fc0 m68000_fcl m68000_fc2)

(selects user_data user_program sup_data
sup_program int_ack)

(access-table (user_data (and (nego m68000_fc2) (nego m68000_fcl)

233

(asso m68000_fc0)))

(user_program(and (nego m68000_fc2) (asso m68000_fc1)
(nego m68000_fc0)))

(sup_data (and (asso m68000_fc2) (nego m68000_fcl)
(asso m68000_fc0)))

(sup_program (and (asso m68000_fc2) (asso m68000_fcl)
(nego m68000_fc0)))

(int_ack (and (asso m68000_fc2) (asso m68000_fcl)
(asso m68000_fc0)))))

(defschema m68000_dt_req_spec

:parallel

(is-a state_timing_spec)

(uses-state m68000_dt_req_state)

(uses-timing m68000_uds_lds_timing m68000_ds_as_timing))
(defschema m68000_dt_req_state

:parallel

(is-a state_spec)

(state-signals m68000_uds m68000_Ids)

(state (and (asso m68000_as)

(or (asso m68000_uds) (asso m68000_lds)))))

(defschema m68000_word_select_spec

:parallel

(is-a state_timing_spec)

(uses-state m68000_word_select_state)

(uses-timing m68000_uds_Ids_timing))
(defschema m68000_word_select_state

:parallel

(is-a double_lookup_table)

(condition-signals m68000_uds m68000_Ids)

(selectl (07)(015))
(select2 (07)(815))
(access-table ((0 15) (((0 7) (asso m68000_Ids))

((8 15) (asso m68000_uds))))
((07) (((0 7) (asso m68000_lds))
((8 15) (asso m68000_uds))))))

(defschema m68000_del_spec

:parallel

(is-a state_timing_spec)

(uses-state m68000_del_state)

(uses-timing m68000_control_timing))
(defschema m68000_del_state

:parallel

(is-a state_spec)

(state-signals m68000_dtak)

(state (assi m68000_dtak)))

D.1.2 CRL Frames MC68000 Timing (8Mhz)

(defschema m68000_ds_rw_timing

:parallel
(is-a

(signall
(signal2
(eventl
(event3

(event2
(event4
(time2
(time4

strobe_timing)
m68000_uds m68000_Ids)
m68000_rw)
(! (or (asso m68000_uds) (asso m68000_lds))))
(! (not (or (asso m68000_uds)
(asso m68000_1Ids)))))
(valo ! valo m68000_rw))
(valo ! valo m68000_rw))
(-~-60))
(40 +~))

(defschema m68000_control_timing

:parallel
(is-a

(signall
(signal2
(eventl
(event3

(event2
(event4

handshake_timing)
m68000_uds m68000_Ids)
m68000_dtak)
(! (or (asso m68000_uds) (asso m68000_lds))))
(! (not (or (asso m68000_uds)
(asso m68000_lds)))))
(! assi m68000_dtak))
(! negi m68000_dtak))

234

235

(time2 (variable))
(time3 (125 320))
(time4 (0 245)))
(defschema m68000_read_data_timing
:parallel
(is-a pulse_latch_timing)
(signall m68000_uds m68000_Ids)
(signal2 m68000_data_bus)
(eventl (! (or (asso m68000_uds) (asso m68000_lds))))
(event3 (! (not (or (asso m68000_uds)
(asso m68000_Ids)))))
(event2 (float ! vali m68000_data_bus))
(event4 (vali ! float m68000_data_bus))
(time2 (-~-35))
(time4 0 +~)))
(defschema m68000_write_data_timing
:parallel
(is-a strobe_timing)
(signall m68000_uds m68000_Ids)
(signal2 m68000_data_bus)
(eventl (! (or (asso m68000_uds) (asso m68000_lds))))
(event3 (! (not (or (asso m68000_uds)
(asso m68000_Ids)))))
(event2 (open ! valo m68000_data_bus))
(event4 (valo ! open m68000_data_bus))
(time2 (-~-30))
(time4 (30 +~)))
(defschema m68000_address_timing
:parallel
(is-a strobe_timing)
(signall m68000_uds m68000_Ids)
(signal2 m68000_address_bus)
(eventl (! (or (asso m68000_uds) (asso m68000_lds))))
(event3 (! (not (or (asso m68000_uds)
(asso m68000_Ids)))))
(event2 (! valo m68000_address_hbus))
(event4 (! ivalo m68000_address_bus))
(time2 (-~-30))
(time4 (30 +~)))
(defschema m68000_ds_as_timing
:parallel
(is-a strobe_timing)
(signall m68000_uds m68000_Ids)
(signal2 m68000_as)
(eventl (! (or (asso m68000_uds) (asso m68000_lds))))
(event3 (! (not (or (asso m68000_uds)
(asso m68000_1Ids)))))
(event2 (valo ! asso m68000_as))
(event4 (asso ! valo m68000_as))
(time2 (-~0))
(time4 0 +~)))
(defschema m68000_ds_fc_timing
:parallel
(is-a strobe_timing)
(signall m68000_uds m68000_Ids)
(signal2 m68000_fcO m68000 fcl m68000_fc2)
(eventl (! (or (asso m68000_uds) (asso m68000_lds))))
(event3 (! (not (or (asso m68000_uds)
(asso m68000_1Ids)))))
(event2 (! valo sig2))
(event4 (!ivalo sig2))
(time2 (-~ -60))
(time4 (40 +~)))
(defschema m68000_uds_Ids_timing
:parallel
(is-a logic_timing)
(signall m68000_|ds m68000_uds)
(signal2 m68000_|ds m68000_uds)
(eventl (! (or (asso m68000_uds) (asso m68000_lIds))))
(event3 (! (not (or (asso m68000_uds)

(asso m68000_1Ids)))))
(event2 (! asso sig2))

236

&e%eenzm (8);1ego sig2))
(time4 0)))

D.2 CRL Frames for Component Instances and the Connection Request

(DEFSCHEMA U1
:PARALLEL
(INSTANCE M68000)
(PACKAGE DIP))
(DEFSCHEMA U2
:PARALLEL
(INSTANCE M6116)
(PACKAGE DIP))
(DEFSCHEMA U3
:PARALLEL
(INSTANCE M6116)
(PACKAGE DIP))
(DEFSCHEMA U4
:PARALLEL
(INSTANCE M6116)
(PACKAGE DIP))
(DEFSCHEMA U5
:PARALLEL
(INSTANCE M6116)
(PACKAGE DIP))
(defschema connection_request_1
:parallel
(Is-a connection_request)
(has-sub-request connection_sub_request_1 connection_sub_request_2
connection_sub_request_3 connection_sub_request_4)
(purpose data_transfer)
(status new)
(componentl ul)
(component2 u2 u3 u4 ub)
(direction bidir)
(usagel (user_data sup_data user_program sup_program))
(usage2 (T))
(add-decodel
(0000 (and (negi 23) (negi 22) (negi 21) (negi 20) (negi 19) (negi 18)
(negi 17) (negi 16) (negi 15) (negi 14)
(negi 13) (negi 12)))
(8000 (and (negi 23) (negi 22) (negi 21) (negi 20) (negi 19) (negi 18)
(negi 17) (negi 16) (assi 15) (negi 14)
(negi 13) (negi 12))))
(data-decodel (0 7) (8 15))
(data-decode2 (0 7))
(add1 (1 11))
(add2 (0 10))
(interface-width (0 15)))
(defschema connection_sub_request_1
:parallel
(is-a connection_sub_request)
(sub-request-of)
(componentl ul)
(component2 u2)
(add-decodel 0000)
(data-decodel (0 7))
(data-decode2 (0 7)))
(defschema connection_sub_request_2
‘parallel
(is-a connection_sub_request)
(sub-request-of)
(componentl ul)
(component2 u3)
(add-decodel 0000)
(data-decodel (8 15))
(data-decode2 (0 7)))
(defschema connection_sub_request_3
:parallel
(is-a connection_sub_request)

237

(sub-request-of)
(componentl ul)
(component2 u4)
(add-decodel 8000)
(data-decodel (0 7))
(data-decode2 (0 7)))

(defschema connection_sub_request_4
:parallel
(is-a connection_sub_request)
(sub-request-of)
(componentl ul)
(component2 ub)
(add-decodel 8000)
(data-decodel (8 15))
(data-decode2 (0 7)))

238

Appendix E
VHDL Code for Design Example from Section 7.4

The VHDL code is broken into three modules: the VHDL code for the ISBs, the IB
and the test bench.

E.1 VHDL ISBs for Design Example

Note: some address and data signals have been deleted for brevity.

-- START of vhdl code for IB_1_RW_CONNECT
--Device 1:1B_1 RW_CONNECT

-- Generated on: 15:00:20 8-2-1997 Version 1.0
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

library DAMELIB;

entity ISB_270_M68000_A11_INT is
generic (
TPD : time;
TPD_EN : time;
TPD_EDGE : time);
port (
M68000_A11_U1: IN std_logic;
M6116_A10_U2345 : OUT std_logic);
end ISB_270_M68000_A11_INT;

architecture ONLY of ISB_270_M68000_A11 INT is
use DAMELIB.PRIMITIVE.ALL;
for all : TRI_STATE_BUFFERP
use entity DAMELIB.TRI_STATE_BUFFERP(pcircuit);
signal SIG_ENAB : std_logic;
signal SIG_ISIG : std_logic;
begin
PART1 : TRI_STATE_BUFFERP
generic map (
TPD => TPD,
TPD_TRI=>TPD_EN)
port map (
IN1 => SIG_ISIG,
TRI_OUT => SIG_ENAB,
OUT1 => M6116_A10_U2345);
SIG_ISIG <=

M68000_A11_U1l
) after O ns;
-- Complexity was = 1
SIG_ENAB <=
(
L
) after O ns;
-- Complexity was = 0
end ONLY;
entity ISB_250_M68000_A1_INT is
generic (
TPD : time;
TPD_EN : time;
TPD_EDGE : time);
port (
M68000_A1 U1 : IN std_logic;
M6116_A0_U2345 : OUT std_logic);
end ISB_250_M68000_A1_INT;

architecture ONLY of ISB_250 _M68000_A1 INT is
use DAMELIB.PRIMITIVE.ALL;
for all : TRI_STATE_BUFFERP

use entity DAMELIB.TRI_STATE_BUFFERP(pcircuit);

signal SIG_ENAB : std_logic;
signal SIG_ISIG : std_logic;
begin
PART1 : TRI_STATE_BUFFERP
generic map (
TPD => TPD,
TPD_TRI=>TPD_EN)
port map (
IN1 => SIG_ISIG,
TRI_OUT => SIG_ENAB,
OUT1 => M6116_A0_U2345);
SIG_ISIG <=

M68000_A1_U1
) after O ns;
-- Complexity was = 1
SIG_ENAB <=
(
L
) after O ns;
-- Complexity was = 0
end ONLY;

entity ISB_137_M6116_DO0_INT is
generic (
TPD : time;
TPD_EN : time;
TPD_EDGE : time);
port (
M6116_DO0_U35 : IN std_logic;

ISB_55 DATA_ACC_EN_INT_SIGNAL : IN std_logic;
ISB_38_READ_INT_SIGNAL : IN std_logic;
M68000_D8_U1 : OUT std_logic);

end ISB_137_M6116_DO_INT;

architecture ONLY of ISB_137_M6116_DO_INT is

use DAMELIB.PRIMITIVE.ALL;
for all : TRI_STATE_BUFFERP

use entity DAMELIB.TRI_STATE_BUFFERP(pcircuit);

signal SIG_ENAB : std_logic;
signal SIG_ISIG : std_logic;
begin
PART1 : TRI_STATE_BUFFERP
generic map (
TPD => TPD,
TPD_TRI=>TPD_EN)
port map (
IN1 => SIG_ISIG,
TRI_OUT => SIG_ENAB,
OUT1 => M68000_D8_U1);
SIG_ISIG <=

M6116_DO_U35
) after O ns;
-- Complexity was = 1
SIG_ENAB <=
(

(
ISB_55_DATA_ACC_EN_INT_SIGNAL

and

)
) after TPD;
-- Complexity was = 3
end ONLY;

entity ISB_121_M68000_D8_INT is
generic (
TPD : time;
TPD_EN : time;

nd (
ISB_38_READ_INT_SIGNAL

239

TPD_EDGE : time);
port (
M68000_D8_U1 : IN std_logic;

ISB_55 DATA_ACC_EN_INT_SIGNAL :

ISB_35_WRITE_INT_SIGNAL : IN std_logic;

M6116 _DO_U35 : OUT std_logic);
end ISB_121_M68000_D8_INT;

architecture ONLY of ISB_121_M68000_D8_INT is
use DAMELIB.PRIMITIVE.ALL;
for all : TRI_STATE_BUFFERP
use entity DAMELIB.TRI_STATE_BUFFERP(pcircuit);
signal SIG_ENAB : std_logic;
signal SIG_ISIG : std_logic;
begin
PART1 : TRI_STATE_BUFFERP
generic map (
TPD => TPD,
TPD_TRI=>TPD_EN)
port map (
IN1 => SIG_ISIG,
TRI_OUT => SIG ENAB,

OUT1 => M6116_DO_U35);
SIG_ISIG <=

M68000_D8_ U1
) after O ns;
-- Complexity was = 1
SIG_ENAB <=
(

ISB_55_DATA_ACC_EN_INT_SIGNAL

and
ISB_35_WRITE_INT_SIGNAL

)
) after TPD;
-- Complexity was = 3
end ONLY;

entity ISB_105_M6116_DO0_INT is
generic (
TPD : time;
TPD_EN : time;
TPD_EDGE : time);
port (
M6116_DO0_U24 : IN std_logic;
ISB_55_DATA_ACC_EN_INT_SIGNAL : IN std_logic;
ISB_38 READ_INT_SIGNAL - IN std_logic;
M68000_DO_U1 : OUT std_logic);
end ISB_105 M6116_DO0_INT;

architecture ONLY of ISB_105_M6116_DO_INT is
use DAMELIB.PRIMITIVE.ALL;
for all : TRI_STATE_BUFFERP
use entity DAMELIB.TRI_STATE_BUFFERP(pcircuit);
signal SIG_ENAB : std_logic;
signal SIG_ISIG : std_logic;
begin
PART1 : TRI_STATE_BUFFERP
generic map (
TPD => TPD,
TPD_TRI=>TPD_EN)
port map (
IN1 => SIG_ISIG,
TRI_OUT => SIG_ENAB,
OUT1 => M68000_D0_U1);
SIG_ISIG <=

M6116_DO0_U24
) after O ns;
-- Complexity was = 1

IN std_logic;

240

SIG_ENAB <=

ISB_55_DATA_ACC_EN_INT_SIGNAL

and (
ISB_38_READ_INT_SIGNAL

)
) after TPD;
-- Complexity was = 3
end ONLY;

entity ISB_89 _M68000_DO0_INT is
generic (
TPD : time;
TPD_EN : time;
TPD_EDGE : time);
port (
M68000_DO0_U1 : IN std_logic;
ISB_55 DATA_ACC_EN_INT_SIGNAL : IN std_logic;
ISB_35 WRITE_INT_SIGNAL : IN std_logic;
M6116_DO0_U24 : OUT std_logic);
end ISB_89_M68000_DO_INT;

architecture ONLY of ISB_89 M68000_DO_INT is
use DAMELIB.PRIMITIVE.ALL,;
for all : TRI_STATE_BUFFERP
use entity DAMELIB.TRI_STATE_BUFFERP(pcircuit);
signal SIG_ENAB : std_logic;
signal SIG_ISIG : std_logic;
begin
PART1 : TRI_STATE_BUFFERP
generic map (
TPD => TPD,
TPD_TRI=>TPD_EN)
port map (
IN1 => SIG_ISIG,
TRI_OUT => SIG_ENAB,

