
y

Microprocessor System Data Transfer Interface Design:
An Expert System Approach Using Signal Timing

Behavioral Patterns
by

BENEDIKT THEODOR HUBER
M.Sc., University of Victoria, 1986
B.Sc., University of Victoria, 1983

A Dissertation Submitted in Partial Fulfillment of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

in the Department of Electrical and Computer Engineering

We accept this dissertation as conforming
to the required standard

____________________________________________________________
 Dr. K. F. Li, Supervisor, Dept. of Electr. & Comp. Eng.

____________________________________________________________
Dr. N. J. Dimopoulos, Member, Dept. of Electr. & Comp. Eng.

____________________________________________________________
Dr. E. G. Manning, Member, Dept. of Electr. & Comp. Eng.

____________________________________________________________
Dr. M. H. Van Emden, Outside Member, Dept. of Computer Science

____________________________________________________________
Dr. A. J. Al-Khalili, External Examiner, Dept. of Electr. & Comp. Eng.,

Concordia University

© BENEDIKT THEODOR HUBER, 1998
University of Victoria

All rights reserved. This dissertation may not be reproduced in whole or in part b
photocopy or other means, without the permission of the author.



ii

opro-

f the

ures,

using

atch-

havior

hree

l net-

repre-

ponent

sing a

ehav-

ans-

ation

and

aning

on is

elay

ow-

ore

ram-

nter-

y to

f the

ing

utput
Supervisor: Dr. K. F. Li
Abstract

DAME (DesignAutomation ofM icroprocessor-based systems using anExpert sys-

tem approach) is an expert system for configuring and designing a customized micr

cessor systems from original specifications. This work deals with the development o

data transfer interface design module in DAME: the Interface Designer.

The automated Interface Designer is developed by extracting common feat

functions and behavior of microprocessor components and representing them

knowledge representation techniques. The design is accomplished through pattern m

ing, by performing actions and procedures based on recognition of the standard be

patterns of microprocessor component signals.

The development of the Interface Designer production system is divided into t

parts: a hierarchial network of frames that represents the components, a hierarchia

work of frames that represents the interface and a set of forward chaining rules that

sents the design expertise. Equivalent abstraction levels are developed for the com

model, interface model and design rules, allowing the design process to proceed u

top-down methodology.

The component behavior is abstracted at several levels. At the more abstract b

ior level, the data transfer behavior is divided into a set of fundamental information tr

fers, namely the address, data, request, direction, type, delay, size and width inform

transfers. At the more detailed level, each information transfer is divided into state

timing information transfers, where state information represents the conceptual me

of the state of a signal, and the timing information specifies when the state informati

usable. Finally, the timing information is represented using a set of propagation d

invariant timing patterns. Only a limited number of timing patterns is required, thus all

ing a limited number of design rules to accomplish the interface design.

Interface design is carried out by sub-dividing the interface into progressively m

detailed interface sub-blocks, until eventually the interface is built up from a set of pa

eterized primitive circuits that represents the lowest level basic building blocks of an i

face. The set of primitive circuits developed gives the Interface Designer the abilit

connect signals based on the timing patterns. The timing behavior of the output o

interface is determined as a function of the primitive circuit parameters and the tim

behavior of the input of the interface. Once the interface design is complete, the o
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timing behavior of the interface is verified to assure that all component input timing c

straints are satisfied.

Each of the primitive circuits developed is also given using VHDL. This allows

complete interface to be generated using VHDL code once the design is complete, p

ting simulation for verification and synthesis for implementation of the interface. Sev

small test systems are designed and simulated to check the validity of the Inte

Designer.
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Chapter 1

Introduction

1.1  Rationale Behind Microprocessor System Design Using an Expert
System Approach

Microprocessor based systems (also called microcomputers) are designed an

structed using off-the-shelf components according to application specific requirem

The explosive growth of the range of applications for microprocessor systems,

household appliances such as microwaves to scientific instrumentation such as the

Rover, indicates there is a high demand for customized microprocessor system d

Despite the increasing complexity of today’s 32 and 64-bit microprocessors, embe

system design has remained largely as it was 20 years ago when 8-bit microproc

were state of the art. Some industry analysts predict a looming complexity crisis due

lack of trained engineers and a lack of good automation tools [61], which will slow do

the much heralded explosion of consumer products using sophisticated microproces

The high demand for customized designs and the complexity of new compon

make a synthesis tool for microprocessor system design very attractive. Such a tool

allow rapid development of new products, reducing the time to market and lowering d

opment cost. It would relieve the designer of some of the routine drudgery of a de

task, while at the same time reducing the number of errors in the design since auto

design verification could be performed. It would allow a design engineer not familiar w

the latest components, or a novice designer, to produce a design with those compon

The lack of a comprehensive theory of system integration and design choices h

to a more or less empirical set of rules for microprocessor system design, which an e

enced system designer can draw upon to give a solution to a design problem. A syn

tool using an expert system approach would allow the categorizing and codifying o

expert’s knowledge so that a microprocessor system can be generated automaticall

1.2  Work Covered in this Dissertation

A design engineer with interface design expertise uses information provide

component data sheets and knowledge about previous microprocessor system des

build the data transfer interface as shown in Figure 1-1. To automate the design pro
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the interface design engineer is replaced with an expert system. Anexpert systemis a com-

puter program that relies on a body of knowledge to perform a task normally perfor

only by a human expert.

Microprocessor system design has many aspects, from the design of the ge

architecture of the system, component selection, component interconnection and int

design to system implementation. To limit the scope of this work, the proof of con

expert system developed was confined to the design of the data transfer interface g

set of microprocessor system components. It is assumed that components have

selected and the overall architecture of the microprocessor system has been deter

This system is called theInterface Designer.

The design process is not as straight forward as it initially seems. As a hu

designer proceeds, she will make design decisions based on experience of pr

designs and build upon hidden, underlying assumptions. The automation of the inte

design developed for this work requires detailed analysis and representation of these

riences and assumptions.

To fully automate the interface design process, a functional analysis and repres

tion of all signals involved in microprocessor interfaces is required. If a signal is pres

what is its function? (Often a signal will serve several functions, even though it appea

only serve a single function). Why must it be connected? How does the signal int

.

FIGURE 1-1.   Data Transfer Interface Design

Component Component

Data Transfer
Interface for#1 #2

MemoryMicroprocessor

Interface Design Expertise

Data Sheet for
Design Engineer

Microprocessor System

(Designed by
Design Expert)

System
Requirements

Component #1

Data Sheet for
Component #2

with
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with other signals to carry out the function? How can its function and interacting beha

be represented so that design automation can proceed?

Even though most of the interfaces used by the various microprocessors and r

peripherals are fairly standardized, subtle variations exist [52]. Therefore a brute

approach to automated interface design, where signals having the same function ar

nected directly, will often fail.

This work postulates that an automated Interface Designer can be develope

extracting common features, functions and behavior of components and attaching co

tual meaning to these features through abstraction and inheritance, and represent

components using standard expert system knowledge representation techniques. F

more, design can be accomplished through ‘pattern matching’ by performing action

procedures based on recognition of the standard behavior patterns.

Central to this work is the development of a limited number of representative tim

patterns which can be used to represent the timing behavior of component signals,

set of pattern matching rules used to capture the human designer’s expertise for int

necting signals with different timing patterns using a set of pre-designed primitive circ

(elementary building blocks). The primary advantage of this approach is a reduction i

level of detail, and hence the complexity, of the design process and the information

must be modeled and represented by the Interface Designer: The level of detail need

be sufficient to allow the pattern matching rules to select one of the pre-designed prim

circuits.

Figure 1-2 gives an overview of the interface design expert system develope

this work. The central part in the development of an expert system is the representat

the body of knowledge in a form usable by the expert system. This work is organize

dividing the body of knowledge into three distinct parts: Acomponent modelthat repre-

sents all aspects of a component, aninterface modelthat represents the interface that wi

be designed and thedesign expertisein the form of rules, which represents the desig

methodology and techniques.

Specifically this work makes the following contributions:

• It develops a set of standard timing patterns that can be used to represent the tim
behavior of signals in a data transfer interface.

• It develops a set of primitive circuits that can be used to interconnect signals whic
have timing behavior based on the standard timing patterns.
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• It develops a representation of the data transfer protocol in terms of information tr
fers, where each information transfer is based on one of the timing patterns.

• It develops a simple and complete representation of the component incorporating
standard timing patterns.

• It develops a representation of interface that will be generated.

• It develops a representation of the design expertise required for interface design 
form of rules.

• It develops a method of generating the output timing behavior of the designed inter
and it develops a technique that can be used to verify that the timing behavior of 
designed interface satisfies the timing behavior of the components being connect

• It develops a method to allow implementation and testing of the interface in real-w
applications.

• It implements and tests the Interface Designer using real-world interface design e
ples.

.

FIGURE 1-2.   Interface Design Expert System

Component Component

Data Transfer
Interface for#1 #2

MemoryMicroprocessor

Body of knowledge

Expert System

Microprocessor System

(Designed by
Expert System)

System
Requirements

For Components:
Component Library

Body of knowledge
For Design Expertise:
Design Rules

Inference
Engine

Interface Designer
(Production System)
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1.3  Dissertation Organization

This dissertation contains eight chapters, including this introduction, followed b

Bibliography and an Appendix.

Chapter Two gives some background information for the disciplines involved in

development of an expert system for microprocessor system design: microprocesso

tems, digital system design and expert systems. The chapter concludes with a desc

of several other microprocessor system synthesis tools that have been developed.

Chapter Three discusses the approach used to develop the automated microp

sor system designer. It first gives a simple example to illustrate some of the issues inv

in microprocessor system design. It then outlines the techniques used to represe

component, the interface and the design rules.

Chapter Four develops the model for representing microprocessor system co

nents. The model covers all aspects of a component, such as the behavior of a comp

its signals and the timing relationships between signals. It presents the methods u

model the signals themselves, the different states signals can attain and the timing

tionships between state changes. It develops a method of representing the protocol

signals using information transfers based on a limited number of timing patterns.

Chapter Five presents the model for representing the interface that connec

microprocessor system components. The hierarchy of the interface model is deve

from the high level interface blocks to the low level primitives which are used to eve

ally build up the interface. A representation of the primitives is given using VHDL to fa

itate the eventual testing and implementation of the interface.

Chapter Six discusses the method used to perform interface design. The d

expertise is developed in the form of pattern matching rules. The rules perform sp

actions depending on the recognized patterns at the different component and int

hierarchy levels.

Chapter Seven presents the Interface Designer implemented in the Knowledge

expert system shell. It discusses the components entered into the Interface Designe

ponent library. This is followed by a step by step description of a 68000 microprocess

6116 memory interface design example, showing some of the data structures prod

including the VHDL representation of the interface. A VHDL simulation is used to ver

the correct operation of the interface. The chapter concludes with a summary of the m

processor system design problems solved with the automated Interface Designer.
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Chapter Eight provides conclusions and discusses future work.

The Appendix includes various material that supplements the main body of this

sertation.

1.4  Trademarks

Several software packages were used in the development of this work:

Knowledge Craft is a trademark of Carnegie Group Inc.

Mentor Graphics is a trademark of Mentor Graphics Corporation

QuickHDL, QvhcomandQhsimare trademarks of Mentor Graphics Corporation

XACT is a trademark of Xilinx, Inc.

UNIX is a trademark of AT & T Technologies

SunOS is a trademark of Sun Microsystems Inc.
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Chapter 2

Background

This work is concerned with the automation of the design of microprocessor

tems and brings together the three areas of investigation: microprocessor system d

digital system design and expert systems. This chapter provides background inform

for these areas. The first section presents the fundamentals of microprocessor syste

their organization. This is followed by an introduction of the digital system design te

niques that are needed for microprocessor system design. The next section presents

system and knowledge representation techniques that can be used to model the desi

cess. The chapter concludes with an overview of other design automation systems

literature and their relevance to this work.

2.1  Microprocessor Systems

The microcomputer era started in the early seventies after technologies had

developed to fabricate a simple 4-bit CPU, called amicroprocessoron a single chip. A

microprocessor is an entirecentral processing unit(CPU) and is useless without suppo

circuits such as memory components, interface components, timing and control circ

and a power supply. Amicrocomputer, also called amicroprocessor system,is a stand

alone, complete computer system capable of functioning without any additional eq

ment[18].

The basic microprocessor system consists of the CPU, memory in the form ofRAM

(read/write random access memory) andROM (read only memory), andIO (input/output)

components for external communication. Special purpose IO interfaces allow the m

processor to receive data from input components such as keyboards and floppy disk

to transmit data to output components such as displays and printers. If the microcom

is a single entity that has all memory, CPU and IO included on the same chip, it is o

called amicrocontroller[65]. Microcontrollers are often limited in terms of speed, amou

of memory and IO capability: thus the need to design custom microcomputer system

not been eliminated with the introduction of microcontrollers.

In general terms a microcomputer consists of a number of modules that are li

together by a bus. Abusis a collection of parallel conductors designed to transfer inform

tion between separate modules within a microprocessor system. Acard is a collection of
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one of more modules on one physical printed circuit board that can be inserted into a

nector that has a series of signal wires that connect to asystem bus. Although the terms

card and moduleare sometimes used interchangeably, in this work a card represe

printed circuit board with a bus connector, whereas a module is a partition of a micro

cessor system that performs as certain function in the same sense as in the con

“modular design and modularity”. A card that has several modules on it may have a

nector that connects to the system bus, and may also have alocal busthat connects the dif-

ferent modules on a card.