OUT1 => M6116 D0_U24);
SIG_ISIG <=

M68000_DO0_U1
) after O ns;
-- Complexity was = 1
SIG_ENAB <=
(

ISB_55_DATA_ACC_EN_INT_SIGNAL

and (
ISB_35_WRITE_INT_SIGNAL

)
) after TPD;
-- Complexity was = 3
end ONLY;

entity ISB_71_M6116_WR_INT is
generic (
TPD : time;
TPD_EN : time;
TPD_EDGE : time);
port (
ISB_35 WRITE_INT_SIGNAL : IN std_logic;
M6116_WR_U2345 : OUT std_logic);
end ISB_71_M6116_WR_INT;

architecture ONLY of ISB_71_M6116_WR_INT is
begin
M6116_WR_U2345 <=
not (

ISB_35_WRITE_INT_SIGNAL
) after TPD;

241

-- Complexity was = 2
end ONLY;

entity ISB_69_M6116_CE_INT_0_0_7 is
generic (
TPD : time;
TPD_EN : time;
TPD_EDGE : time);
port (
ISB_44 TYPE_INT_SIGNAL : IN std_logic;
ISB_16_ADD_INT_SIGNAL_O: IN std_logic;
ISB_10_WORD_INT_SIGNAL_O_7 : IN std_logic;
ISB_4 REQUEST_INT_SIGNAL : IN std_logic;
M6116_CE_U2 : OUT std_logic);
end ISB_69_M6116_CE_INT_0_0_7;

architecture ONLY of ISB_69 _M6116_CE_INT_0_0_7is
begin
M6116_CE_U2 <=
not (

(
ISB_44_TYPE_INT_SIGNAL

)

and (
ISB_16_ADD_INT_SIGNAL_O
)

and (
ISB_10_WORD_INT_SIGNAL_0_7

and (
ISB_4_REQUEST_INT_SIGNAL

)
) after TPD;
-- Complexity was = 6
end ONLY;

entity ISB_69 _M6116_CE_INT_0_8 15is
generic (
TPD : time;
TPD_EN : time;
TPD_EDGE : time);
port (
ISB_44 TYPE_INT_SIGNAL : IN std_logic;
ISB_16_ADD_INT_SIGNAL_O : IN std_logic;
ISB_10_WORD_INT_SIGNAL_8 15:IN std_logic;
ISB_4_REQUEST_INT_SIGNAL : IN std_logic;
M6116_CE_U3 : OUT std_logic);
end ISB_69_M6116_CE_INT_0_8_15;

architecture ONLY of ISB_69 _M6116_CE_INT_0_8 15is
begin
M6116_CE_U3 <=
not (

(
ISB_44 TYPE_INT_SIGNAL

)
and (
ISB_16_ADD_INT_SIGNAL_O

)
and (

ISB_10_WORD_INT_SIGNAL_8 15

)

and (
ISB_4_REQUEST_INT_SIGNAL

)
) after TPD;
-- Complexity was = 6
end ONLY;

entity ISB_69_M6116_CE_INT_8000_0_7 is
generic (
TPD : time;

242

TPD_EN : time;
TPD_EDGE : time);
port (

ISB_44 TYPE_INT_SIGNAL : IN std_logic;
ISB_16_ADD_INT_SIGNAL_8000 : IN std_logic;
ISB_10_WORD_INT_SIGNAL_O_7 : IN std_logic;
ISB_4 REQUEST_INT_SIGNAL : IN std_logic;
M6116_CE_U4 : OUT std_logic);

end ISB_69_M6116_CE_INT_8000_0_7;

architecture ONLY of ISB_69_M6116_CE_INT_8000_0 7 is
begin
M6116_CE_U4 <=
not (

(
ISB_44_TYPE_INT_SIGNAL

)

and (
ISB_16_ADD_INT_SIGNAL_8000
)

and (
ISB_10_WORD_INT_SIGNAL_0_7

and (
ISB_4_REQUEST_INT_SIGNAL

)
) after TPD;
-- Complexity was = 6
end ONLY;

library IEEE;
use |IEEE.STD_LOGIC_1164.ALL;
library DAMELIB;

entity ISB_69_M6116_CE_INT_8000_8 15is
generic (
TPD : time;
TPD_EN : time;
TPD_EDGE : time);
port (
ISB_44 TYPE_INT_SIGNAL : IN std_logic;
ISB_16_ADD_INT_SIGNAL_8000 : IN std_logic;
ISB_10_WORD_INT_SIGNAL_8 15:IN std_logic;
ISB_4_REQUEST_INT_SIGNAL : IN std_logic;
M6116_CE_U5 : OUT std_logic);
end ISB_69_M6116_CE_INT_8000_8_15;

architecture ONLY of ISB_69 _M6116_CE_INT_8000_8_15 s
begin
M6116_CE_US5 <=
not (

(
ISB_44 TYPE_INT_SIGNAL

)
and (
ISB_16_ADD_INT_SIGNAL_8000

)
and (

ISB_10_WORD_INT_SIGNAL_8 15

)

and (
ISB_4_REQUEST_INT_SIGNAL

)
) after TPD;
-- Complexity was = 6
end ONLY;

entity ISB_67_M6116_OE_INT is
generic (
TPD : time;
TPD_EN : time;
TPD_EDGE : time);

243

port (
ISB_38_READ_INT_SIGNAL : IN std_logic;
M6116_OE_U2345: OUT std_logic);
end ISB_67_M6116_OE_INT;

architecture ONLY of ISB_67_M6116_OE_INT is
begin
M6116_OE_U2345 <=
not (
ISB_38 READ_INT_SIGNAL
) after TPD;
-- Complexity was = 2
end ONLY;

entity ISB_65_M68000_DTAK_INT is
generic (
TPD : time;
TPD_EN : time;
TPD_EDGE : time);
port (
ISB_61 DELAY_INT_SIGNAL : IN std_logic;
M68000_DTAK__U1 : OUT std_logic);
end ISB_65_M68000_DTAK_INT;

architecture ONLY of ISB_65_M68000_DTAK_INT is
use DAMELIB.PRIMITIVE.ALL;
for all : OC_BUFFERP
use entity DAMELIB.OC_BUFFERP(pcircuit);
signal SIG_OSIG : std_logic;

begin
SIG_OSIG <=
not (
ISB_61_DELAY_INT_SIGNAL
) after TPD;

-- Complexity was = 2
PART1_OC : OC_BUFFERP
generic map (
TPD =>TPD)
port map (
IN1 => SIG_OSIG,
OUT1 => M68000_DTAK_U1);
end ONLY;

entity ISB_61_DELAY_INT is
generic (
TPD : time;
TPD_EN : time;
TPD_EDGE : time);
port (
ISB_58_ACC_DEL_INT_SIGNAL_S_1: IN std_logic;
ISB_61_DELAY_INT_SIGNAL : OUT std_logic);
end ISB_61_DELAY_INT;

architecture ONLY of ISB_61_ DELAY_INT is
begin
ISB_61 DELAY_INT_SIGNAL <=

ISB_58 ACC_DEL_INT_SIGNAL_S 1
) after O ns;
-- Complexity was = 1
end ONLY;

entity ISB_63_CONV_SS is

generic (
TPD : time;
TPD_EN : time;
TPD_EDGE : time);

port (
ISB_58 ACC_DEL_INT_SIGNAL : IN std_logic;
SYS_RESET: IN std_logic;
SYS_CLOCK : IN std_logic;

ISB_58_ACC_DEL _INT SIGNAL_S_1: OUT std_logic):

244

245

end ISB_63 _CONV_SS:

architecture ONLY of ISB_63 _CONV_SS is
use DAMELIB.PRIMITIVE.ALL;
for all : LEADING_EDGE_DELAYP
use entity DAMELIB.LEADING_EDGE_DELAYP(DEL100NS);
signal SIG_ISIG : std_logic;
signal SIG_OSIG : std_logic;
begin
PART1 : LEADING_EDGE_DELAYP
generic map (
TPD_EDGE => 76 ns,
TPD =>TPD)
port map (
IN1 => SIG_ISIG,
SYS_RESET => SYS_RESET,
SYS_CLOCK => SYS_CLOCK,
OUT1 => SIG_OSIG);
SIG_ISIG <=

ISB_58 ACC_DEL_INT_SIGNAL
) after O ns;
-- Complexity was = 1
ISB_58_ACC_DEL_INT_SIGNAL_S 1 <=

SIG_OSIG
) after O ns;
-- Complexity was = 1
end ONLY;

entity ISB_58 ACC_DEL_INT is
generic (
TPD : time;
TPD_EN : time;
TPD_EDGE : time);
port (
ISB_49 ACCESS_INT_SIGNAL : IN std_logic;
ISB_58 ACC_DEL_INT_SIGNAL : OUT std_logic);
end ISB_58_ACC_DEL_INT;

architecture ONLY of ISB_58 ACC_DEL_INT is
begin
ISB_58 ACC_DEL_INT_SIGNAL <=

ISB_49_ACCESS_INT_SIGNAL
) after O ns;
-- Complexity was = 1
end ONLY;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL,;
library DAMELIB;

entity ISB_55_DATA_ACC_EN_INT is
generic (
TPD : time;
TPD_EN : time;
TPD_EDGE : time);
port (
ISB_49_ACCESS_INT_SIGNAL : IN std_logic;
ISB_55_DATA_ACC_EN_INT_SIGNAL : OUT std_logic);
end ISB_55_DATA_ACC_EN_INT;

architecture ONLY of ISB_55 DATA_ACC_EN_INT is
begin
ISB_55 DATA_ACC_EN_INT_SIGNAL <=

ISB_49 ACCESS_INT_SIGNAL
) after O ns;
-- Complexity was = 1
end ONLY;

246

entity ISB_49 ACCESS_INT is
generic (
TPD : time;
TPD_EN : time;
TPD_EDGE : time);
port (
ISB_31 BLOCK_ADD_INT_SIGNAL : IN std_logic;
ISB_4_REQUEST_INT_SIGNAL : IN std_logic;
ISB_44 TYPE_INT_SIGNAL : IN std_logic;
ISB_49 ACCESS_INT_SIGNAL : OUT std_logic);
end ISB_49_ACCESS_INT;

architecture ONLY of ISB_49 ACCESS_INT is
begin
ISB_49 ACCESS_INT_SIGNAL <=

(
ISB_31_BLOCK_ADD_INT_SIGNAL

)
and (
ISB_4_REQUEST_INT_SIGNAL

and (
ISB_44 TYPE_INT_SIGNAL

)
) after TPD;
-- Complexity was = 4
end ONLY;

entity ISB_44_TYPE_INT is
generic (
TPD : time;
TPD_EN : time;
TPD_EDGE : time);
port (
M68000_FC2_U1 : IN std_logic;
M68000_FC1_U1: IN std_logic;
M68000_FCO_U1 : IN std_logic;
ISB_44_TYPE_INT_SIGNAL : OUT std_logic);
end ISB_44_TYPE_INT,;

architecture ONLY of ISB_44 TYPE_INT is

begin
ISB_44 _TYPE_INT_SIGNAL <=

not M68000_FC2_U1

(
not M68000_FC1_U1

o~ ~—~

an

and (
M68000_FCO_U1

o
=
~—~——

M68000_FC2 U1

(
not M68000_FC1_U1

o~

an

and (
M68000_FC0_U1
)
)

or (
not M68000_FC2_ U1
)
and (

247

M68000_FC1 U1

and (
not M68000_FCO_U1

or (
(
M68000_FC2_U1

and (
M68000_FC1 U1l

and (
not M68000_FC0_U1

)
) after 3*TPD;
-- Complexity was = 17
end ONLY;

entity ISB_38_READ_INT is
generic (
TPD : time;
TPD_EN : time;
TPD_EDGE : time);
port (
M68000_RW_U1 : IN std_logic;
ISB_38 READ_INT_SIGNAL : OUT std_logic);
end ISB_38_READ_INT;

architecture ONLY of ISB_38 READ_INT is
begin
ISB_38 READ_INT_SIGNAL <=

M68000_RW_U1
) after O ns;
-- Complexity was = 1
end ONLY;

entity ISB_35_WRITE_INT is
generic (
TPD : time;
TPD_EN : time;
TPD_EDGE : time);
port (
M68000_RW_U1 : IN std_logic;
ISB_35_WRITE_INT_SIGNAL : OUT std_logic);
end ISB_35_WRITE_INT;

architecture ONLY of ISB_35 WRITE_INT is
begin
ISB_35_WRITE_INT_SIGNAL <=

not M68000_RW_U1
) after TPD;
-- Complexity was = 2
end ONLY;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL,;
library DAMELIB;

entity ISB_31_BLOCK_ADD_INT is

generic (
TPD : time;
TPD_EN : time;
TPD_EDGE : time);

port (
ISB_16_ADD_INT_SIGNAL_8000 : IN std_logic;
ISB_16_ADD_INT_SIGNAL_O : IN std_logic;
ISB_31_BLOCK_ADD_INT_SIGNAL : OUT std_logic);

end ISB_31_BLOCK_ADD_INT;

architecture ONLY of ISB_31_BLOCK_ADD_INT is

begin

ISB_31_BLOCK_ADD_INT_SIGNAL <=
(

(
ISB_16_ADD_INT_SIGNAL_8000

or (

ISB_16_ADD_INT_SIGNAL_0

)
) after TPD;

-- Complexity was = 3
end ONLY;

entity ISB_16_ADD_INT is

generic (

TPD : time;
TPD_EN : time;

TPD_EDGE : time);
port (

M68000_A23 U1 :
M68000_A22 U1 :
M68000_A21 U1 :
M68000_A20_U1 :
M68000_A19 U1 :
M68000_A18_U1 :
M68000_A17 U1 :
M68000_A16_U1 :
M68000_A15 U1 :
M68000_Al14 U1 :
M68000_A13 U1 :
M68000_A12 U1 : "
ISB_16_ADD_INT_SIGNAL_8000 : OUT std_logic;
ISB_16_ADD_INT_SIGNAL_O : OUT std_logic);

end ISB_16_ADD_INT;

architecture ONLY of ISB_16_ADD_INT is

begin

ISB_16_ADD_INT_SIGNAL_8000 <=

o~ ~

an

(

IN std_logic;
IN std_logic;
IN std_logic;
IN std_logic;
IN std_logic;
IN std_logic;
IN std_logic;
IN std_logic;
IN std_logic;
IN std_logic;
IN std_logic;
IN std_logic;

not M68000_A23_U1

not M68000_A22_U1
)

and

not M68000_A21_U1

and

and

(
not M68000_A20_U1

not M68000_A19_U1

and

and

(
not M68000_A18_U1

not M68000_A17_U1

and

and

(
not M68000_A16_U1

M68000_A15 U1

and

(
not M68000_A14 U1

248

and (
not M68000_A13_U1l

and (
not M68000_A12_U1

)
) after 3*TPD;
-- Complexity was = 14
ISB_16_ADD_INT_SIGNAL_0 <=
(

not M68000_A23_U1

(
not M68000_A22_U1
)

o~ ~

an

and (
not M68000_A21_U1

and (
not M68000_A20_U1

and (
not M68000_A19 U1l

and (
not M68000_A18 U1

and (
not M68000_A17_U1

and (
not M68000_A16_U1

and (
not M68000_A15_U1l

and (
not M68000_A14 U1

and (
not M68000_A13_U1l

and (
not M68000_A12_U1

)
) after 3*TPD;
-- Complexity was = 14
end ONLY;

entity ISB_10_WORD_INT is

generic (
TPD : time;
TPD_EN : time;
TPD_EDGE : time);

port (
M68000_UDS_U1 : IN std_logic;
M68000_LDS_U1 : IN std_logic;

ISB_10 WORD_INT_SIGNAL 8 15 : OUT std_logic;
ISB_10_WORD_INT_SIGNAL_0_7 : OUT std_logic):

end ISB_10_WORD_INT;

architecture ONLY of ISB_10_WORD_INT is

begin

ISB_10_ WORD_INT_SIGNAL_8 15 <=

not M68000_UDS_U1
) after TPD;
-- Complexity was = 2
ISB_10_WORD_INT_SIGNAL_0_7 <=

not M68000_LDS_U1

249

) after TPD;
-- Complexity was = 2
end ONLY;
entity ISB_4 REQUEST_INT is
generic (
TPD : time;
TPD_EN : time;
TPD_EDGE : time);
port (

M68000_AS_ U1 : IN std_logic;
M68000_UDS_U1 : IN std_logic;
M68000_LDS_U1 : IN std_logic;

ISB_4 REQUEST_INT_SIGNAL : OUT std_logic);

end ISB_4 REQUEST_INT;

architecture ONLY of ISB_4 REQUEST_INT is
begin
ISB_4_REQUEST_INT_SIGNAL <=

“((not M68000_AS_U1) and

((not M68000_UDS_U1) or (not M68000_LDS_U1))
) after TPD;

-- Complexity was = 6

end ONLY;

-- END of vhdl code for IB_1_RW_CONNECT
-- Generated on: 15:02:57 8-2-1997 Version 1.0

E.2 VHDL IB for Design Example

Note: some address and data signals have been deleted for brevity.