In Figure 2-1[18], the three modules could be separate printed circuit board

which case they could be called cards, or they could be modules that all reside on a

printed circuit board, in which case the whole system would be called asingle board com-

puter.

.

FIGURE 2-1.   Block Diagram of a Simple Microcomputer
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All communication between components takes place over the microprocessor

tem bus. To facilitate error free communication, interface design requires three major

siderations: purpose/function of the interface, voltage levels and current levels, and t

requirements. In the microprocessor system design literature, three types of bus ar

ally identified: the address bus, the data bus and the control bus [9][18][35][53][65

typical microprocessor uses a data bus to transfer information, and an address bus t

cate the external location where this information should be transferred. Four function

typically provided by the control bus: memory and IO synchronization, CPU schedu

involving interrupts, bus arbitration allowing other components to use a bus, and uti

such as system clock and system reset. All microprocessors have essentially s

address and data bus structures [6][48]. The differences are usually found in the c

bus and it is normally the control bus signals that make peripheral components comp

or incompatible.

With the advancement of semiconductor technology, faster and more architectu

powerful microprocessors are available every few months. For the end users howeve

often important for the new microprocessors to be both software and hardware comp

with the older components. Software backward compatibility allows the software de

oped for older microprocessors, a sizable investment, to be reused with the newer p

sors. Hardware backward compatibility allows microcomputers to be upgraded to n

faster microprocessors by simply replacing the microprocessor chip, and it allows

reuse of peripheral expansion boards that were designed for systems using the

microprocessors.

The desire of manufacturers to provide users with hardware and software back

compatibility resulted in an evolution of microprocessor components over time [65].

first 8-bit microprocessor, the Intel 8008, was followed by the Intel 8080 and 8085.

next developed the 8086 16-bit microprocessor which evolved into the 32-bit Intel 80

80486 and the Pentium processor. The Motorola processors follow a similar stream

8-bit 6800 was developed into the 16-bit 680001, which evolved into the 32-bit 68020

68030 and 68040 microprocessors.

Many other processor families exist today such as the PowerPC series deve

jointly by Motorola, IBM and Apple, the Alpha series developed by Digital Equipme

Corporation and the SPARC series developed by Sun Microsystems. Many micropr

sors were also developed for specific applications requiring certain types of arithm

1.  This work uses both 68000 and MC68000 when referring to the Motorola 68000 microprocessor.



10

ans-

ized

often

for an

torola

s. The

re the

uiring

losive

and

ustom

he cost

e very

tem.

ette

ccom-

0286,

8030,

rdware

and

tocol

ectly.

ts of

f the

n not

small

tware

tocols

th use

fer is in

ansfer
operations. Microprocessors that are optimized for digital filtering and fast fourier tr

forms are calledDSPs (digital signal processors). DSP components are usually optim

to perform operations such as multiply and accumulate in a single clock cycle. They

have separate memory for program and data space and are very fast when used

application that uses the optimized operations. Such components include the Mo

56000 and 96000 series, the Texas Instruments 32020 series and the Intel I860 serie

DSPs have similar interfaces to the general purpose microprocessors, and therefo

results of this work are directly applicable to DSP systems.

New and novel uses of microprocessors are discovered on a daily basis, req

the design of custom microprocessor systems to fit the specific applications. The exp

growth of microcomputer applications coupled with the rapid release of new

improved microprocessor system components places a high demand on skilled c

microprocessor system design engineers. A design system that can help to reduce t

and decrease the development time of a custom microprocessor system would b

valuable— a major motivation of this work is to build such an automated design sys

2.1.1  Microprocessor System Interface Protocols

A signal protocolrefers to a set of conventions that describes the correct etiqu

and precedence of interactions between the signals of one or more components to a

plish a specific task. When developing the Intel 8086 series (8088, 8086, 80186, 8

80386, 80486, etc.) and the Motorola 68000 series (68000, 68008, 68010, 68020, 6

68040, etc.) microprocessors, the component manufacturers made the devices ha

backward compatible in part by using similar signal protocols to move information on

off the microprocessor. Connecting two components that have an identical signal pro

is a simple process since the signals involved in the protocol can be connected dir

Unfortunately, when making a device hardware backward compatible, often only par

the signal protocol were preserved. This resulted in subtle but important variations o

signal protocols that make interface design more difficult, since the signals often ca

be connected directly.

A human interface designer can recognize and manipulate the signals, even if

variations are present in the signal protocol between components, while a simple sof

based automated designer that was programmed to handle only specific signal pro

may be unable to complete the design. For example, the 68000 and the 68020 bo

non-multiplexed address and data buses, and a data strobe to indicate a data trans

progress. In both microprocessors, signals are provided to indicate that the data tr
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will be completed, in the form of an acknowledge signal. For the 68000 a singleDTACK*

signal is provided, which must be used to acknowledge every data transfer, while fo

68020 theDTACK0* andDTACK1* signals are provided, one or both of which must b

used to terminate the data transfer depending on which signals on the data bus are u

the data transfer. A human designer who is familiar with interface design for the 68

would recognize that taken together, theDTACK0* andDTACK1* signals are similar to

theDTACK* signal, and therefore can complete the 68020 interface design based o

previous experience with the 68000. One important aspect of this work is the develop

of expert system techniques to capture the essential features of signal protocols s

design of such systems can proceed based on the similarities between protocols.

For this work, several major families of components were analyzed, and the sim

ities and differences in their signal protocols were extracted. These families include

Motorola 6800 and 68000 series, the Intel 8086 series, and the Zilog Z80 series.

microprocessors and microcontrollers were also examined to determine the similar

their signal protocols to the above families of components. These components includ

Motorola 56000, 68HC11, 6800, 6809, the Intel 8051 and the Texas Instruments 32

2.1.2  Microprocessor System Component Properties

Microprocessor system design requires the analysis of several aspects of micr

cessor system components. These aspects include properties such as the compone

aging, component power, meaning of the binary information flowing onto and off

component and the characteristics of the electrical signals that are used to send in

tion off and onto the component. This work develops a model that allows representati

all these aspects of a component in a knowledge base.

The fragile microprocessor component die is usually embedded in a plast

ceramic package which brings the signals to metallic leads calledpins on the outside of

the package so that they can be connected to the system through soldering or by in

into a socket. Power is supplied to various pins on a component. LSI/VLSI microproce

components typically require 5V to operate. Some older CMOS (Complementary M

Oxide Semiconductor) families can tolerate voltages from 3V to 12V. The latest

speed microprocessor components (usually CMOS) sold commercially usually op

using 2.3V-3.3V power.