-- START of vhdl code for IB_1_ RW_CONNECT
-- Device 1:1B_1_RW_CONNECT
-- Generated on: 15:00:20 8-2-1997 Version 1.0

library IEEE;
use |IEEE.STD_LOGIC_1164.ALL;
library DAMELIB;

entity IB_1_RW_CONNECT is

generic (
TPD : time;
TPD_EN : time;
TPD_EDGE : time);

port (
M68000_AS_U1 : IN std_logic;
M68000_LDS_U1 : IN std_logic;
M68000_UDS_UL1 : IN std_logic;
M68000_A12_ U1 : IN std_logic;
M68000_A23_U1 : IN std_logic;
M68000_RW_U1 : IN std_logic;
M68000_FCO_U1 : IN std_logic;
M68000_FC1_U1 : IN std_logic;
M68000_FC2_ U1 : IN std_logic;
SYS_CLOCK: IN std_logic;
SYS_RESET : IN std_logic;
M68000_ A1 U1 :IN std_logic;
M68000_A11_ U1 : IN std_logic;
M68000_DTAK_U1 : OUT std_logic;
M6116_OE_U2345 : OUT std_logic;
M6116_CE_US5 : OUT std_logic;
M6116_CE_U4 : OUT std_logic;
M6116_CE_U3 : OUT std_logic;
M6116_CE_U2 : OUT std_logic;
M6116_WR_U2345 : OUT std_logic;
M6116_A0_U2345 : OUT std_logic;
M6116_A10_U2345 : OUT std_logic;

250

251

M68000_DO0_U1 : INOUT std_logic;

M6116_DO0_U24 : INOUT std_logic;

M68000_D8_U1 : INOUT std_logic;

M6116_DO_U35 : INOUT std_logic);
end IB_1_RW_CONNECT;

architecture ONLY of IB_1_RW_CONNECT is
use WORK.IB_IB_1_RW_CONNECT_PACKAGE.ALL;
signal ISB_4 REQUEST_INT_SIGNAL : std_logic;
signal ISB_10_WORD_INT_SIGNAL_8 15 : std_logic;
signal ISB_10_ WORD_INT_SIGNAL_0_7 : std_logic;
signal ISB_16_ADD_INT_SIGNAL_8000 : std_logic:
signal ISB_16_ADD_INT_SIGNAL_O : std_logic;
signal ISB_31_BLOCK_ADD_INT_ SIGNAL : std_logic;
signal ISB_35_WRITE_INT_SIGNAL : std_logic;
signal ISB_38_READ_INT_SIGNAL : std_logic;
signal ISB_44 TYPE_INT_SIGNAL : std_logic;
signal ISB_49_ ACCESS_INT_SIGNAL :std_logic;
signal ISB_ 55 DATA _ACC_EN_INT_SIGNAL : std_logic;
signal ISB_58_ACC_DEL_INT_SIGNAL : std_logic;
signal ISB_58 ACC_DEL_INT_SIGNAL_S 1 std_logic;
signal ISB_61_DELAY_INT_SIGNAL : std_logic;
begin
PART_1:1SB_4 REQUEST_INT
generic map (
TPD => TPD,
TPD_EN => TPD_EN,
TPD_EDGE => TPD_EDGE)
port map (
M68000_AS_U1 => M68000_AS_U1,
M68000_UDS_U1 => M68000_UDS_U1,
M68000_LDS_U1 => M68000_LDS U1,
ISB_4 REQUEST_INT_SIGNAL =>1SB_4 REQUEST_INT_SIGNAL);
PART_2: ISB_10_WORD_INT
generic map (
TPD => TPD,
TPD_EN => TPD_EN,
TPD_EDGE => TPD_EDGE)
port map (
M68000_UDS_U1 => M68000_UDS_UL1,
M68000_LDS_U1 => M68000_LDS U1,
ISB_10_WORD_INT_SIGNAL_8 15 =>'ISB 10_WORD_INT_SIGNAL_8_15,
ISB_10_WORD_INT_SIGNAL 0 7 =>ISB_10 WORD _INT_SIGNAL 0 7);
PART_3: ISB_16_ADD_INT
generic map (
TPD => TPD,
TPD_EN => TPD_EN,
TPD_EDGE => TPD_EDGE)
port map (
M68000_A23_ U1 => M68000_A23 U1,
M68000_A22 U1l => M68000_A22 U1,
M68000_A21 U1 => M68000_A21 U1,
M68000_A20_U1 => M68000_A20 U1,
M68000_A19 U1 => M68000_A19 U1,
M68000_A18 U1l =>M68000_A18 U1,
M68000_A17_U1l => M68000_A17_ U1,
M68000_A16_U1 => M68000_A16 U1,
M68000_Al1l5 Ul => M68000_A1l5 U1,
M68000_Al14 U1l =>M68000_Al4 U1,
M68000_A13 U1 => M68000_A13 U1,
M68000_A12 U1l =>M68000_Al12 U1,
ISB_16_ADD_INT_SIGNAL_8000 => ISB_16 _ADD_INT_SIGNAL_8000,
ISB_16_ADD_INT_SIGNAL_0=>1SB_16_ADD_INT_SIGNAL 0);
PART_4: ISB_31_BLOCK_ADD_INT
generic map (
TPD => TPD,
TPD_EN => TPD_EN,
TPD_EDGE => TPD_EDGE)
port map (
ISB_16_ADD_INT_SIGNAL_8000 =>ISB_16_ADD_INT_SIGNAL_8000,
ISB_16_ADD_INT_SIGNAL_0=>ISB_16_ADD_INT_SIGNAL_O,
ISB_31_BLOCK_ADD_INT_SIGNAL =>ISB_31_BLOCK_ADD_INT_SIGNAL);

252

PART_5: I1SB_35 WRITE_INT
generic map (
TPD => TPD,
TPD_EN =>TPD_EN,
TPD_EDGE => TPD EDGE)
port map (
M68000_RW_U1 => M68000_RW_U1,
ISB_35 WRITE_INT_SIGNAL =>1SB_35 WRITE_INT_SIGNAL);
PART_6: ISB_38 READ_INT
generic map (
TPD => TPD,
TPD_EN =>TPD_EN,
TPD_EDGE => TPD EDGE)
port map (
M68000_RW_U1 => M68000_RW_U1,
ISB_38 READ_INT_SIGNAL =>ISB_ 38 READ_INT_SIGNAL);
PART_7: ISB_44 TYPE_INT
generic map (
TPD => TPD,
TPD_EN =>TPD_EN,
TPD_EDGE => TPD EDGE)
port map (
M68000_FC2_U1 => M68000_FC2_U1,
M68000_FC1 U1 => M68000_FC1 U1,
M68000_FCO_U1 => M68000_FCO_U1,
ISB_44 TYPE_INT_SIGNAL => ISB_44 TYPE_INT_SIGNAL);
PART_8:1SB_49 ACCESS_INT
generic map (
TPD => TPD,
TPD_EN =>TPD_EN,
TPD_EDGE => TPD EDGE)
port map (
ISB_31_BLOCK_ADD_INT_SIGNAL =>ISB_31_BLOCK_ADD_INT_SIGNAL,
ISB_4 REQUEST_INT_SIGNAL => ISB_4 REQUEST_INT_SIGNAL,
ISB_44 TYPE_INT_SIGNAL =>ISB_44 TYPE_INT_SIGNAL,
ISB_49_ACCESS_INT_SIGNAL => [SB 49 ACCESS_INT_SIGNAL);
PART_9:1SB_55 DATA_ACC_EN_INT
generic map (
TPD => TPD,
TPD_EN =>TPD_EN,
TPD_EDGE => TPD EDGE)
port map (
ISB_49 ACCESS_INT_SIGNAL =>ISB_49 ACCESS_INT_SIGNAL,
ISB_55 DATA_ACC_EN_INT_SIGNAL =>iSB_55 DATA ACC_EN_INT_SIGNAL);
PART_107I1SB_58 ACC_DEL_INT
generic map (
TPD => TPD,
TPD_EN =>TPD_EN,
TPD_EDGE => TPD EDGE)
port map (
ISB_49 ACCESS_INT_SIGNAL =>ISB_49 ACCESS_INT_SIGNAL,
ISB_58 ACC_DEL_INT_SIGNAL =>ISB_58 ACC_DEL_INT SIGNAL)
PART_1171SB_63 CONV_SS
generic map (
TPD => TPD,
TPD_EN =>TPD_EN,
TPD_EDGE => TPD EDGE)
port map (
ISB_58 ACC_DEL_INT_SIGNAL =>1ISB_58 ACC_DEL_INT_SIGNAL,
SYS_RESET => SYS_RESET,
SYS _CLOCK => SYS_CLOCK,
ISB_58 ACC_DEL_INT __ SIGNAL S 1=>1SB_58 ACC _DEL_INT_SIGNAL_S 1);
PART_12:ISB_61 DELAY_INT
generic map (
TPD => TPD,
TPD_EN =>TPD_EN,
TPD_EDGE => TPD EDGE)
port map (
ISB_58 ACC_DEL_INT_SIGNAL_S 1 =>ISB_58 ACC_DEL_INT_SIGNAL_S 1,
ISB_61_DELAY_INT_SIGNAL =>ISB_61_DELAY_INT_SIGNAL);
PART_ 13" ISB_65 M68000 DTAK_INT
generic map (

253

TPD => TPD,
TPD_EN =>TPD_EN,
TPD_EDGE => TPD EDGE)
port map (
ISB_61_DELAY_INT_SIGNAL =>ISB_61_DELAY_INT_SIGNAL,
M68000_DTAK_ U1 => M68000_DTAK_UT);
PART_14:1SB 67 M6116_OE_INT
generic map (
TPD => TPD,
TPD_EN =>TPD_EN,
TPD_EDGE => TPD EDGE)
port map (
ISB_38 READ_INT_SIGNAL => ISB_38 READ_INT_SIGNAL,
M6116_OE_U2345=> M6116_OE_U2345);
PART_15:ISB 69 M6116_CE_INT_8000_8 15
generic map (
TPD => TPD,
TPD_EN =>TPD_EN,
TPD_EDGE => TPD EDGE)
port map (
ISB_44 TYPE_INT_SIGNAL =>ISB_44 TYPE_INT_SIGNAL,
ISB_16_ADD_INT_SIGNAL_8000 =>ISB_16_ADD INT_ SIGNAL 8000,
ISB_10_WORD_INT_SIGNAL 8 15=>ISB_10_WORD_INT_SIGNAL 8 15,
ISB_4 REQUEST_INT_SIGNAL => ISB_4 REQUEST_INT_SIGNAL,
M6116 CE_US5 => M6116_CE_U5);
PART 16 :I1SB_69 M6116_CE_INT_8000 0 7
generic map (
TPD => TPD,
TPD_EN => TPD_EN,
TPD_EDGE => TPD_EDGE)
port map (
ISB_44 TYPE_INT_SIGNAL => ISB_44 TYPE_INT_SIGNAL,
ISB_16_ADD_INT_SIGNAL 8000 =>ISB_16_ADD_INT_SIGNAL_ 8000,
ISB_10_WORD_INT_SIGNAL_0_7 =>1SB_10_WORD_INT_SIGNAL 0_7,
ISB_4 REQUEST_INT_SIGNAL => ISB_4 REQUEST INT_SIGNAL,
M6116_CE_U4 => M6116_CE_U4);
PART_17:1SB_69 M6116_CE_INT 0 8 15
generic map (
TPD => TPD,
TPD_EN =>TPD_EN,
TPD_EDGE => TPD EDGE)
port map (
ISB_44 TYPE_INT_SIGNAL =>ISB_44 TYPE_INT_SIGNAL,
ISB_16_ADD_INT_SIGNAL_0=>ISB_16_ADD_INT_SIGNAL 0,
ISB_10_ WORD_INT_SIGNAL 8 15=>ISB_10_WORD_INT_SIGNAL 8 15,
ISB_4 REQUEST_INT_SIGNAL => ISB_4 REQUEST_INT_SIGNAL,
M6116 CE_U3 =>M6116_CE_U3);
PART_18:1SB_69 M6116_CE_INT 0 0 7
generic map (
TPD => TPD,
TPD_EN => TPD_EN,
TPD_EDGE => TPD_EDGE)
port map (
ISB_44 TYPE_INT_SIGNAL =>ISB_44 TYPE_INT_SIGNAL,
ISB_16_ADD_INT_SIGNAL 0 =>ISB_16_ADD_INT_SIGNAL_0,
ISB_10_WORD_INT_SIGNAL_0_7 =>1SB_10 WORD_INT_ SIGNAL 0_7,
ISB_4 REQUEST_INT_SIGNAL => ISB_4 REQUEST INT_SIGNAL,
M6116_CE_U2 => M6116_CE_U2);
PART_19:ISB 71 _M6116_WR_INT
generic map (
TPD => TPD,
TPD_EN =>TPD_EN,
TPD_EDGE => TPD EDGE)
port map (
ISB_35 WRITE_INT_SIGNAL =>ISB_35 WRITE_INT_SIGNAL,
M6116_WR_U2345 => M6116_WR_U2345);
PART_20:1SB_89 M68000_DO_INT
generic map (
TPD => TPD,
TPD_EN =>TPD_EN,
TPD_EDGE => TPD EDGE)
port map (

254

M68000_DO0_U1 => M68000_DO0_U1,
ISB_55 DATA_ACC_EN_INT SIGNAL =>|SB_55_DATA_ACC_EN_INT_SIGNAL,
ISB_35 WRITE_INT_SIGNAL => ISB_35 WRITE_INT_SIGNAL,
M6116 DO _U24 => M6116_D0_U24);
PART_28:1SB 105 M6116_DO_INT
generic map (
TPD => TPD,
TPD_EN =>TPD_EN,
TPD_EDGE => TPD EDGE)
port map (
M6116_DO0_U24 => M6116_D0_U24,
ISB_55 DATA_ACC_EN_INT | SIGNAL =>|SB_55_DATA_ACC_EN_INT_SIGNAL,
ISB_38 READ_INT_SIGNAL =>ISB_38 READ INT_SIGNAL,
M68000_DO0_U1 =>M68000_DO_U1);
PART_36:ISB 121 M68000_D8 INT
generic map (
TPD => TPD,
TPD_EN =>TPD_EN,
TPD_EDGE => TPD EDGE)
port map (
M68000_D8_U1 => M68000_D8 U1,
ISB_55 DATA_ACC_EN_INT SIGNAL =>|SB_55_DATA_ACC_EN_INT_SIGNAL,
ISB_35 WRITE_INT_SIGNAL => ISB_35 WRITE_INT_SIGNAL,
M6116 DO _U35 => M6116_D0_U35);
PART 44 :1SB_137_M6116_DO_INT
generic map (
TPD => TPD,
TPD_EN =>TPD_EN,
TPD_EDGE => TPD EDGE)
port map (
M6116_DO0_U35 => M6116_D0O_US35,
ISB_55 DATA_ACC_EN_INT | SIGNAL =>|SB_55_DATA_ACC_EN_INT_SIGNAL,
ISB_38 READ_INT_SIGNAL =>ISB_38 READ_INT_SIGNAL,
M68000_D8_U1 =>M68000_D8_U1);
PART_52:1SB 250 M68000_A1 INT
generic map (
TPD => TPD,
TPD_EN =>TPD_EN,
TPD_EDGE => TPD EDGE)
port map (
M68000_A1_ U1l => M68000_Al U1,
M6116_A0_U2345 => M6116_AO U2345)
PART_62 :1SB_270 M68000_A11 INT
generic map (
TPD => TPD,
TPD_EN =>TPD_EN,
TPD_EDGE => TPD EDGE)
port map (
M68000_A11 U1 => M68000_A1l_ U1,
M6116_A10 U2345 => M6116_A10_U2345);
end ONLY;

-- END of vhdl code for IB_1_RW_CONNECT
-- Generated on: 15:02:57 8-2-1997 Version 1.0

E.3 VHDL Test Bench for Design Example

Note: some address and data signals have been deleted for brevity.