A Binary Digit is called abit and represents a binary choice of 0 or 1. This bina

choice is implemented as two voltage levels on a signal wire, a high is usually 2.3V

and a low is usually 0V-0.5V. For a collection of bits, each bit usually is associated w
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weight, with the most significant bit having the highest weight, and the least significan

the lowest. The weight of the bit is [n2k], where n is the symbol 0 or 1, and k is the b

position. For example, a byte has k=0 for the least significant bit and k=7 for the mos

nificant bit.

A microprocessor communicates with the outside world through its external bus

nals connected to either a local bus or a system bus. The microprocessor bus is u

divided into data, address and control buses. The information present on the buses m

interpreted with knowledge of the purpose or function of the bus. For example, the i

mation on the address bus indicates a location in the memory space of the microproc

while the information on the data bus can represent a floating point number, an in

number, a CPU instruction or a text character.

Component manufacturers usually provide two types of specifications for micro

cessors signals:DC characteristicsspecify DC voltages that are observed at device inp

and outputs during operation.AC characteristicsspecify the dynamic behavior of a com

ponent. AC characteristics include the rise and fall time of signals, the signal propag

delay and signal setup and hold times. Therise and fall timesgive the time taken by a sig-

nal to change voltage levels. Thepropagation delayis the amount of time taken for a

change on an input signal to produce a change on an output signal.Setup and hold times

specify the times during which a signal is not allowed to change [85].

2.1.3  Microprocessor System Components

Several different types of components are used to build up a microprocessor sy

Memory components are used to store information. Memory is organized in block

varying size calledpages. The description of which component occupies which page

called amemory map. A circuit called anaddress decoderis built to generate a signal to

activate the proper memory page. The speed of memory in general is specified in ter

access time.Access timeis usually defined as the time elapsed from the moment tha

memory device is told to provide some data (i.e. the memory isaccessed), to the moment

when memory provides the data [65].

IO components have been developed to allow information input or output from

microprocessor system. These components come in many forms including analog to

tal and digital to analog converters, timers, synchronous and asynchronous serial tra

ters and receivers, keyboard and disk controllers. The signals used to commu

between the IO component and the microprocessor are similar to the signals used to

municate between the microprocessor and memory.
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Many microprocessors families have special components that can be “attache

the main CPU and that can perform specific tasks more efficiently than the CPU. T

components are calledcoprocessors. Coprocessors are usuallytightly coupledto the main

microprocessor. Tightly coupled means the coprocessors were specifically design

work with a specific microprocessor, having many interface signals that must be

nected directly to the main microprocessor without any interface circuitry.

Additionally, manufacturers often provide some components that are needed fo

design of an operational microprocessor system. These components can be divide

two classes:

1. Components required for clock generation.

2. Components required to interface the CPU and memory or IO, called bus interfac
cuits.

These components are usually designed to work specifically with a componen

are tightly coupled to that component. One such example is the Intel 8288 bus cont

that must be used with the 8086 microprocessor [41].

2.1.4  Capabilities of Microprocessor System Components

Microprocessor system components have the ability to perform operations su

moving data over the data bus signal wires, or they can respond to external stimuli su

an interrupt signal. An operation a component can perform is called acapabilityof a com-

ponent. A detailed analysis of component capability is required to allow modeling o

component for an automated design system. There are three types of capabilities th

commonly found in microprocessor systems: data transfer, bus arbitration and inte

capability. What follows is a brief description of these capabilities.

The data transfer capabilityencompasses all operations whose task it is to mo

somespecificinformation from one component to another. This information can be dat

memory, which is transferred to a microprocessor register, or data such as an interrup

tor which is transferred during a CPU interrupt procedure.

A bus is a collection of signal wires which are used to accomplish some capab

such as data transfer. Often more than one component1 in the microprocessor system ma

want to use the bus for some purpose such as data transfer, and requires exclusive

1.  ‘Component’ as used here refers to both single components such as microprocessors and to mod
components such as printed circuit cards containing complete sub-systems.
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of all the signals on the bus. In such a case the bus must be shared between comp

The ‘sharing’ process is calledbus arbitration. If a component has the ability to share

bus, it hasbus arbitration capability.

A microprocessor component may have the ability to be notified by an external c

ponent needing attention. The ability of a microprocessor to interrupt its current pro

ing and execute program code that services the component needing attention is

interrupt capability. For interrupt capability there must be a method of altering the instr

tion execution path of the microprocessor, using a signal going into the microproce

Often the method of how the execution path is altered is done using an interrupt vecto

interrupting component supplies an indirect address (interrupt vector) pointing to the

to be executed for the specific interrupt. In such a case the interrupt vector transfer c

considered a data transfer. This shows that a capability can have other capabilities e

ded within: i.e. for the example here the interrupt capability will have a data transfer c

bility embedded within it.

2.1.5  Microprocessor System Summary

Microprocessor systems are built up of various components such as micropr

sors, RAM, ROM and IO components. Each component has well defined capabilities

allow it to perform specific operations, such as data transfer, bus arbitration and inte

capability. The components within the microprocessor system communicate over sp

system buses. Specific tasks within a capability are performed by the component’s bu

nals interacting in a protocol specified by the component manufacturers.

A successful microprocessor system designer, and hence the microprocessor s

design expert system, requires expertise in various areas such as microprocessor

architecture, the evolution of the different microprocessor families, the capabilities

component and the signal protocols used to transfer information between compo

The design process used to generate the functional microprocessor system uses the

system design techniques discussed next.

2.2 Digital Systems Design

Digital systemsinclude all types of information processing machines which a

designed to store, transform and communicate information in digital form. Digital syst

can be viewed and designed at different levels of abstraction from a complete system

as a microcomputer connected to a laser printer, to the most detailed small bu

blocks, such as transistors, resistors, diodes and capacitors. The formal design of a
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systems involves several hierarchial tasks called design phases as shown in Figu

Each design phase is used to refine information obtained or generated at the h

abstraction levels until, at last, a completely implemented design is obtained [25].

During the specification phase the system responsibilities, design constraints

operating environment are established. In the configuration phase, the system is

tioned into functional blocks, such as microprocessors for processing information, m

ory for storing information and IO functional blocks for communicating with the wo

outside the digital system. Interface requirements between functional blocks are e

lished at this design phase in terms of the functionality of the component. In the beh

description phase, the individual functional blocks are described in more detail. Typi

the bus size, speed and more precise function of each functional block are determ

During the functional block design phase an available component or group of compo

is selected which most closely fits the specification from the behavior description. Du

the integration phase of microprocessor system design, the functional blocks are

nected to produce the final design. During the implementation phase, the actual d

system is built.

This work is primarily concerned with the automation of the interface des

between functional blocks during the integration phase of system design. Intuition

experience play a far greater role in the design process than is generally recognized

The successful digital system designer, and hence an automated digital system

expert system, must be familiar with system design techniques from circuit boards, V

components, MSI/LSI gates to elementary building blocks of digital system at the tra

tor level. Digital system design techniques are analyzed in detail in this work, to allow

resentation using expert system techniques.