-- START of vhdl code for COMPLETE

-- Device 1 : COMPLETE

-- Generated on: 15:02:59 8-2-1997 Version 1.0
library IEEE;

use IEEE. STD LOGIC_1164.ALL;

library DAMELIB;

entity TEST_BENCH_SYSTEM is
end TEST_BENCH_SYSTEM;

architecture TEST_BENCH_SYSTEM_COMPLETE of TEST_BENCH_SYSTEM is

constant SCALE : TIME := 1 ns;

use WORK.INTERFACE_SYSTEM_BLOCK_PACKAGE.ALL;
signal M68000_AS_U1 : std_logic;

signal M68000_LDS_U1 : std_logic;

signal M68000_UDS_U1 : std_logic;

signal M68000_RW U1 : std_logic;

signal M68000_FCO_U1 : std_logic;

signal M68000_FC1_U1 : std_logic;

signal M68000_FC2_U1 : std_logic;

signal SYS_CLOCK: std_logic;

signal SYS_RESET : std_logic;

signal M68000_DTAK_UT : std_logic;

signal M6116_OE_U2345 : std_logic;

signal M6116_CE_US5 : std_logic;

signal M6116_CE_U4 : std_logic;

signal M6116_CE_U3 : std_logic;

signal M6116_CE_U2 : std_logic;

signal M6116_WR_U2345 - std_logjic;

signal M68000_A_UL1 : std_logic_vector(23 downto 1);
signal M6116_D_U24 : std_logic_vector(7 downto 0);
signal M68000_LD_U1 : std_logic_vector(7 downto 0);
signal M6116_D_U35 : std_logic_vector(7 downto 0);
signal M68000_UD_UL1 : std_logic_vector(7 downto 0);
signal M6116_A_U2345 : std_logic_vector(10 downto 0);

begin

DUT : COMPLETE
generic map (
TPD => 3 ns,
TPD_EN => 15 ns,
TPD_EDGE =>2ns)
port map (
M68000_AS_U1 => M68000_AS U1,
M68000_LDS_U1 => M68000_LDS_U1,
M68000_UDS_U1 => M68000_UDS_U1,
M68000_A12_U1 => M68000_A_ U1(12),
M68000_A23 U1 => M68000_A_U1(23),
M68000_RW_U1 => M68000_RW_U1,
M68000_FCO_U1 => M68000_FCO U1,
M68000_FC1_U1 => M68000_FC1_U1,
M68000_FC2 U1 => M68000_FC2 U1,
SYS_CLOCK'=>SYS_CLOCK,
SYS RESET => SYS_RESET,
M68000_D0_U1 => M68000_LD_U1(0),
M68000_D7_U1 => M68000_LD_U1(7),
M6116_DO0_U24 => M6116_D_U24(0),
M6116_D7_U24 => M6116_D_U24(7),
M68000_D8_U1 => M68000_UD_U1(0),
M68000_D15 U1 => M68000_UD U1(7),
M6116_DO_U35 => M6116_D_U35(0),
M6116_D7_U35 => M6116_D_U35(7),
M68000_ A1 U1 =>M68000 A U1(1),
M68000_A11_ U1 =>M68000 A U1(11),
M68000_DTAK_U1 => M68000_DTAK_U1,
M6116_OE_U2345 => M6116_OE_U2345,
M6116_CE_U5 => M6116_CE_US5,
M6116_CE_U4 => M6116_CE_U4,
M6116_CE_U3 => M6116_CE_U3,
M6116_CE_U2 => M6116_CE_U2,
M6116_WR_U2345 => M6116_ WR _U2345,
M6116_A0 U2345 => M6116_A U2345(0),
M6116_A10_U2345 => M6116_A_U2345(10));
STIMULUS_1 : process
begin
it-delay: 270 address: 0
M68000_AS_U1 <= ‘1"; wait for 200 * SCALE;
M68000_AS_U1 <=‘0’; wait for 270 * SCALE;
M68000_AS_U1 <="‘1"; wait for 200 * SCALE;

it-delay: 270 address: 0
M68000_AS_ U1 <=‘1"; wait for 200 * SCALE;
M68000_AS_U1 <=‘0"; wait for 270 * SCALE;

255

M68000_AS_U1 <= '1"; wait for 200 * SCALE;

end process STIMULUS _1;

STIMULUS_2 : process
begin
-- it-delay: 270 address: 0
M68000_LDS U1 <= ‘1"
M68000_LDS U1 <=0’
M68000_LDS U1 <= ‘17
-- it-delay: 270 address: 0
M68000_LDS U1 <= ‘1"
M68000_LDS U1 <= ‘1’
M68000_LDS U1 <= ‘1"
end process STIMULUS_2;

STIMULUS_3 : process
begin
-- it-delay: 270 address: 0
M68000_UDS_U1 <=1’
M68000_UDS_U1 <='0’;
M68000_UDS_U1 <="‘1’;
-- it-delay: 270 address: 0
M68000_UDS_U1 <=1’
M68000_UDS_U1 <='0’;
M68000_UDS_U1 <=1’
end process STIMULUS_3;

STIMULUS_4 : process
begin
-- it-delay: 270 address: 0
M68000_RW_U1 <= ‘17
M68000_RW_U1 <=0’
M68000_RW_U1 <= ‘17
-- it-delay: 270 address: 0
M68000_RW_U1 <= ‘17
M68000_RW_U1 <= ‘1"
M68000_RW_U1 <= ‘17
end process STIMULUS 4;

STIMULUS_5 : process
begin
-- it-delay: 270 address: 0
M68000_FCO_U1 <=0
M68000_FCO_U1 <=0’
M68000_FCO_U1 <=0
-- it-delay: 270 address: 0
M68000_FCO_U1 <=0
M68000_FCO_U1 <=0’
M68000_FCO_U1 <=0
end process STIMULUS _5;

STIMULUS_6 : process
begin
-- it-delay: 270 address: 0
M68000_FC1_U1l <=0
M68000_FC1_U1 <=1’
M68000_FC1_U1l <=0
-- it-delay: 270 address: 0
M68000_FC1_U1l <=0
M68000_FC1_U1 <=1’
M68000_FC1_U1l <=0
end process STIMULUS_6;

STIMULUS _7 : process
begin
-- it-delay: 270 address: 0
M68000_FC2_U1 <=0
M68000_FC2_U1 <=0’
M68000_FC2_U1 <=0
-- it-delay: 270 address: 0
M68000_FC2_U1 <=0
M68000_FC2_U1 <=0

wait for 250 * SCALE;
wait for 220 * SCALE;
wait for 200 * SCALE;

wait for 200 * SCALE;
wait for 270 * SCALE;
wait for 200 * SCALE;

wait for 250 * SCALE;
wait for 220 * SCALE;
wait for 200 * SCALE;

wait for 200 * SCALE;
wait for 270 * SCALE;
wait for 200 * SCALE;

wait for 140 * SCALE;
wait for 370 * SCALE;
wait for 160 * SCALE;

wait for 140 * SCALE;
wait for 370 * SCALE;
wait for 160 * SCALE;

wait for 140 * SCALE;
wait for 370 * SCALE;
wait for 160 * SCALE;

wait for 140 * SCALE;
wait for 370 * SCALE;
wait for 160 * SCALE;

wait for 140 * SCALE;
wait for 370 * SCALE;
wait for 160 * SCALE;

wait for 140 * SCALE;
wait for 370 * SCALE;
wait for 160 * SCALE;

wait for 140 * SCALE;
wait for 370 * SCALE;
wait for 160 * SCALE;

wait for 140 * SCALE;
wait for 370 * SCALE;

256

M68000_FC2_U1 <="'0"; wait for 160 * SCALE;

end process STIMULUS_7;

STIMULUS_CLOCK : process

begin
SYS_CLOCK <=0’; wait for 25 ns;
SYS_CLOCK <=1"; wait for 25 ns;
SYS_CLOCK <=0’; wait for O ns;

end process STIMULUS_CLOCK;

STIMULUS_RESET : process

begin
SYS_RESET <='0"; wait for 1 ns;
SYS_RESET <='1"; wait for 14 ns;
SYS_RESET <='0"; wait for 1000000 ns;

end process STIMULUS_RESET;

STIMULUS_1000 : process
begin

-- it-delay: 270 address: 0

-~ M68000_LD Ul 76543210

M68000_LD_Ul <= (“2Z2Z2Z2ZZ7Z7Z"); wait for 170 * SCALE;
M68000_LD_U1 <= (“00111100”); wait for 330 * SCALE;
M68000_LD_U1 <= (*Z2ZZZZZZ"); wait for 170 * SCALE
it-delay: 270 address: 0

M68000_LD Ul 76543210

M68000_LD_U1 <= (*Z2Z2Z22ZZZ"); wait for 170 * SCALE;
M68000_LD_U1 <= (*ZZZZZZZZ"); wait for 330 * SCALE;
M68000_LD_U1 <= (“Z22Z22ZZZ"); wait for 170 * SCALE;

end process STIMULUS_1000;

STIMULUS_1001 : process
begin

it-delay: 270 address: 0

M6116_D_U24 76543210

M6116_D_U24 <= (“ZZ2Z27777"); wait for 200 * SCALE;
M6116_D _U?24 <= (*Z272722777"); wait for 150 * SCALE;
M6116_D _U24 <= (“ZZ2ZZZZZZ"); wait for 135 * SCALE;
M6116_D_U24 <= (*ZZZ27777"); wait for 185 * SCALE;
it-delay: 270 address: 0

M6116_D_U24 76543210

M6116_D_U24 <= (“ZZ2Z27777"); wait for 200 * SCALE;
M6116_D U24 <= (*Z272722777"); wait for 150 * SCALE;
M6116_D_U24 <= (“001001007); wait for 135 * SCALE;
M6116_D _U?24 <= (*ZZ272722777"); wait for 185 * SCALE;

end process STIMULUS_1001;

STIMULUS_1002 : process
begin

it-delay: 270 address: 0

M68000_UD_U1l 76543210

M68000_UD_U1 <= (“ZZZZ7777"); wait for 170 * SCALE;
M68000_UD_U1 <= (“00100000”); wait for 330 * SCALE;
M68000_UD_U1 <= (“ZZZ77777"); wait for 170 * SCALE;
it-delay: 270" address: 0

M68000_UD_U1l 76543210

M68000_UD_U1 <= (*Z2ZZZ2222Z"); wait for 170 * SCALE;
M68000_UD_U1 <= (“ZZZZ7777”); wait for 330 * SCALE;
M68000_UD_U1 <= ("ZZZ2ZZZZZ"); wait for 170 * SCALE;

end process STIMULUS_1002;

STIMULUS_1003 : process
begin

it-delay: 270 address: 0

M6116_D_U35 76543210

M6116_D_U35 <= (“2Z2Z2Z2ZZ"); wait for 200 * SCALE;
M6116_D_U35 <= (“ZZZZZZZZ"); wait for 150 * SCALE;
M6116_D_U35 <= (“2Z2Z2Z2ZZ"); wait for 135 * SCALE;
M6116_D_U35 <= (“ZZ2ZZ777Z"); wait for 185 * SCALE;
it-delay: 270 address: 0

M6116_D_U35 76543210

257

M6116_D_U35 <= (Z2Z227277Z"); wait for 200 * SCALE;
M6116_D_U35 <= (“ZZZZZZZZ"); wait for 150 * SCALE;
M6116_D_U35 <= (“01000000”); wait for 135 * SCALE;

M6116_D_U35 <= (*Z2ZZ2ZZZZ"); wait for 185 * SCALE

end process STIMULUS_1003;

STIMULUS_1004 : process
begin
-- it-delay: 270 address: 0
-~ M68000_A_Ul 32109876543210987654321
M68000_A U1 <= (“11111111111111111111111");
M68000_A_U1 <= (“00000000100000000010010");
M68000_A U1 <=(“11111111111111111111111");
- it-delay: 270 address: 0
-~ M68000_A_Ul 32109876543210987654321
M68000_A U1l <=("11111112111112121112121111");
M68000_A_U1 <= (“00000000000000100011010");
M68000_ A U1 <= (“11111111111111111111111");
end process STIMULUS_1004;
end TEST_BENCH_SYSTEM COMPLETE

configuration TEST_BENCH_SYSTEM_CONFIG of TEST_BENCH_SYSTEM is

for TEST_BENCH_SYSTEM_COMPLETE
end for;

end TEST_BENCH_SYSTEM_CONFIG;

-- END of vhdl code for COMPLETE

wait for 170 * SCALE;
wait for 330 * SCALE;
wait for 170 * SCALE;

wait for 170 * SCALE;
wait for 330 * SCALE;
wait for 170 * SCALE;

258

259

Appendix F
Other Interface Design Examples

F.1 Interface Design Example: i8086

The Interface Designer was given the following design problem:

» Microprocessor: Intel i8086A-2 (8Mhz)

* RAM: Four RCA cmd6116-3 2Kx8 (150ns) with 16-bit datapath interface mapped at
address 0x00000 and 0x08000 in the 20-bit address space

* ROM: Two Mostek etc2716-1 2Kx8 (350ns) EPROMSs with 16-bit datapath interface
mapped at address 0x0e400

* PIO: Intel i8255a (400ns) parallel 10 device with 8-bit datapath interface mapped at
address 0x0c000

Bank of 4, 6116 RAM devices

Address: 0x00000 | Address: 0x0800C
cmd6116-3 cmd6116-3
Memory, UZ Memory, U4
iI8086a 150ns 150ns
Microprocessqr Lower Data Lower Data
Interface cmd6116-3 cmd6116-3
o Mhz 16 bits » Memory,U3 Memory,U5
U1 150ns 150ns
Upper Data Upper Data

Bank of 2, 2716 RAM
Address: 0x0c000
ETC2716-1
Memory, U6
Address: 0x0e000 Lower Data
i8255 ETC2716-1
P10, U8 Memory,U7
Lower Data Upper Data
FIGURE F-1. i8086 System

260

Some of the features illustrated by this design example are: microprocessor system
design using more than one type of component, address decoding using multiplexed
address signals, interfacing 16-bit memory and 8-bit memory mapped IO devices to a 16-
bit microprocessor allowing both 16-bit and 8-bit data transfer, interfacing components of
different speed using wait signal generation, and connection of multiplexed to non-multi-
plexed address signals. A design problem specification block diagram is shown in
Figure F-1. The block diagram indicates that separate IBs must be generated for the RAM,
ROM and the PIO.

The VHDL simulation output for this interface is shown in Figure F-2. The simula-
tion shows three data transfer cycles: a 16-bit write cycle to the RAM at address 0x08024,
an 8-bit read cycle from the ROM at address Ox0c61a and an 8-bit read cycle from the PIO
at address 0x0e420. The timing diagram illustrates the correct operation of the interface,
specifically the correct generation of enable and write signals, demultiplexing of the
address signals and generation of WiAIT signal. The timing parameters from the simu-
lation output were verified against the timing parameters given by the component manu-
facturers and were found to provide a positive margin, indicating a valid design. This
design shows that the Interface Designer is able to correctly design a more complex micro-
processor system utilizing more than one type of different speed component.

F.2 Interface Design Example: 68020

The Interface Designer was given the following design problem:

* Microprocessor: Motorola mc68020-12.5 (12.5Mhz)

* RAM: Four Motorola mcm6164-45 8kx8 (45ns) with 32-bit datapath interface mapped
at address 0x00008000 in the 32-bit address space

* ROM: Two Intel 27128a-2 16kx8 (200ns) EPROMSs with 16-bit datapath interface
mapped at address 0x00000000

* RAM: one Motorola mcm6810 (450ns) 128 byte scratch pad RAM mapped at address
0x0001f000

This design example illustrates a design that uses the dynamic bus sizing feature of
the 68020: the RAM, ROM and PIO to 68020 data transfer interface width are 32-bit, 16-
bit and 8-bit respectively using memory devices of different speed. The VHDL simulation
of the interface as shown in Figure F-3, illustrates data transfer cycles for each of the three
different memories.

TheU1 DTAKO/1 signals are both asserted for the 6164 RAM write cycle (t=100ns)
indicating that the RAM is capable of transferring 32-bit data. However only 24 bits are

261

oYY : : OV : OO0 8N € G528)

¥ GOTTTT00 Y - - - i -8NP G5zl
1 jenimggesy

: : f : : - -8N pITGGz8Y

: : f :] - I 8N 9 GGz8Y
LN 9TLEW/

77\ 00700000} - - O P 9T ew/
0000T0000T0 i - 0770000770 i - 07007000000 S N@:Imlw._” Lcw/

: : f N] - -L9N"20" 9TLew/
/N80 9T/ 2w

f] : QN80 9T/2Wy
0007000070 Y}] OTT0000TT0 Y) : 07007000000 XY X} GYEZN € 9TTIWY/
) G 00007700) -GEN P 9TTOW/

) G 00007000) -7 P 9TToW/
1 [lspEzn im 9rTouwy
! : 1 : - | GyEZN 90 9TTOW
1. [sn 80 9rToW/
1 yneoorTow/
g9 9TTOWY

00T00TTT - 0TT000TT - 0000000T -Zn 90 9TToW/
0000)(- TR 0080)(ST 0000} + TITT) 0000}- TN S€ 9808/
CTTTTTTT - X TTTTTTTT Y XXXXKXXXOK - KX 13191915 QIR 0000TT00 Y~ YTTTiiiiT)- TN pen” 9808y
CTTTTITTL Y 00TTTTO0 | XXXXXXXX X TTITTTTTK 00T00000 XXXXXXXX K+ XX TITTTTTT § - 00007000 Y TTrTiiee} TN pel 9808!/
00000T00 L : ot¢rrooo | LI : 00T00T00 [“Hzlm_m mmow_\
e , - , TN Jem 9808/
1 : : : 1 - 8yq 9808Y
: — 5] r+~ 1. i1nusp 9808y
S - [- T - [- Th o 9808y
: : f] : : TN pi 9808

5 T 1M 9808Y/
|} 19584 SAS/

U U U U U UL U U U U U LT LT L L L LT 00 Sy

- VHDL Simulation

i8086 Design

FIGURE F-2.

262

transferred, as can be seen by the activation of 3 of the 6164 KA signals (
m6164 CE1 U2 /m6164 CE1 U3, /m6164 CE1l _U4), since the 32-bit write cycle
is on an odd address (0OxO00080F5).

The U1 DTAK1signal is asserted for the 27128 RAM read cycle (t=750ns) indicat-
ing that the ROM is capable of transferring 16-bit data. However only 8 bits are trans-
ferred, as can be seen by the activation of/th27128 CE_UG6 signal, since this 16-bit
read cycle is on an odd address (0x00000027).

For the 6810 read cycle at t=1470ns only the DTAKOsignal is asserted indicating
that scratch pad RAM is capable of transferring 8-bit data. The 8 bits are transferred from
the/m6810_d _u8 signals to thém68020 uud_ul signals as can be seen in the simu-
lation timing diagram (note: the naming convention for the 68020 uses ‘uud’ for
D24:D31, ‘'umd’ for D16:D23, ‘Imd’ for D8:D15 and lid forD0:D7).

The DTAKO/1 signals of the 68020 serve two purposes in this design: they indicate
the data path width of the slave device and they are also used as the handshake signal that
terminates the data transfer. The VHDL simulation shows that the asdefta&0/1
event is delayed depending on the speed of the slave component, about 100ns for the 6164,
250ns for the 27128, and about 450ns for the 6810, as required from the component man-
ufacturer’s data sheet, indicating a valid interface.

The VHDL code was manually inspected to verify that the correct address signals
on the slave devices are connected to the address signals on the microprocessor. As
expected, the 32-bit 6164 RAM memory baf®:A12 signals are connected to the 68020
A2:A14 signals, the 16-bit 27128 ROM memory baAR:A13 signals are connected to
the 68020A1:A14 signals and the 8-bit 6810 scratch pad RAN:A6 signals are con-
nected to the 680280:A6 signals. The result of these connections can also be observed in
the simulation of Figure F-3.

The timing diagram illustrates the correct operation of the interface, specifically the
correct generation of enable and write signals for the dynamically sized data bus and gen-
eration of theDTAKSsignals. The timing parameters from the simulation output were veri-
fied against the timing parameters given by the component manufacturers and were found
to provide a positive margin, indicating a valid design.

This design example illustrates a more difficult design. Unless intimately familiar
with the data sheet of the 68020, a human designer will have to spend time investigating
the dynamic bus sizing signals and the signal protocol of the 68020. The human designer
has to become familiar with the relationship between BACKQ DTACK1 SIZEO,

263

,m:m, ,oom._”, ,m:._”, ,oom, , 0
TITTIT 0TT000 TITTIT TTT00T TITTIT TOTOTT Y X3
X 00TTTTO0
[
T00T00 TO0TOT TO0TO0 [}
(00706000 X
, , ¢
i+
: , , -
TTTTTTTTTITINT TT000TOTO00TTT TTTTTTTTTITINT TT00T000000000 TTTTETTTTITINT 0TOTTTT0000000 X X3
TTTTTTTITIITT TOOOTOTO0OTTT X TTTTTTTTTITIT T00T000000000 TTTETTTTTIIIT TOTTTT0000000 X
- 00007000
X__00TT00TT
77777777
"\ 00T0000T
I ¢
d
u
[
[
TTT00T0000000000000000000G000000TOTOTTTTO000000T0000000000G00000 - "
X 0TT000TOT000TTTTT000000000000600 ¥ X - X - X) G
w 00TTTT00 { XXXXXXXX R X XXXXXXXX K X 00007000
XOK00T00B00 X XXXXXXXX X X 00TTOOTT
X 00007000
X 00T0000T
— a
1 T 7
—_—]
r L4
, ,
| , , r L
- | , , [

gn e 0189w/

-8NP 0T89W/

gn M 0T8I/
8N 80 0189w/

LN 8ZTLew]
9N P gzTLewW/

L9N"80 8ZT/ew/
N80 ggTIIW/
9N 80 gZTIZW/
L9n"e gzTLew/
GYEZN € 9T/

-GNTp y9TIW/
-yNP 91w/
€N P F9TIW/
- P pIToW/

GyETn M $9TIW/

- GpEZN 80 FITIW/
-GN T80 ¥9ToW/
Ly T8 #9ToW/
-EN T80 yOTIW/
LN T80 ¥9ToW/

TN € 0Z089W/

- TN pNNOZos9wY

- TN pWNEZos9wy

- TN pW|0Z089w/

- TN PlIZ08IWY

TN 0P 0Z089wW
TN DeIp 0Z0s9w
- TN 294 02089W/

TN T9J 02089W/

- TN"094 02089W/
LT M 02089W/
TN TZIS 02089W/
- TN 0ZIS 02089W/
- TN se 0089w/
TN 'SP 02089w/

FIGURE F-3. 68020 Design - VHDL Simulation
SIZE , A0 andA1 signals and the 32-bit data bus for 32-bit, 16-bit and 8-bit data transfers,

and then translate the information learned into a working design. The Interface Designer

264

allows the design to be generated automatically, reducing the design time and also elimi-
nating errors introduced into the design due to mistakes in the interpretation or transcrip-
tion of information from the data books.

F.3 6809 Interface Example

The Interface Designer was given the following design problem:

* Microprocessor: Motorola mcm6809e (1Mhz)
» 10: one Motorola mcm6821 (450ns) Parallel 10 Controller mapped at address OxecOO.
* 10: one Motorola mcm6845 (450ns) CRT Controller mapped at address 0xe800.
* 10: one Motorola mcm6850 (450ns) UART mapped at address 0xe000.

This design example tests the design of a simple 8 bit microprocessor to 10 device
interface. In the VHDL simulation shown in Figure F-4. A data transfer cycle for each of

the three different 10 devices is shown. The 6809 does not have an acknowledge signal or
a wait signal, so fixed E signal pulse width of 450ns is used in the simulation.

265

00000070)

-8NP TZ8ow/

11

ot Ty

w0y

00y} 8N SI TZ89w/

[l-gn" 1M Tzgow/

TI0[[8N SO TZ89W/

[lgna Tzeow/

00T00000)

- /NP Sygow/

- /N SITGygow/
[/N IM™Gygowy

- LN"S0” Gpgowy

N 2]

00TTTT00)

QNP 0G89W/

L

-9Nn”sI_ 0589w/
[l.n"Im- 0589w/

00Ty

IO

0Tl 9N S9 0G89W/

-9 0589w/

0TTO0TTO00000TTT p &

00000TH0000TOTTT

ooot0ToT00TToTTT Y| TN € 6089W/

00TTTTO0)

X e

00T00000

X

00000070 ¥

TP 6089w/

[L1n 9 6089w/

- TN IM 6089w/

VHDL Simulation

FIGURE F-4. m6809 Design

266
F.4 t32020 Interface Example

The Interface Designer was given the following design problem:

* Microprocessor: Texas Instruments tms32020 (20Mhz).

* RAM: Two Motorola mcm6164-45 8kx8 (45ns) with 16-bit datapath interface
Mapped at address 0x0000.

* ROM: Two Intel 2764a-1 16kx8 (180ns) EPROMSs with 16-bit datapath interface
Mapped at address 0xe000.

This design example tests the design of the interface for a 16-bit DSP microproces-
sor to a high speed memory. In the VHDL simulation shown in Figure F-5, two data trans-
fer cycles are shown. The first data transfer cycle is a write to m6164 memory at address
0x0000, while the second data transfer cycle is a read from the m2764 at address 0xe000.

267

00¢T snt 008 009 00v 00¢ 0

TTTTTTTITITIT | - 0TTGOTTO00000) - TTTTTTTTTTITY T0T00T00000G0 X ::::::;ﬁ‘mo:lmlvmmmE\
Y1 00700000) - - - - - LNTP p9Lewy
Y ootroott ¥ - - - - 9N p y9/gw/

f - - f - - - f-29n"80 9wy
[:] - : : f-LN80 Y9 2w/
f : — - : : f-9n"80" Y9/ 2w/
TTTTTTTITIIIT | - 0TTGOTTO00000) - TTTTTTTTTTITY T0T00T00000G0 ::::_::ﬁ‘mmslwlvm._”@c_\
204 ¢ T000T00T |- -EN P p9ToWY
270 4 00000070)+~ -2 P Y9ToWY
r- €2 80 Y9TOW/
- L €N 782 y9TIU/
- L. gn" T8 y9TIu/
-£ZN 099 pITW/
— - €2 IMY9TIUY/
TTTTTTTTTITITIIT - 0TT00TF000000TTT { - TTTTTTTTTTITITEL T0T00T0000000000 X TITTTTTTTTn - TN € 02028
XX -00T00000 XXXRXKKK N - TOPOTOO0T) - TN pn” 0cozey
WY oottoorT | XXX | i ¥ 00000070) - TN P 020zeY
, 0 ~i.n” Apear 0z0zeY
5] - TN MI0Z0ZEY
f s : f - -] 1 - TSP 02028y
f : : f - -] -7 sd 0z0zeY
- : f] - i TN QIS 020zsY
| |-10s01 sAs/

S e e - s e O) [S B i : - Y00[” sAs/

><

t32020 Design - VHDL Simulation

FIGURE F-5.

268

Appendix G
The Model Frame

When entering the component data structures into the component library, a set of
device frames is created that will represent the component. For example, when entering
the 68000 microprocessor, a device frame will be created that is based on the microproces-
sor frame prototype. The created frames will be linked to its prototype througra
relation. The frame will have a series of slots that must be filled in. The content of a slot
can be static value such as the number 68 for the number of pins, or it can be another
frame. In any case, for every slot there will be a limited number of possible types of
entries: either a value such as a number with a certain range, or some other frame. Under
some circumstance a slot may be left empty. What is allowed for the content of a slot is
determined by the rules used to design with the component. For example consider the
~has-capabilityslot for a component: only those capabilities for which the expert system
rule base was written are allowed for the content of thas*capabilityslot. For now only
the data transfer interface and the bus arbitration interface are considered by the rule base,
so only bus arbitration and data transfer capability frames are allowed imésecapabil-
ity slot.

A method is required to represent the permitted or required content of a slot in a
device frame. This is required for several reasons: First it allows documentation of the
possible devices for which the interface rules developed so far will work. Second it allows
a small expert system to be written, that uses the data structure to help and guide a knowl-
edge engineer in entering a new device, assuring that no mistakes are made. Third it
allows an expert system to be written which can test an entered device for validity: The
expert system can verify if the content of a slot is valid and if all the required information
to complete the design is present.

The data structure that represents the permitted or required content of a slot is called
amodel frameEvery prototype frame will have a model frame that indicates the permitted
or allowed values for the slots of a device frame based on the prototype frame. The model
frame will guide the design engineer that is entering the component, giving him hints on
what possible object or value to put as the content of a slot. This 'guiding’ is either manual
(i.e. the design engineer looks at the model frames and figures out what to put in the
device frame slot) or automated using an intelligent component editor (i.e. a small expert
system that tells the design engineer what the contents of a slot should/must be).

269

Using the model frame when entering a device, it would be possible to present the
user of the component entry expert system with a choice of possible options for the con-
tents of a slot. For example, if the user is currently entering a X¥& microprocessor
component, he will create a frame which will be based on the microprocessor prototype.
After creating a device frame based on the microprocessor prototype and caMimd, it
slots must be created in thé&¥'Zframe and filled in. One of these slots is theas-capabil-
ity slot. When filling in the*has-capabilityslot of theXYZmicroprocessor, the user should
be presented with a choice of creating a data transfer, interrupt or bus arbitration capability
frame, assuming rules have been developed in the expert system to design the data trans-
fer, interrupt or bus arbitration interface. No other frames or values are allowed for the
~has-capabilityslot. If the user decides that the device under construction has data transfer
capability, a new data transfer capability device frame is created and entered\lmatie
capability slot. This new frame must then be filled in according to information obtained
from its prototype frame.

The model frames of a prototype frames will have their own hierarchy as shown in
Figure G-1. They give the possible device hierarchy, since every model frame slot will
contain any allowed model frame. The hierarchy of the model frame serves two purposes:
First the hierarchy of prototype models is used to give a complete device hierarchy since
every slot in the model has a permitted model frame or data value. Second, every slot in
the model frame can have a comment or note attached which can be shown to the user of
the system who is trying to enter a component into the library of components, and thus
gives a method of assisting the user in the entry of components.