.

FIGURE 2-2.   Digital System Design Phases

Specification Phase

Configuration Phase

Behavior Description Phase

Functional Block Design Phase

Integration and Implementation Phase More Detail

More Abstract
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2.3  Knowledge Based Expert Systems

A general definition of an expert system from a functional point of view can

given as: “An expert system is a [computer] program that relies on a body of knowled

perform a somewhat difficult task usually performed only by a human expert. The pr

pal power of an expert system is derived from the knowledge the system embodies

than from search algorithms and specific reasoning methods. An expert system su

fully deals with problems for which clear algorithmic solutions do not exist” [66]. Th

includes the problems of machine vision, natural language processing, pattern recog

game playing, machine learning and system synthesis.

2.3.1  Knowledge Representation

We define knowledge as information about the world that allows an expert to m

decisions [66].Knowledge representationis the process of representing this informatio

formally. Knowledge can be classified according to the degree to which fundamental

ciples and causal relationships are taken into account.Shallowknowledge is only con-

cerned with the information required to solve a particular type of problem, whiledeep

knowledge represents the internal and causal structure of a system and the relatio

between its underlying components. For microprocessor system design, we must b

to represent both shallow and deep knowledge. Shallow knowledge is required to r

sent the overall input-output behavior of the intended system, while deep knowled

required to represent the internal structure of the fundamental components and their

action.

Since knowledge varies greatly in terms of content and appearance, many diff

knowledge representation schemes have been developed. Some of the general kno

representation techniques include semantic networks, inclusion hierarchies, frames

mata and production rules [79].

The termsemantic networkhas been used by many different people to mean m

different things [66]. The earliest definitions of semantic networks reflected the psy

logical models of human memory and built structures that represented the meani

words. In general, semantic networks rely on two fundamental concepts:

• Nodes, which are used to represent concepts, objects or events

• Links (also called relations), that represent relationships between the nodes

For a graphical representation, relations are drawn as arrows and nodes are dr

rectangles, ovals or boxes. The nodes in a semantic network can be given as sub-cla
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other nodes using theis-a relation as shown in Figure 2-3. The is-a relation demonstra

the concept ofinheritancesince it links a class with its super-class, where the super-c

represents a typical member of the class. Theinstance-ofrelation identifies a specific

physical instance of a class. For example, Camry_no_123 inherits the property that

Toyota through the Camry super-class.

Humans’ knowledge about the world seems to be often organized hierarchial

grouping items we know of into classes, superclasses and even bigger super-superc

An inclusion hierarchyrepresents this class structure by relating classes with the “is

inclusion relation. Inclusion hierarchies are important for knowledge representation

they provide a framework that allows properties from a superclass to be inherited by

child classes. Figure 2-3 shows a graphical representation of a semantic network.

The basis for inheritance is the concept that objects or concepts form groups w

members tend to share common properties. Inheritance allows us to find informatio

is not stored where we look initially. This leads to what is sometimes calledcognitive

economy, where information is stored in only one place, but can still be retrieved fr

many places [66]. Inheritance reduces storage requirements, simplifies maintenanc

provides a method for reducing the complexity of the representation of an object thr

abstraction and information hiding.

A frameis a collection of knowledge relevant to a particular object, situation or c

cept given in terms of attribute names calledslotsand values for the attributes calledfillers

[79]. Frames provide an effective method of organizing knowledge as simple, e

FIGURE 2-3.   Semantic Network for John

Vertebrate

Homosapiens

is-a

John
instance-of

Camry_no_123

owns

Camry

is-a

instance-of

Toyota

Red

has-colour
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implemented data structures for information entry and retrieval. Default values an

information associated with a slot are calledslot attachments. Attachments can be con

straints that must be satisfied by the filled in value, a procedure that can be used to

mine the value of the slot (called anif-neededprocedural attachment), or a procedu

called after a slot has been filled in (called anif-addedprocedural attachment).

A frame that is associated with a class of objects or a category of situations is s

times called aschemaor template frame.A schema is a general frame that can be used

a template or plan for creating a specific instance of a frame byinstantiatingthis general

frame. A schema provides a simple method of representing inclusion hierarchies:

class in the inclusion hierarchy is represented by a schema frame.

The concepts of inclusion hierarchies, frames, schema and semantic network

brought together in theframe based semantic networksdeveloped for this work. In frame

based semantic networks, the slots represent the relations of the inclusion hierarchy,

the frames represent the nodes. An example frame for John from Figure 2-3 is sho

Table 2-1. For this work, a specific relation will be given as^relation_name, while a frame

will be given asframe_name . For example, the frameJohn shown in Table 2-1 is an

^instance_of the frameHomosapiens .

A frame based semantic network was chosen for this work to represent all aspe

the components and interface. The frame based method was necessitated by the d

and repeatability of the information and made it possible to represent the componen

the interface in a hierarchial fashion.

Production rules, also sometimes called productions, are condition-action ru

developed in the human modeling world. Whereas frames represent knowledge abo

objects or concepts, production rules represent knowledge about how to manipulate

use the information found in frames. The action of a production rule specifies wha

rule should do, while the condition specifies when the action should be performed.

FRAME: John

Slot Filler

instance_of Homosapiens

owns Camry_no_123

TABLE 2-1.   Semantic Network Frame for John
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2.3.2  Productions Systems

A production systemis a program that consists of a series of production rules

database of state information and a method of invoking the production rules calle

inference engine as shown in Figure 2-4. Knowledge is encapsulated in both the pr

tion rules and the database of state information.

The database of state information is stored in what is frequently called theworking

memory, while the production rules are stored in theproduction memory. The inference

engine takes the production rules and tests if any of the conditions are satisfied by c

ing the database of the state information and then modifies the database of state in

tion according to the said action. The state information is sometimes calledfacts, while the

production rules are sometimes simply calledrules. The facts can be dynamic or static: a

the inference engine matches conditions and executes actions, some parts of the d

of state information will be modified (dynamic), while other parts of the state informa

will never be modified (static).

A production system is a powerful tool that provides a reasoning process that c

used with the frame based semantic networks used in this work. Two different reas

processes are possible with a production system, forward or backward chaining.

A rule such as “If the timing belt has cracks, then replace timing belt” can be vie

as either aforward rule:

If the timing belt has cracks

Then replace the timing belt

FIGURE 2-4.   Structure of a Production System

Condition Action

Condition Action

Condition Action

… …

Inference Engine

Database
of
State
Information

Production Rules

Interpreter

Knowledge
Base
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Or as abackward rule:

replace the timing belt

If the timing belt has cracks

For inference using the backward rule, the goal is taken as a hypothesis. A ser

sub-goals are derived which are required to prove the original goal. If these new sub-

are not immediately available in the form of facts, they are treated as new hypothesi

must be proven correct. Reasoning of this type is calledbackward chaining inferencesince

it proceeds from the hypothesis to the data.