The flexibility of the model frame hierarchy allows device models of any detail to be
entered. The limit is not the information the model can show, but how much information
the design engineer who enters the prototypes into the frame library is willing to enter into
the model frames.

The complete overall device frame layout including the model frame is shown in
Figure G-2 for a 68000 microprocessor. The frames found in the component model can be
organized into four different classes: prototype, model, device and instance. The prototype
class contains all the information that should be inherited by a device frame. The model
class contains all the possible and permitted contents of the slots of device frame that is
based on a prototype frame. The device class contains the actual frame that make up a
device. The instance class refers to actual devices in a system and will inherit all informa-
tion from a device class frams.

270

model-level-n model-level-n+1
Componen Microprocesso
Model Madel
is-a

Model

has-capability has-capability

y

y

DT-Cap
Model

DT-Cap-Micro
Model

uses-sub-cap

uses-sub-cap

Model

Dt-Rd-Cap

has-del-spec

y

Model

State-Timing

uses-timing

J

Model

HS-Timing

I
Sli eventl

R

Signal
Model

FIGURE G-1. The Model Hierarchy

271

prototype-level-n

has-capability \

model-level-n

model-level-n+1
device-level

instance-level

prototype-level-n+1

sa_| MICROPROCESSORIq—iSﬂ

has-model

Componen
Model

is-a

has-capabilit

has-model

R\

Microprocesso
) Model
has-instr-size

has-capability

instance-of

MC68000

has-capability

Y

has-model
uses-sub-cap \

DT-Cap
Model

uses-sub-cap

DT-Cap-Micro-11

has-model

o Y
DT-Cap-Micro
Model

uses-sub-cap

uses-sub-cap

Y

is-a& DT-Rd-Cap-33
has-model
has-del-spec\ has-del-spec
/ Dt-Rd-Cap
Model
has-dlel-spec v
| is-a State-Timing-14
has-model
uses-timing RN uses-timing
r State-Timing
Model
HS-Timing is-a Timin!—14
uses-timing
has-model *
) sigl \k sigl
15-a HS-Timing
* Model
SN
| eventl |/
Signa] <. \ is-a UDS
J Y LDS
has-model | sjgnal
A | Model

Ul

u2

u3

FIGURE G-2. Prototype, Model, Device and Instance of Device frames

PARTIAL COPYRIGHT LICENSE

| hereby grant the right to lend my dissertation to users of the University of Victoria
Library, and to make single copies only for such users or in response to a request from the
Library of any other university, or similar institution, on its behalf or for one of its users. |
further agree that permission for extensive copying of this dissertation for scholarly pur-
poses may be granted by me or a member of the University designated by me. It is under-
stood that copying or publication of this dissertation for financial gain shall not be allowed
without my written permission.

Title of Dissertation:Microprocessor System Data Transfer Interface Design:
An Expert System Approach Using Signal Timing Behavioral Patterns.

Author:

Benedikt T. Huber
5 November 1998

VITA

Surname Huber Given Names Benedikt Theodor
Place of Birth: Munich, Germany
Educational Institutions Attended:

University of Victoria 1985 to 1986
University of Victoria 1978 to 1983
Degrees Avarded:

B. Sc. University of Victoria 1983

M. Sc. University of Victoria 1986

Honors and Awards:

Graduate teaching award 1991-1995
NSERC post graduate scholarship 1985-1986
NSERC post graduate scholarship 1989-1991
Presidents scholarship 1978,79,81
Publications:

Huber, B. T., K. F. Li, N. J. Dimopoulos, M. Escalante, E. G. Manning,. “Modeling Data
Transfer Signals in DAME,” IfProceedings of the IEEE Pacific Rim Conference on Com-
munications, Computers and Signal ProcessWigtoria, British Columbia, pp. 505-509,
May 19-21, 1993.

Huber, B. T., K. F. Li, N. J. Dimopoulos, E. G. Manning,. “Data Transfer Interface Design
in DAME,” In Proceedings of the IEEE Pacific Rim Conference on Communications,
Computers and Signal Processingctoria, British Columbia, pp. 510-513, May 19-21,
1993.

Escalante, M., N. J. Dimopoulos, B. T. Huber, K. F. Li., D. Liand E. G. Manning “Generic
Design Rules for the Design of Microprocessor Based Systems in DAME: Bus Arbitration
Subsystems,” liProceedings of the 1991 IEEE International Symposium on Circuit and
SystemsSingapore, pp. 3166-3169, June 11-14, 1991.

Dimopoulos, N. J., K. F. Li, E. G. Manning, B. T. Huber, M. Escalante, D. Li, D. Caughey.

“DAME: AN Expert Microprocessor-Based-Systems-Designer. An Overview and Status
Report,” InProceedings of the IEEE Pacific Rim COnference on Communications, Com-
puters and Signal Processingictoria, British Columbia, pp. 388-391, May 9-10, 1991.

Dimopoulos, N. J., B. T. Huber, K. F. Li, D. Caughey, M. Escalante, D. Li, R. Burnett and
E. G.Manning. “Modelling Components in DAME,” Proceedings of the 3rd Interna-
tional conference on Industrial & Engineering Applications of Artificial Intelligence and
Expert System<£harleston, South Carolina, pp. 716-725, July 15-18, 1990.

Huber, B. T., K.F. Li, N.J. Dimopoulos, D. Li, R. Burnett, E.Manning, “Modelling Signal
Behavior in DAME,”Proceedings of the 1990 International Symposium on Circuits and
SystemsNew Orleans, La., Vol. 2 pp. 1497-1500, Apr. 29 - May 3, 1990.

	Microprocessor System Data Transfer Interface Design: An Expert System Approach Using Signal Timi...
	by
	BENEDIKT THEODOR HUBER
	M.Sc., University of Victoria, 1986
	B.Sc., University of Victoria, 1983
	A Dissertation Submitted in Partial Fulfillment of the Requirements
	for the Degree of
	DOCTOR OF PHILOSOPHY
	in the Department of Electrical and Computer Engineering
	We accept this dissertation as conforming
	to the required standard
	__
	Dr. K. F. Li, Supervisor, Dept. of Electr. & Comp. Eng.
	__
	Dr. N. J. Dimopoulos, Member, Dept. of Electr. & Comp. Eng.
	__
	Dr. E. G. Manning, Member, Dept. of Electr. & Comp. Eng.
	__
	Dr. M. H. Van Emden, Outside Member, Dept. of Computer Science
	__
	Dr. A. J. Al-Khalili, External Examiner, Dept. of Electr. & Comp. Eng.,
	Concordia University
	© BENEDIKT THEODOR HUBER, 1998
	University of Victoria
	All rights reserved. This dissertation may not be reproduced in whole or in part by
	photocopy or other means, without the permission of the author.
	Supervisor: Dr. K. F. Li

	Abstract
	__
	Dr. K. F. Li, Supervisor, Dept. of Electr. & Comp. Eng.
	__
	Dr. N. J. Dimopoulos, Member, Dept. of Electr. & Comp. Eng.
	__
	Dr. E. G. Manning, Member, Dept. of Electr. & Comp. Eng.
	__
	Dr. M. H. Van Emden, Outside Member, Dept. of Computer Science
	__
	Dr. A. J. Al-Khalili, External Examiner, Dept. of Electr. & Comp. Eng.,
	Concordia University
	spellcheck

	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Glossary
	Chapter 1 � Introduction
	1.1 Rationale Behind Microprocessor System Design Using an Expert System Approach
	1.2 Work Covered in this Dissertation
	FIGURE 1-1. Data Transfer Interface Design
	FIGURE 1-2. Interface Design Expert System

	1.3 Dissertation Organization
	1.4 Trademarks

	Chapter 2 � Background
	2.1 Microprocessor Systems
	FIGURE 2-1. Block Diagram of a Simple Microcomputer
	2.1.1 Microprocessor System Interface Protocols
	2.1.2 Microprocessor System Component Properties
	2.1.3 Microprocessor System Components
	1. Components required for clock generation.
	2. Components required to interface the CPU and memory or IO, called bus interface circuits.

	2.1.4 Capabilities of Microprocessor System Components
	2.1.5 Microprocessor System Summary

	2.2 Digital Systems Design
	FIGURE 2-2. Digital System Design Phases

	2.3 Knowledge Based Expert Systems
	2.3.1 Knowledge Representation
	FIGURE 2-3. Semantic Network for John
	TABLE 2-1. Semantic Network Frame for John

	2.3.2 Productions Systems
	FIGURE 2-4. Structure of a Production System

	2.3.3 Expert System Shells

	2.4 Design Automation
	2.4.1 High-Level Synthesis of Digital Systems
	FIGURE 2-5. Abstraction Levels for Digital Systems
	2.4.1.1 High Level Description of Digital Circuits
	2.4.1.2 High Level Synthesis of Microprocessor Systems and HDL

	2.4.2 Expert Systems and Artificial Intelligence for Design Automation
	2.4.2.1 The XCON Configurer of Computer Systems
	2.4.2.2 The DEMETER Design Environment
	2.4.2.3 The MAPLE and PECOS Hardware Synthesis Systems
	2.4.2.4 The KDMS Hardware/Software Synthesis System
	2.4.2.5 The MICON Single Board Computer Designer
	2.4.2.6 The DAME Microprocessor System Designer

	2.5 Summary

	Chapter 3 Interface Design Expert System Development Issues
	3.1 Introduction
	3.2 Data Transfer Interface Example
	3.2.1 The MC68000 System Interface Example
	FIGURE 3-1. Interface Between MC68000 CPU and MK6116 Static RAM

	3.2.2 The Timing Diagram of the Example Components
	FIGURE 3-2. Timing Diagram of the MC68000 Read Cycle
	FIGURE 3-3. Timing Diagram for the MK6116 CMOS Static RAM Read Cycle
	FIGURE 3-4. Example Illegal Glitch Transitions for MK6116 CMOS Static RAM Read Cycle
	3.2.2.1 Interface of the Address Signals
	3.2.2.2 Interface Data Signals
	3.2.2.3 Other Control Signals

	3.2.3 Observations about the Interface Design Example

	3.3 Approach Used for Development of the Design Automation System
	3.3.1 Imitating a Human Designer
	3.3.2 Partitioning of the Interface Design System Knowledge
	FIGURE 3-5. Structure of the Interface Designer

	3.3.3 Abstraction of the Design Knowledge Representation
	3.3.4 Design Based on Recognizable Patterns

	3.4 Representing Components and their Behavior
	3.4.1 Modelling Capabilities of Components
	3.4.2 Modelling the Capability Protocol
	3.4.2.1 Synchronizing the Protocols between Components
	3.4.2.2 Overall Control of a Capability Protocol

	3.4.3 Modelling Information Transfers
	FIGURE 3-6. Information Embedded in the State of Signals and its Time Reference

	3.5 Representing the Interface
	3.5.1 Partitioning the Interface
	FIGURE 3-7. Partitioning a Digital Systems into Sub-systems

	3.5.2 Hierarchy of the Interface Digital System
	FIGURE 3-8. Interface Hierarchy

	3.6 Representing the Interface Design Knowledge
	3.7 Frame Representation of the Components and Interface
	FIGURE 3-9. X2000 Device Frames
	FIGURE 3-10. Device and Prototype Frames
	FIGURE 3-11. Prototype Hierarchy
	FIGURE 3-12. Example Device Frames
	FIGURE 3-13. Component Instance Frames

	3.8 Summary
	FIGURE 3-14. Interface Designer Knowledge Representation

	Chapter 4 Microprocessor System Component Model
	4.1 Introduction
	FIGURE 4-1. Outline of the Component Model Presentation

	4.2 Signals
	4.3 The State of a Signal
	FIGURE 4-2. Logic State Hierarchy
	FIGURE 4-3. Voltage Levels Associated with Sates
	4.3.1 Compatible States
	TABLE 4-1. Compatible States

	4.3.2 Representing the States of a Signals

	4.4 Using Signal States to Describe Situations
	(AND (NEGI R/W) (OR (ASSI LDS) (ASSI UDS))) (EQ 4-1)
	(AND (ASSO A0) (NEGO A1))= (NOT (OR (NOT (ASSO A0)) (NOT (NEGO A1)))) (EQ 4-2)

	4.5 State Changes in Signals
	4.5.1 Transitions
	TABLE 4-2. Opposite States

	4.5.2 Events
	(OPEN A1) ! (VALIDO A1) (EQ 4-3)
	(! (OR ((ASSO LDS) (ASSO UDS)))) (EQ 4-4)

	4.5.3 Detectable Events
	4.5.4 Complementary Events
	(<logic state1> ! <logic state2> <signal name>) (EQ 4-5)
	(<logic state2> ! <logic state1> <signal name>) (EQ 4-6)
	(! <signal state expression1>) (EQ 4-7)
	(! (NOT <signal state expression1>)) (EQ 4-8)
	(VALIDO A1) ! (OPEN A1) (EQ 4-9)
	(! (NOT (OR ((ASSO LDS) (ASSO UDS))))) (EQ 4-10)

	4.6 Modeling Time Relationships Between Events
	4.6.1 The Timing Link Between Events
	FIGURE 4-4. Timing Diagram of the MC68000 Read Cycle
	FIGURE 4-5. Example of Event Time Relationship

	4.6.2 Repeated Event Sequences in Timing Diagrams
	FIGURE 4-6. Repeated Event Sequence Representation

	4.6.3 Properties of Timing Links
	4.6.4 Timing Links Between Events
	FIGURE 4-7. Possible Event Relationships

	4.6.4.1 Causal Timing Links
	4.6.4.2 Non-Causal Timing Links
	FIGURE 4-8. Example of the Always-Accompanied-by Link
	FIGURE 4-9. Example of the Accompanied-by Link

	4.6.5 Timing Links Between Complementary Events
	FIGURE 4-10. Typical Data Write Operation Timing Diagram
	FIGURE 4-11. Typical Data Write Operation Timing Links

	4.6.6 Timing Link Summary
	TABLE 4-3. Component Timing Links

	4.6.7 Notation Used to Represent Timing Links Between Events

	4.7 Modeling Signal Timings
	4.7.1 Developing the Concept of Timing Templates
	FIGURE 4-12. Representation of Signal Timing of Non-Multiplexed Signal A3

	4.7.2 Propagation Delay Invariance of Timing Templates
	FIGURE 4-13. Propagation Delay Invariance of Timing Template (Signal is Delayed)
	FIGURE 4-14. Propagation Delay Invariance of Timing Template (Reference is Delayed)

	4.7.3 Developing Propagation Delay Invariant Timing Templates
	FIGURE 4-15. Simple Setup and Hold Time Example
	FIGURE 4-16. Updated Non Multiplexed Signal Timing Template

	4.7.4 The Component Model Timings
	4.7.5 Two Reference Event Timings for Data Transfer
	FIGURE 4-17. Non-interactive Timing Example
	FIGURE 4-18. Interactive Timing Example

	4.8 The Data Transfer Signal Timings
	FIGURE 4-19. Theoretical Timing Relations
	FIGURE 4-20. Non-Interactive Timing Templates - Part 1
	FIGURE 4-21. Non-Interactive Timing Templates - Part 2
	FIGURE 4-22. Interactive Timing Templates
	4.8.1 Interactive Timings and the Initiate to Terminate Time Interval
	FIGURE 4-23. MC68000 Read Data Transfer
	FIGURE 4-24. Initiate to Terminate Timing Link Example

	4.8.2 Multiple Reference Signal Timings
	FIGURE 4-25. Data Access Timing for a Typical Slave Device
	FIGURE 4-26. AND-Follows Timing

	4.8.3 Signal Timing Summary
	TABLE 4-4. Output Specification Timings
	TABLE 4-5. Input Requirement Timings

	4.9 Modeling Information Transfer
	FIGURE 4-27. Information Transfer Example

	4.10 Modeling the Data Transfer Capability
	4.10.1 Organization of Data Transfer in a Microprocessor Systems
	4.10.2 Classification of the Data Transfer Information Transfers
	4.10.3 The Request Information
	FIGURE 4-28. Request Information Example

	4.10.4 The Delay Information
	4.10.4.1 Overall Asynchronous Control
	FIGURE 4-29. Overall Asynchronous Control

	4.10.4.2 Overall Synchronous Control
	FIGURE 4-30. Overall Synchronous Control

	4.10.5 Summary of Information Transfer between Master and Slave
	FIGURE 4-31. Information transfer between master and slave

	4.11 Conclusions

	Chapter 5 Microprocessor System Interface Model
	5.1 The Interface Block
	FIGURE 5-1. Interface Block (IB)

	5.2 The Information Connection Interface Sub-Blocks
	FIGURE 5-2. Information Connection Interface Sub-Blocks (ISB)

	5.3 Partitioning the Info ISBs
	1. State Conversion: The states of the ISB information input port signals are used to generate th...
	2. Timing Conversion: The timings of the ISB information input port signals are used to generate ...
	FIGURE 5-3. Timing and State Conversion Order
	FIGURE 5-4. Details of Information Connection ISB

	5.3.1 The Timing ISBs
	FIGURE 5-5. Effect of Pure Delay and Clocked Memory Device on a Timing

	5.3.2 The State ISBs
	FIGURE 5-6. Combinatorial State
	FIGURE 5-7. Tri-state Buffer

	5.4 Interface Sub-Block Primitive Circuits
	FIGURE 5-8. Interface Block Organization
	5.4.1 Common ISBPs and their Behavior
	5.4.1.1 Combinatorial ISBP
	FIGURE 5-9. Behavior Model of Combinatorial ISBP
	TABLE 5-1. VHDL Behavior Model of 2 Input AND ISBP

	5.4.1.2 D-Flip-Flop Clocked Memory ISBP
	FIGURE 5-10. Behavior Model of Edge Triggered D-Flip-Flop ISBP
	TABLE 5-2. VHDL Behavior Model of D-Flip-Flop ISBP

	5.4.1.3 Other ISBPs
	FIGURE 5-11. Behavior Model of D-Latch ISBP
	FIGURE 5-12. Behavior Model of Pure Delay ISBP
	FIGURE 5-13. Behavior Model of Leading Edge Delay Primitive
	FIGURE 5-14. Behavior Model of Trailing Edge Delay Primitive
	FIGURE 5-15. Behavior Model of Tri-State Buffer Primitive
	FIGURE 5-16. Logical Model of Open Collector Buffer Primitive

	5.4.1.4 ISBP Timing Simulation
	FIGURE 5-17. Simulation of Primitives

	5.5 Interface Representation Summary

	Chapter 6 The Interface Design Process
	6.1 Introduction
	FIGURE 6-1. Interface Design Process

	6.2 Abstraction of the Interface Design Tasks
	FIGURE 6-2. Interface Design Task Abstraction Levels

	6.3 Overview of the Interface Block Design Terminology and Process
	FIGURE 6-3. Design Process Overview and Terminology

	6.4 Creating the Interface Block
	FIGURE 6-4. Capability Connection IB Creation

	6.5 Partitioning the IB into Info ISBs
	FIGURE 6-5. Example Microprocessor / Memory Interface Info ISBs
	1. Knowledge on how to connect information ports of the same class.
	2. Knowledge on how to generate internal information ports.
	3. Knowledge on how to use the extra information provided by an output port of a component if the...
	4. Knowledge on how to generate the missing information required by the input port of a component...
	5. Knowledge on how to generate the goal information of an Info ISB.
	6.5.1 Rules Used for Connecting Information Signals of the Same Class
	TABLE 6-1. Connections Rules for the Same Information Class

	6.5.2 Rules for Generating Internal Information Ports
	FIGURE 6-6. Example Extra Address Information Merge using three ISBs
	TABLE 6-2. Internal Information Generation Rules

	6.5.3 Rules Used for Utilizing Extra Information
	TABLE 6-3. Extra Information Manipulation Rules

	6.5.4 Rules Used for Generating Missing Information
	TABLE 6-4. Missing Information Generation Rules

	6.5.5 Generating the Goal Information of an Info ISB
	TABLE 6-5. Internal Information ISB Goal Information
	FIGURE 6-7. Strobe Input Timing Specification Goal Timings
	TABLE 6-6. Goal Timings

	6.6 Creating the State and Timing ISBs
	FIGURE 6-8. State and Timing ISB Creation

	6.7 Generating the Combinatorial ISBP for the State ISB
	FIGURE 6-9. State ISB Primitive Circuit Creation

	6.8 Designing the Timing ISB using ISBP
	FIGURE 6-10. Timing ISBP Design
	6.8.1 Overview of the Timing ISB Design Process
	FIGURE 6-11. Info ISB with Timing ISBs
	FIGURE 6-12. Interface Sub-Block example
	FIGURE 6-13. Example for Info ISB Timing Propagation

	6.8.2 Choosing the ISBP to build up the Timing ISB
	TABLE 6-7. Permitted Input / Output Timing Templates for Info ISB
	1. Can the combination possibly occur during the design process used by the Interface Designer?
	2. If the combination can occur, is it possible to perform the timing template conversion?
	FIGURE 6-14. Follows Input to Strobe Output Timing Template
	TABLE 6-8. Intermediate Timing Templates for Input / Output Timings of Info ISBs

	1. The intermediate timing must be able to produce the desired output timing after passing throug...
	2. If different intermediate timings are allowed for a given output timing (i.e. the timings foun...
	3. It must be possible to use one of the Timing ISBPs presented in Section�5.4 to perform the tim...

	6.8.3 Timing ISBP Timing Propagation
	6.8.3.1 D-Latch ISBP Timing Propagation
	FIGURE 6-15. Model of D-Latch ISBP
	FIGURE 6-16. Timing for Latch Output if Input is Latch Timing
	TsO=TsCLK+TsI+dD (EQ 6-1)
	ThO=ThCLK+dCLK (EQ 6-2)
	ds ³ TsI (EQ 6-3)
	dh £ ThI (EQ 6-4)

	6.8.3.2 Leading Edge Delay ISBP Timing Propagation
	FIGURE 6-17. Model of Leading-Edge Delay ISBP
	FIGURE 6-18. Logic input and Handshake Output Timing
	TsO = TsI+dvar+dprop (EQ 6-5)
	ThO = ThI+dprop (EQ 6-6)

	6.8.3.3 Summary of Timing ISBP Timing Propagation
	TABLE 6-9. Steps for Timing ISBP Timing Propagation

	6.8.4 Combinatorial ISBP Timing Propagation
	TABLE 6-10. Possible Input Timing for each Output Timing Template for Combinatorial ISBP
	FIGURE 6-19. Model of Combinatorial ISBP
	6.8.4.1 Example of Strobe Input Timings for Combinatorial ISBP
	FIGURE 6-20. Timing for Combinatorial ISBP Output for all Strobe Input Timings
	TsO = Later-of{Ts1+Tpd, Ts2+Tpd, ..., Tsn+Tpd} (EQ 6-7)
	Later-of{(-~ -10) (-~ -5)} = Later-of{(-~ -5) (-~ -10)} = (-~ -5).

	ThO = Earlier-of{Th1+Tpd, Th2+Tpd, ..., Thn+Tpd} (EQ 6-8)
	1. All the inputs to the Combinatorial ISBP are Strobe timings whose setup and hold times fall wi...
	2. The propagation delay invariance of timing templates (see Section�4.7.3 for a description of p...
	3. The propagation delay TPD is a small delay where omp+TPD=omp, by definition of omp.

	6.8.4.2 Example of Logic Timing Inputs Mixed With Strobe Timing Inputs
	FIGURE 6-21. Overview of Input and Output Timings for Combinatorial ISBP
	1. The leading event of the Strobe timing signals (events B in example) must occur before the lea...
	2. The trailing edge event of the Strobe timing signals must occur after the trailing event of th...
	3. The boolean logic function must logically AND the asserted level of the signals with a Logic t...
	FIGURE 6-22. Timing for Combinatorial Output for Logic and Strobe Input Timings
	TsO ³ Tsi +Tpd (EQ 6-9)
	ThO £ Thi +Tpd (EQ 6-10)

	6.8.4.3 Summary of Combinatorial ISBP Timing Propagation
	TABLE 6-11. Steps for Combinatorial ISBP Timing Propagation

	6.9 IB Timing Verification
	FIGURE 6-23. The Interface Output to Component Connection
	6.9.1 The Connection Timing Constraint Extraction Process
	FIGURE 6-24. Example Interface for an Address Signal
	FIGURE 6-25. Relative Timing Relationships for Example Interface
	FIGURE 6-26. Finding Timing TX of A1’ relative to CE’
	6.9.1.1 Extracting the Timing Constraints
	((A B) contains-interval (C D)) (EQ 6-11)
	FIGURE 6-27. Contains Interval Operator
	{(-~ -10) contains-interval ((-~ -25)+d1-d3)} (EQ 6-12)
	FIGURE 6-28. Constraint Output and Input Specification
	{(0 +~) contains-interval ((10 +~) + d1-d3)} (EQ 6-13)

	6.9.1.2 Constraint Extraction Rules
	FIGURE 6-29. IB Constraint Extraction Rules
	TABLE 6-12. Steps for Timing Constraint Extraction

	6.9.2 Choosing an Implementation Technology
	6.9.3 Calculating the Initiate-Terminate Delay
	FIGURE 6-30. Example Handshake Delay Timing of a Microprocessor
	TIT = TsO + Tter

	TsO = TIT - Tter (EQ 6-14)
	TsO = TsI+dvar+dprop

	dvar = TIT - Tter - (TsI+dprop) (EQ 6-15)

	6.9.4 Timing Constraint Evaluation and Verification
	FIGURE 6-31. Delay of a Signal Relative to a Reference
	FIGURE 6-32. Delay of a Reference Relative to a Signal
	Earliest possible time of ((A B) (C D)) =

	[Earliest possible time of (A B)] + [Earliest possible time of (C D)] = A+C (EQ 6-16)
	Latest possible time of((A B) (C D)) =

	[Latest possible time of (A B)] + [Latest possible time of (C D)] = B+D (EQ 6-17)
	(A B) (C D) = (A+C B+D) (EQ 6-18)
	FIGURE 6-33. Example of Addition of a Timing Parameter and a Propagation Delay
	Earliest possible time of ((A B) (C D)) =
	[Earliest possible time of (A B)] - [Latest possible time of (C D)] = A-D
	Latest possible time of((A B) (C D)) =
	[Latest possible time of (A B)] - [Earliest possible time of (C D)] = B-C

	(A B) - (C D) = (A-D B-C) (EQ 6-19)
	FIGURE 6-34. Example of Subtraction of a Timing Parameter and a Propagation Delay
	(A B) (C D) (E F) = ((A B) (C D)) (E F) =
	(A B) ((C D) (E F)) = (A+C-F B+D-E)

	{(-~ -10) contains-interval ((-~ -25) (4 12) ((0)(6 15)))} (EQ 6-20)
	{(-~ -10) contains-interval ((-~ -25) (4 12) (6 15))} (EQ 6-21)
	{(-~ -10) contains-interval ((-~ -25) (-11 6))} (EQ 6-22)
	{(-~ -10) contains-interval (-~ -19)} (EQ 6-23)
	{(0 +~) contains-interval ((10 +~) (4 12) ((0)+(6 15)))} (EQ 6-24)
	{(0 +~) contains-interval ((10 +~) (4 12) (6 15))} (EQ 6-25)
	{(0 +~) contains-interval ((10 +~) (-11 6))} (EQ 6-26)
	{(0 +~) contains-interval (-1 +~)} (EQ 6-27)

	6.10 Generating the VHDL Code
	6.11 Controlling the Design Process
	FIGURE 6-35. Design Phases used for Contexts Limiting

	6.12 Summary of the Interface Design Process and Representation

	Chapter 7 Data Transfer Interface Design Implementation and Results
	7.1 Component Library
	7.1.1 Prototype Frames
	FIGURE 7-1. Class Network of Prototype Frames for Signal Timings

	7.1.2 Device Frames
	FIGURE 7-2. Motorola 68000 Microprocessor Frame Network

	7.1.3 Components Represented
	TABLE 7-1. List of Components in Component Library

	7.1.4 Component Entry Guidelines
	1. Review a component’s data transfer capability.
	2. Review all signals and decide which signals are involved in data transfer. Extract the signals...
	3. For signals determined in step 2, determine the signal states that occur during data transfer....
	4. Since the current design system can only handle standard TTL logic levels, check the DC logic ...
	5. From the AC timing diagrams for the read and write cycle, find the initiate and terminate even...
	6. From the AC timing diagrams, determine the timing for each of the signals extracted in Step 2 ...
	7. From the AC timing parameter tables, determine the specific timing parameter for each event re...
	8. Create the device frame network of a component using the CRL language, by instantiating the ap...

	7.2 Design Rules
	TABLE 7-2. Rule Design Function Summary
	TABLE 7-3. Example Rule for Timing Constr10int Extraction

	7.3 Interface Designer Output
	FIGURE 7-3. Interface Designer Output

	7.4 Interface Design Example: 68000 to 6116
	7.4.1 Problem Specification: 68000 to 6116
	FIGURE 7-4. 68000 to 6116 Design Example Specification
	TABLE 7-4. Component Instances and Connection Request for Design Example

	7.4.2 Execution: 68000 to 6116
	TABLE 7-5. Rules fired for Request Information ISB design
	FIGURE 7-5. The Example Interface After 8 Rules Have Fired
	TABLE 7-6. Internal Request Generation Frame for Design Example
	FIGURE 7-6. Request Interface Information Schematic
	FIGURE 7-7. Completed Interface Design Example Frame Network

	7.4.3 System Schematic: 68000 to 6116
	FIGURE 7-8. Schematic for Interface Design Example

	7.4.4 Timing Constraint Verification: 68000 to 6116
	7.4.5 VHDL Code Output: 68000 to 6116
	TABLE 7-7. VHDL Request Generation Entity for Design Example

	7.4.6 VHDL Simulation: 68000 to 6116
	FIGURE 7-9. 68000 Design Example VHDL Simulation
	FIGURE 7-10. Simulation Timing Diagram States
	FIGURE 7-11. IB Signal Naming for Simulation

	7.4.7 Validation of the Interface: 68000 to 6116
	TABLE 7-8. 68000 Interface Timing Margins

	7.5 Timing Verification Failures
	1. After analyzing the failed timing constraint the user decides the components being connected a...
	2. If the failed constraint is within approximately two implementation technology propagation del...
	3. If the failed constraint is within approximately half an implementation technology propagation...