For inference using the forward rule, available facts are used to deduce new

that hopefully will lead to the eventual deduction of the final goal. This is called aforward

chaining inference. In a forward chaining production system, when all conditions in a r

are satisfied, the rule is said to betriggered. All rules that are triggered make up thecon-

flict set. When actions of a rule are performed, it is said to have beenfired. The determina-

tion of which of the triggered rules should be fired is called theconflict resolution strategy.

Several conflict resolution strategies exist, such as specificity ordering (the most sp

rule triggered will be fired), recency ordering (the most recently triggered rule will

fired) or context limiting (only a rule active in the current context will be fired) [87].

The choice to use forward or backward chaining inference depends on the situ

In general, if the solution space is large a forward chaining approach is more effic

while a backward chaining system is more efficient for a more restricted solution sp

Microprocessor system design has a very large solution space: a large number of dif

possible systems can be designed. The possible number of hypothetical solutions

large to be checked against the available facts collected from the input specification

the interface design application, the more efficient forward chaining inference method

therefore chosen.

2.3.3  Expert System Shells

By separating the knowledge of an expert system from the inference engine, e

system tools can be developed which provide a generic inference engine and know

base management functions. Such an expert system development tool is also ca

expert system shell. The use of a commercial expert system shell allows the knowle

design engineer to focus on fundamental problems of knowledge representation and

nization, and the rapid prototyping of new ideas and concepts.
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The expert system shell chosen for this work is Knowledge Craft, since it was a

able in the laboratory and provides all the required facilities. Knowledge Craft is a sop

ticated expert system shell that provides access to its knowledge engineering fac

through a graphical user interface called awork center[16]. The work center provides a

knowledge base editor to allow easy entry of frame based semantic networks, user d

relations and production rules. It also provides access to the forward and backward c

ing inference engines and includes debugging facilities that assist in the expert sy

development process.

2.4  Design Automation

The development of computer aided design started in the 1960s with the dev

ment of simple design programs used to assist in the layout of engineering drawings

marily for printed circuit boards. As the evolution of CAD systems continued it w

realized that the design program could actually relieve the user of some of the design

sion and perform some of the design and design verification tasks automatically, an

just act as drawing aids. With the advent of microelectronics, the complexity of des

increased to such an extent that CAD with increasingly sophisticated design capa

became a necessity. The manual design of integrated circuits of more than 10,000

has been found to be almost impossible [7]. The tremendous growth of ASIC (Applica

Specific Integrated Circuit) designs in the late 1980s, in the form of gate arrays and

tom silicon designs, necessitated the development of automatic synthesis tools

could be used by designers inexperienced in the art of VLSI layout. The automatic sy

sis tools were able to translate a design entered into a CAD schematic capture pro

into a PC board layout [36], while others were used for the programming of program

ble logic devices using a language such as PLASM [33]. Silicon compiler tools w

developed that were able to translate designs represented using hardware descripti

guages into low level silicon designs [15].

2.4.1  High-Level Synthesis of Digital Systems

Designs can be described at various levels of abstraction detail as seen in Figur

At the top level is theP-M-S(Processor-Memory-Switch) system description which giv

the behavior in terms of communicating processors and the structure in terms of pr

sors, memory and switch descriptions. This level is followed by theInstruction Setlevel,

also called the algorithmic level, which describes the system’s behavior in terms of

and output and the structure as memory ports and processors.
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The next lower detail level is theRegister Transferlevel which gives the behavior in

terms of information transferred between registers in the system and the structure in

of registers, multiplexors, ALUs and buses. The next level is theLogic level which gives

the design behavior in terms of logic equations utilizing structures such as gates an

flops. The bottom level is theCircuit level which gives the design in terms of networ

equations and a structure of transistors and their connections. For this work, high

synthesis refers to automated design covering all abstraction levels from the P-M-S

to Circuit level.

High level synthesis promises several advantages for system design:

• The design cycle is shortened.

• The number of errors is reduced.

• Different design options can be considered.

• Documentation about the design process can be generated automatically.

• The number of people able to use custom IC technology is increased.

2.4.1.1 High Level Description of Digital Circuits

To generate the interface between two components, digital design techniques h

be used. Several techniques have been developed for the automatic design of digi

cuits, though not specifically for microprocessor system design. Most of these techn

work with a high level description of the digital circuits required and translate the de

into a logic level description of the circuit which can be directly implemented in VLSI c

cuits or gate package designs. Some of the models are based on high level design d

tion languages. For example ASP (A circuit Synthesis Program) is a system based

.

FIGURE 2-5.   Abstraction Levels for Digital Systems

P-M-S Level

Instruction Set Level

Register Transfer Level

Logic Level

Circuit Level

More Abstract

More Detail
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high level design description language which uses both expert-system based and al

mic methods to accomplish the design [4].

VHDL (Very high speed integrated circuit (VHSIC) Hardware Description Lan-

guage) [1][32][2] andVERILOG [81] are standardized hierarchichardware description

languages(HDL) which can represent components from the system level, to the com

nent level, and to the gate level.

A sophisticated hardware description language such as VHDL usually provide

following[85]:

• A method for decomposing the design hierarchially.

• A well defined interface for each design element, to allow elements to be connect
each other.

• A precise behavioral specification to allow the element to be simulated.

• A behavior specification that can be given as either an algorithm or a hardware stru
to define an element’s operation. This makes it possible to initially describe an elem
using an algorithm, and to allow higher level elements that use it to be verified. La
once the hardware structure has been designed, the element can be replaced wit
actual hardware structure.

• A method for modeling concurrency, timing and clocking of both synchronous and
asynchronous structures.

• Compilers that allow hardware structures to be directly synthesized from algorithm

2.4.1.2 High Level Synthesis of Microprocessor Systems and HDL

The design of the interface between components is one step of the microproc

system design process. If a representation of the component interface can be genera

HDL format, HDL synthesis tools can then be used to directly translate the inter

design into hardware at the gate level. Since HDL synthesis tools can not be used to

ate the HDL description of the interface itself, even if a HDL representation of the com

nents is available [52], other techniques have to be used to design the interfac

generate a HDL description of the interface.

This work develops a microprocessor interface design expert system using a

based production system. High level synthesis languages are inconvenient to use

state information database of such a system, since the knowledge must be represe

frame based semantic networks, which is impossible with a HDL. However, the ou

from the Interface Designer is best given using a HDL such as VHDL, since it then is
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sible to use synthesis tools to translate the interface into hardware designs using v

implementation technologies.

This work uses VHDL to represent the designed interface between compon

VHDL uses some unique terminology to describe circuits. A design with input and ou

signals is called anentity. The inputs and outputs to an entity are calledports. An architec-

ture describes the function of an entity. The architecture can be given either behavio

or structurally. A behavior description is given algorithmically using processes, which

be sequential or concurrent. Astructuraldescription is given usinginstancesof other enti-

ties and by specifying how their ports are connected. An instance of an entity is cal

component.

2.4.2  Expert Systems and Artificial Intelligence for Design Automation

Knowledge-based expert systems have been integrated into CAD design syn

tools to automate the design process of VLSI systems including logic synthesis, la

synthesis, system behavior simulation, circuit behavior simulation, chip behavior sim

tion and so forth [15]. However most of the individual tools are not integrated with e

other, requiring manual intervention at many stages of the design process. In the fi

computer systems design some expert systems exist which can produce designs au

cally, but they are often restricted in terms of flexibility and sophistication.

2.4.2.1 The XCON Configurer of Computer Systems

A successful commercial system for the configuration of computer systems is

rule based XCON [51] (originally called R1 before commercialization). It was develo

to configure Digital Equipment Corporation’s (DEC) VAX computers. XCON takes a

of components on an order and constructs an acceptable configuration of the comp

by determining if any modifications have to be made to the order for reasons of sy

functionality. It will produce a diagram of the system layout to show how the differ

components will be associated. It will check for items such as correct cable length

adequate power supplies. The XCON system is not capable of performing system sy

sis, only system verification. The verification in the XCON system occurs at the P-

level of abstraction.

Initial attempts by DEC using conventional programming languages to build a

gram to configure VAX computers failed due to the lack of algorithmic solutions claim

The R1 system developed at Carnegie Mellon University in cooperation with DEC u
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the ‘do whenever’ style of forward chaining rules and succeeded in the task of config

VAX systems [66].

2.4.2.2 The DEMETER Design Environment

One experimental expert system to perform system design is DEMETER [

DEMETER integrates a series of separately developed tools into one coherent design

ronment with emphasis on the highest levels of system design. It performs designs

the Register Transfer level. It provides tools to enter complete system specification, c

for consistency and perform optimizations.

2.4.2.3 The MAPLE and PECOS Hardware Synthesis Systems

Two different experimental systems developed to perform microprocessor hard

design at the component level are MAPLE [77] and PECOS [77]. Both are expert h

ware synthesis systems which will produce a component list from an input specifica

The system interacts with the designer to produce system specifications which will f

tate the selection of chips which satisfy the design at the P-M-S level of abstraction.

have a natural language interface and are able to explain the selection of component

a library of components. These systems do not provide information about how to co

the components together.

The MAPLE and PECOS systems contain databases with information about co

nents of microprocessor systems (memories, microprocessors and peripheral c

nents), about pre-designed boards that can be used to assemble a system, and abou

of past designs. MAPLE emphasizes the case based reasoning approach by sear

case history database for a case matching the input specification. If none is found, it

fies a similar case to meet the input specification.

2.4.2.4 The KDMS Hardware/Software Synthesis System

The KDMS expert system is a tool under development that can be used for the

grated design of hardware and software of microprocessor systems [45]. KDMS sy

sizes a system by invoking a sequence of problem solvers. Problem solvers are pro

from the high abstraction P-M-S level to the detailed circuit levels. A problem solv

responsibility is to find a path from some problem state to a solution state.

Besides synthesizing the microcomputer hardware, the KDMS system also g

ates a control program that directs the activity of the entire machine that has

designed, in a unified high level language. The high level language program is then
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lated into processor specific assembly language. KDMS uses a top down design app

to implement a microprocessor based system from the initial specification by recurs

breaking the system down into a frame based set of sub-modules. When the s

encounters a circuit function too specific to be realized in an existing device, the user

provide the HDL description and timing specification before proceeding.

2.4.2.5 The MICON Single Board Computer Designer

MICON [10][11] is a knowledge-based single board computer designer which

produce complete designs from original specifications. It accomplishes the low

design by connecting modules together which have compatible interface signals. Co

ible interface signals are assured by manually designing a standard interface for each

ponent in the component library, whose signals can be connected directly to

components. The predefinition of interface logic limits the flexibility of the MICON sy

tem since incompatible interface signals cannot be connected together. It also

increase the maintenance costs of the system because the interface logic must be

signed for each new component that is entered into the library. The MICON system c

all aspects of the design abstraction levels from the P-M-S level to the circuit level.

2.4.2.6 The DAME Microprocessor System Designer

The DAME (Design Automation of M icroprocessor-based systems using a

Expert Systems approach) system [22] [23] [24] [25] [38] [39] [40] is aiming to produc

customized microprocessor system from original input specifications. There is an

increasing number of components available for microprocessor system design. O

components from different manufacturers or even components from the same man

turer can not simply be connected directly since they have different interface spec

tions. None of the microprocessor design systems discussed above is capa

automatically generating the interface for two components that can not be directly

nected. The automatic generation of interface logic is one of the primary goals o

DAME system, which sets it apart from other microprocessor design expert systems

work focuses on the interface design aspect in the Integration phase of the DAME sy

The complete DAME design system will eventually cover system abstraction levels

the P-M-S level to the circuit level.

One of the main difficulties in the automated design of the interface occurs for

interconnection of components that do not have identical signal protocols. Variation

the details in the signal protocols are numerous and often specific to a component
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work solves the problem at a fundamental level by analyzing and modeling the proto

of the signals used in the interface and designing an interface based on the prot

Abstraction is employed to extract similarities between protocols, allowing a limited n

ber of design rules to be developed that can generate the interface.

2.5  Summary

Microprocessor system design is the process of constructing a microprocesso

tem that satisfies a given specification. The microprocessor system design process re

domain knowledge or expertise in the architecture of microprocessor systems and

components. A microprocessor system designer must be familiar with every aspec

component, be it the component’s capabilities, packaging, power requirements, org

tion and interpretation of the information sent via the component’s signals.

A microprocessor system is a sophisticated digital system, which requires

microprocessor system designer to have expertise about digital system design tech

from the specification and configuration phases to the integration and implement

phases.

The development of an expert system requires the storage of an expert’s do

knowledge. This can be done by representing the domain knowledge as hierarchial,

based semantic networks and production rules. A production system consisting

inference engine, a database of state information and production rules is then us

accomplish the automated design.

Several expert systems have been developed that automate the microprocess

tem design process. The main differences between the different automated design s

is the detail to which the design process is automated. The MAPLE hardware synt

system uses information about microprocessor system components and pre-de

boards to modify a previous design found in a case history database. The MAPLE sy

can not design a complete system, it can only modify an existing system. The KDMS

tem requires the user to enter the HDL timing description of any undefined functi

interface blocks. This requires the user of the system to have expertise in microproc

design techniques. The MICON system uses standard component building blocks a

plates to assemble a system starting with high level requirements. The MICON sy

requires the manual pre-design of a standard interface for any component that is e

into the MICON component database. This work, which is part of the DAME syst

solves the problem of interface design by abstracting the often complex protocols o
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signals as a limited number of timing patterns. Because of the abstraction, it is possi

develop a limited number of rules that can accomplish the interface design. The next

ter presents an overview of the Interface Designer of the DAME expert system.
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Chapter 3

Interface Design Expert System Development Issues

3.1  Introduction

The goal of this work is the development of a proof of concept expert system

can automatically design an interface between microprocessor system components

expert system is referred to as theInterface Designer in this work.