	7.6 Summary of Designs
	TABLE 7-9. Summary of Designs

	Chapter 8 Conclusions and Future Work
	8.1 Conclusions
	8.2 Future Work

	Bibliography
	[1] Aylor, J. H., R. Waxman and C. Scarratt, “VHDL - Feature Description and Analysis”, IEEE Desi...
	[2] Ashenden, P. J., The Designer’s Guide to VHDL, Morgan Kaufmann Publishers Inc., San Francisco...
	[3] Baer, J., Computer Systems Architecture, Computer Science Press, Rockville, Maryland, 1980.
	[4] Baldwin, D., “A Model for Automatic Design of Digital Circuits,” Technical Report 188, Univer...
	[5] Balph, T., VMEbus - A Microprocessor Bus for the Future, Motorola Semiconductor Products Inc....
	[6] Bansal, V. K., Design of Microprocessor Based Systems, John Wiley & Sons, Toronto, 1985.
	[7] Begg, Vivienne, Developing Expert CAD Systems, Anchor Press Limited, London, 1984.
	[8] Bennets, R. G., Design of Testable Logic Circuits, Addison-Wesley Menlo Park, California, 1984.
	[9] Bibbero, R. J. and David M. Stern, Microprocessor Systems, Interfacing and Applications, John...
	[10] Birmingham, P. W. and A. P. Gupta, “The Micon System for Computer Design”, IEEE Micro, Vol. ...
	[11] Birmingham, P. W., MICON: “A Knowledge Based Single Board Computer Designer”, Technical Repo...
	[12] Bowen, B. A. and R. J. A. Buhr, The Logical Design of Multiple-Microprocessor Systems, Prent...
	[13] Breuer, M. A. and A. D. Friedman, Diagnosis & Reliable Design of Digital Systems, Computer S...
	[14] Brozozowski, J. A. and M. Yoeli, Digital Networks, Prentice-Hall Englewood Cliffs, N. J., 1976.
	[15] Bushnell, M. L., Design Automation, Academic Press Inc., New York, 1988.
	[16] Carnegie Group Inc., Knowledge Craft Manual (Version 3.2), Volume 1, Carnegie Group Inc., Pi...
	[17] Carnegie Group Inc., Knowledge Craft Manual (Version 3.2), Volume 2, Carnegie Group Inc., Pi...
	[18] Clements A., Microprocessor System Design, PWS-Kent Publishing Company, Boston, MA, 1992.
	[19] Conley, W., Computer Optimization Techniques, Petrocelli Books, New York, 1980.
	[20] Comer, D. J., Microprocessor Based System Design, Holt, Reinhart and Winston, Toronto Ontari...
	[21] Davis, R. H. Austin, I. Carlbom, B. Frawley, et al., “The Dipmeter Advisor: Interpretation o...
	[22] Dimopoulos, N.J., K.F. Li, and E.G. Manning, “DAME: A Rule Based Designer of Microprocessor ...
	[23] Dimopoulos, N. J., B. T. Huber, K. F. Li, D. Caughey, M. Escalante, D. Li, R. Burnett and E....
	[24] Dimopoulos, N. J., K. F. Li, E. G. Manning, B. T. Huber, M. Escalante, D. Li, D. Caughey. “D...
	[25] Dimopoulos, N. J. and C. H. Lee, “Experiments in Designing with DAME: Design Automation of M...
	[26] Escalante, M. A., Probabilistic Timing Verification and Timing Analysis for Synthesis of Dig...
	[27] Escalante, M. A., Bus Arbitration Modelling and Design in DAME: an Expert Microprocessor-Bas...
	[28] Escalante, M., N. J. Dimopoulos, B. T. Huber, K. F. Li., D. Li and E. G. Manning “Generic De...
	[29] Ferguson, J., Microprocessor Systems Engineering, Addison-Wesley Publishing Company, Don Mil...
	[30] Fletcher, W. I., Engineering Approach to Digital Design, Prentice-Hall, Inc., Englewood Clif...
	[31] Freedman, M.D. and L. B. Evans, Designing Systems With Microcomputers, Prentice-Hall Inc., N...
	[32] Gilman, A. S., “VHDL - The Designer Environment”, IEEE Design & Test, Vol. 3 No. 2 pp. 42-47...
	[33] Greenbaum, J. R. and R. Osann, “Digital Design and Analysis” in Analysis and Design of Elect...
	[34] Hall, D. V., Microprocessors and Digital Systems, McGraw-Hill Book Company, Toronto, 1983.
	[35] Hamacher, V. C., Zvonko G. Vranesic and Safwat G. Zaky, Computer Organization, Third edition...
	[36] Hansen, G. R. and E. V. Hathaway, CAD Applications, Delmar Publishers Inc., New York, 1986.
	[37] Hayes, J. P., Introduction to Digital Design, Addison-Wesley, Don Mills, 1993.
	[38] Huber, B., K.F. Li, N.J. Dimopoulos, D. Li, R. Burnett, E.Manning, “Modelling Signal Behavio...
	[39] Huber, B. T., K. F. Li, N. J. Dimopoulos, M. Escalante, E. G. Manning,. “Modeling Data Trans...
	[40] Huber, B. T., K. F. Li, N. J. Dimopoulos, E. G. Manning,. “Data Transfer Interface Design in...
	[41] Intel, Microprocessor and Peripheral Handbook Volume I: Microprocessors, Intel Corporation,1...
	[42] Intel, Microprocessor and Peripheral Handbook Volume II: Peripherals, Intel Corporation, 1988.
	[43] Intel, Intel Component Data Catalog, Intel Corporation, Santa Clara, CA, 1982.
	[44] Intel, Intel Memory Components, Intel Corporation, Santa Clara, CA, 1986.
	[45] Kuo, Y.,L. Kung, C. Tzeng, H. Jeng, W. Chia, “KDMS: An Expert System for Integrated Hardware...
	[46] Lam, H. and J.O'Malley, Fundamentals of Computer Engineering, John Wiley & Sons, New York, 1...
	[47] Lawrence, G. E., Designing with Microprocessors, Science Research Associates, Toronto, Ontar...
	[48] Lesa, A. and Rodnay Zaks, Microprocessor Interfacing Techniques, Sybex, Berkeley, California...
	[49] Li, Dongni, The DAME Editor: A User Interface for Data Acquisition in an Expert Microprocess...
	[50] Mano, M. M., Computer Logic Design, Prentice Hall, Englewood California, 1972.
	[51] McDermott, J., “R1: A Rule-Based Configurer of Computer Systems”, Artificial Intelligence, N...
	[52] McFarland, M. C., A.C. Parker and P. Camposano, “The High-Level Synthesis of Digital Systems...
	[53] McGllynn D. R., Modern Microprocessor System Design: Sixteen-Bit and Bit-Slice Architecture,...
	[54] Mostek, Byte Wide Memory Data Book, Mostek Inc., 1981.
	[55] Motorola, MC68000 16-/32-Bit Microprocessor, Motorola Inc., Austin, Texas, 1985.
	[56] Motorola MC68020 32-Bit Microprocessor User’s Manual, Prentice-Hall Inc., Englewood Cliffs, ...
	[57] Motorola, Motorola Microprocessors Data Manual, Motorola Inc., Austin, Texas, 1983.
	[58] Motorola, Motorola 8-Bit Microprocessors & Peripheral Data, Motorola Inc., Austin, Texas, 1985.
	[59] Motorola, Motorola Memory Data, Motorola Inc., Austin, Texas, 1988.
	[60] Motorola, VMEbus Specification Manual, Motorola Inc., Rev B, 1982.
	[61] Napper, Simon, “Embedded System Design Plays Catch-Up”, IEEE Computer, Vol. 29 No. 8 pp. 118...
	[62] Motorola, FAST and LS TTL Data, Motorola Inc., Fifth Edition, Motorola Inc., 1992.
	[63] Odgin, C., Tutorial: Microcomputer System Design and Techniques, IEEE Computer Society, 1980.
	[64] Patterson, A. D. and John L. Hennessy, Computer Architecture. A Quantitative Approach, Morga...
	[65] Protopapas, D. A., Microcomputer Hardware Design, Prentice-Hall Inc., Englewood Cliffs, New ...
	[66] Parsaye, K. and Mark M. Chingnell, Expert Systems for Experts, John Wiley & Sons, Inc., Toro...
	[67] RCA, RCA CMOS Microprocessors, Memories and Peripherals, RCA Solid State, Somerville, NJ, 1984.
	[68] Ronald, C.G., “PECOS - An Expert Hardware Synthesis System,” Technical Report, US Army Resea...
	[69] Rosenblum L. Y. and A. V. Yakovlev, “Signal Graphs: From Self-timed to Timed Ones,” in Proce...
	[70] Schnupp, P., Productive Prolog Programming, Prentice Hall, Englewood Cliffs, 1986.
	[71] Shaw A. W., Logic Circuit Design, Saunders College Publishing, Toronto, 1993.
	[72] Shaw, M., “Abstraction Techniques in Modern Programming Languages,” IEEE Software, Vol. 3x N...
	[73] Shiva, S. G., Computer Design and Architecture, Harper Collins, New York, 1991.
	[74] Shortliffe, E. H., Computer-Based Medical Consultation: MYCIN, Elsevier, New York, 1976.
	[75] Siddall, M. F., Expert Systems for Engineers, Marcel Dekker, New York, 1990.
	[76] Siewiorek, D. P., D. Giuse, W. P. Birmingham, “Proposal for Research on Demeter: A Design Me...
	[77] Smith, M. F. and J. A. Bowen, “Knowledge and Experience-based Systems for Analysis and Desig...
	[78] Staugaard, A. C., 6809 Microcomputer Programming & Interfacing, Howard W. Sams & Co. Inc., I...
	[79] Tanimoto, S., The Elements of Artificial Intelligence, An Introduction using LISP, Computer ...
	[80] Texas Instruments, TMS32020 User’s Guide, Texas Instruments, USA, 1984.
	[81] Thomas, D.E., and Phillip R. Moorby, The Verilog Hardware Description Language, Kluwer Acade...
	[82] Thomson Components, Memory Data Book, Thomson Components, Carrollton, Texas, 1987.
	[83] Vranesic, Z. G. and Safwat G. Zaky, Microcomputer Structures, Sounders College Publishing, T...
	[84] Wagner, S. M., and W. H. Shaw Jr., “Expert Systems and Computer Aided Design: A Productive M...
	[85] Wakerly J., Digital Design Principles & Practice, Prentice-Hall, Inc., Englewood Cliffs, New...
	[86] Wiatrowski, C. A. and C. H. House, Logic Circuits and Microcomputer Systems, McGraw Hill Boo...
	[87] Winston, P. H., Artificial Intelligence, Addison-Wesley Publishing Co., Reading, Massachuset...
	[88] ZILOG, ZILOG Component Data Book, ZILOG Inc., 1984.
	[89] XILINX, The Programmable Logic Data Book, XILINX Inc., San Jose, California, 1994. speel-cek

	Appendix A � Timing Templates for Modeling Data Transfer
	A.1 Non-Interactive Timings
	A.1.1 Strobe Timing
	FIGURE A-1. Strobe Timing

	A.1.2 Latch Timing
	FIGURE A-2. Latch Timing

	A.1.3 Follows Timing
	FIGURE A-3. Follows Timing

	A.1.4 Pulse-Latch Timing
	FIGURE A-4. Pulse-Latch Timing

	A.1.5 Follows-Latch Timing
	FIGURE A-5. Follows-Latch Timing

	A.1.6 Logic Timing
	FIGURE A-6. Logic Timing
	FIGURE A-7. Logic Timing Example

	A.2 Interactive Timings
	A.2.1 Handshake Timing
	FIGURE A-8. Handshake Timing (Information Signal is Output)
	FIGURE A-9. Handshake Timing (Information Signal is Input)

	A.2.2 Wait Timing
	FIGURE A-10. Wait Timing (Information Signal is Output)
	FIGURE A-11. Wait Timing (Information Signal is Input)

	A.2.3 Pulse Timing
	FIGURE A-12. Pulse Timing

	Appendix B � The Component and Interface Frame Hierarchy
	B.1 The Component Frames
	FIGURE B-1. The MC68000 Component Device Frame
	B.1.1 The Capability Device Frame
	FIGURE B-2. The MC68000 Capability Device Frame
	TABLE B-1. Relations Used to give the State-Timing Frames for Data Transfer Capability

	B.1.2 A Note About Choosing the Name of a Frame
	B.1.3 The State-Timing Specification Device Frame
	FIGURE B-3. State Timing Specification

	B.1.4 The State Specification Device Frame
	FIGURE B-4. State Information for Address Information Transfer
	FIGURE B-5. State Information for MC68000 Type Information Transfer

	B.1.5 The Timing Specification Device Frame
	FIGURE B-6. Example Strobe Timing Information Frame
	FIGURE B-7. Event Names for Strobe Timing

	B.1.6 The Signal Device Frame
	FIGURE B-8. Example Signal Frame

	B.1.7 Overview of the Component Organization
	FIGURE B-9. Prototype, Device and Instance Hierarchy

	B.1.8 Examples of Component Frame Hierarchy
	FIGURE B-10. Component Hierarchy for MC68000
	FIGURE B-11. Component Hierarchy for MK6116

	B.1.9 Examples of Component Frames
	B.1.9.1 Example of a Timing Information Frame
	TABLE B-2. Example Frame for MC68000 Address Timing Information Frame
	FIGURE B-12. Strobe Timing for MC68000 Address Signals
	TABLE B-3. Frame for Strobe Timing

	B.1.9.2 Example of a State Information Frame
	TABLE B-4. Example Frame for the MC68000 Type State Information
	(AND (ASSO MC68000-FC2) (NEGO MC68000-FC1) (ASSO MC68000-FC0)) (EQ 8-1)

	B.2 The Interface Frames
	FIGURE B-13. Interface Block Organization
	B.2.1 Frame Representation of the Interface Block
	TABLE B-5. Interface Block Frame
	TABLE B-6. VHDL Representation of Example Interface Block Frame

	B.2.2 Frame Representation of an ISBP
	TABLE B-7. Combinatorial ISBP
	FIGURE B-14. Schematic Representation of Example ISBP Frame
	TABLE B-8. VHDL Representation of Example ISBP Frame

	Appendix C � VHDL Code for ISBPs
	C.1 Package Declaration for ISBPs
	C.2 Entity and Architecture Declaration for ISBPs
	C.2.1 2 Input AND Entity
	C.2.2 2 Input OR Entity
	C.2.3 2 Input XOR Entity
	C.2.4 Inverter Entity
	C.2.5 D-Latch Entity
	C.2.6 D-Flip-Flop Entity
	C.2.7 Pure Delay Entity
	C.2.7.1 D-Flip-Flop Implemenation of 50 ns Pure delay

	C.2.8 Leading Edge Delay Entity
	C.2.9 Trailing Edge Delay Entity
	C.2.10 Tri-Sate Buffer Entity
	C.2.11 Open Collector Buffer Entity

	Appendix D � CRL Frames for Design Example from Section�7.4
	D.1 CRL Frames for the Motorola MC68000 Microprocessor
	D.1.1 CRL Frames MC68000 Body
	D.1.2 CRL Frames MC68000 Timing (8Mhz)

	D.2 CRL Frames for Component Instances and the Connection Request

	Appendix E � VHDL Code for Design Example from Section�7.4
	E.1 VHDL ISBs for Design Example
	E.2 VHDL IB for Design Example
	E.3 VHDL Test Bench for Design Example

	Appendix F � Other Interface Design Examples
	F.1 Interface Design Example: i8086
	FIGURE F-1. i8086 System
	FIGURE F-2. i8086 Design - VHDL Simulation

	F.2 Interface Design Example: 68020
	FIGURE F-3. 68020 Design - VHDL Simulation

	F.3 6809 Interface Example
	FIGURE F-4. m6809 Design - VHDL Simulation

	F.4 t32020 Interface Example
	FIGURE F-5. t32020 Design - VHDL Simulation

	Appendix G � The Model Frame
	FIGURE G-1. The Model Hierarchy
	FIGURE G-2. Prototype, Model, Device and Instance of Device frames

	PARTIAL COPYRIGHT LICENSE
	VITA
	Huber, B. T., K. F. Li, N. J. Dimopoulos, M. Escalante, E. G. Manning,. “Modeling Data Transfer S...
	Huber, B. T., K. F. Li, N. J. Dimopoulos, E. G. Manning,. “Data Transfer Interface Design in DAME...
	Escalante, M., N. J. Dimopoulos, B. T. Huber, K. F. Li., D. Li and E. G. Manning “Generic Design ...
	Dimopoulos, N. J., K. F. Li, E. G. Manning, B. T. Huber, M. Escalante, D. Li, D. Caughey. “DAME: ...
	Dimopoulos, N. J., B. T. Huber, K. F. Li, D. Caughey, M. Escalante, D. Li, R. Burnett and E. G.Ma...
	Huber, B. T., K.F. Li, N.J. Dimopoulos, D. Li, R. Burnett, E.Manning, “Modelling Signal Behavior ...