Interface designis the process of interconnecting several microprocessor sys

components using a digital circuit that enables them to operate correctly.Correct opera-

tion means all components in the microprocessor system operate within the specific

provided by the component manufacturers. Correct operation is the primary design

while secondary design considerations are speed, cost, power consumption, size,

and the time to market of the final product.

The dominant problem encountered in interface design is the large number of d

possibilities, that may operate correctly or incorrectly, that exists in the design space

thermore, the design space is problem specific and therefore there is no guarantee

particular design methodology will work in all cases [52]. This work emphasizes a

structured, hierarchial organization of the design space to make the complex design

lem more tractable.

This chapter gives an overview of the organization of the Interface Designer. A

ple example of a data transfer interface is given to put the microprocessor interface d

process in perspective. Next, the general approach and methodology of the system

oped are discussed. The Interface Designer’s structure is divided into three parts: acompo-

nent modelrepresenting the components to be connected, theinterface modelrepresenting

the circuitry used to connect the components and thedesign knowledgerepresenting the

design expertise to build the interface.

3.2  Data Transfer Interface Example

This section gives a simple data transfer interface design example to illus

important concepts, the problems encountered, the issues to be considered in in

design, and how a human interface designer resolves them. A similar design problem

considered by the Interface Designer and is presented in Chapter 7.
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3.2.1  The MC68000 System Interface Example

Figure 3-1 shows a typical interface between a MC68000 CPU and a memory

made up of two MK6116 2K by 8 static RAM components [18]. The MC68000 is

microprocessor with 32-bit internal registers, but has an external 16-bit data busD0-

.

FIGURE 3-1.   Interface Between MC68000 CPU and MK6116 Static RAM
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D15). The MK6116 static RAM contains 2048 internal 8-bit wide storage locations ac

sible over an 8-bit data path (D0-D7 ). The two memory components are arranged in par

lel to provide 8 or 16-bit data to the MC68000.

The MC68000 provides a 23-bit address bus (A1-A23 ), to address individual mem-

ory locations. TheAS*1 signal is activated whenever the address signals are valid and

tains usable information. The least significant address signal on the MC68000 is thA1

signal, addressing data on a 16-bit boundary. Two signals,UDS* (Upper Data Strobe) and

LDS* (Lower Data Strobe) are used to indicate which 8-bit half of the 16-bit wide d

path (D0-D15 ) is used for data transfer: an activeUDS* indicates that (D8-D15 ) is used,

while an activeLDS* indicates that (D0-D7 ) is used. TheR/W* (Read/Write) signal is

used to indicate if the data transfer is a read or write operation. TheDTACK*(Data Trans-

fer Acknowledge) signal is used to terminate the data transfer cycle: data transfer is

sidered in progress until an activeDTACK* signal is received by the MC68000.

The MK6116 provides an 11-bit address bus (A0-A10 ), which is used to address

individual memory locations.A0 is the least significant address signal. TheCE* (Chip

Enable) signal must be activated whenever the MK6116 is accessed. TheOE* (Output

Enable) signal must be activated during a read, while theWR*(Write) signal must be acti-

vated during a write. Data is transferred over the data signals (D0-D7 ).

3.2.2  The Timing Diagram of the Example Components

The timing diagramgives the voltage state of signals as a function of time: it sho

when a signal is at a high or low voltage, when the signal voltage changes or whe

voltage present on a signal can be used for some purpose. For example, a timing di

of a read data transfer cycle for the MC68000 can be seen in Figure 3-2 [18] while a

ing diagram for the MK6116 data transfer read cycle is shown in Figure 3-3 [18].

Timing diagrams also provide important information related to the overall opera

of a device. Important signals such asUDS*, LDS* andAS* in Figure 3-2 andCE* and

OE* in Figure 3-3 are used to activate and terminate the data transfer cycle. These s

must be asserted and negated once and only once for each required operation. An

change of these signals during a read or write cycle, even for a short period of time, is

gal and may cause malfunction of the component. A short, unwanted transition of a s

is often called aglitch. Figure 3-4 shows some illegal glitch transitions for the MK611

1. A ‘*’ at the end of a name indicates that the signal is active low: the asserted state is represented b
nal at low voltage level.
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input signals that can cause device malfunction. As shown in the next sections o

detailed analysis of the example interface, human designers take several precauti

assure that the required signals are glitch free.

Timing diagrams provide knowledge about interrelationships between signals

meaning of information found on signals and relation of signals to the overall operatio

a device. For example, in Figure 3-2 the timing diagram provides information tha

address is required for data transfer and when the address is valid relative to theAS*,

UDS* andLDS* signals. Knowledge and understanding of the timing diagram of a co

ponent is therefore one of the most important requirements to interface design. This

.

FIGURE 3-2.   Timing Diagram of the MC68000 Read Cycle

.

FIGURE 3-3.   Timing Diagram for the MK6116 CMOS Static RAM Read Cycle
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develops an efficient method that encapsulates the important aspects of a timing di

in a data structure that can be used by a pattern matching, rule based expert system

3.2.2.1 Interface of the Address Signals

Figure 3-1 shows some of the address signals on the MC68000 (A1-A11 ) are con-

nected to address signals on the MK6116 (A0-A10 ). Since the MK6116 has 2K locations

11 address signals are required.A1 of the MC68000 is connected toA0 on the MK6116.

An address decoder is used to determine where in the MC68000’s address spa

memory is located. The decoder ensures that the MK6116 memory component

mapped to a specific range of locations in the MC68000’s address space. The a

decoder uses the (A12-A24 ) signals to produce theAddress_Select signal, which

will be asserted (low) whenever the MC68000 requires access to the MK6116 me

components. TheAddress_Select signal is then used in combination with other con

trol signals to generate theCS1* (Chip Select 1) andCS2* (Chip Select 2) signals, which

are used to enable each of the memory components.

3.2.2.2 Interface Data Signals

The interface data signals in Figure 3-1 are connected so as to allow 16-bit

access to the memory from the MC68000. This means thatD0-D7 from the odd memory

byte MK6116 are connected toD0-D7 on the MC68000, whileD0-D7 from the even

byte MK6116 are connected toD8-D15  of the MC68000.

.

FIGURE 3-4.   Example Illegal Glitch Transitions for MK6116 CMOS Static RAM Read Cycle

Address

CE*

OE*

one data transfer read operation

Illegal glitch transitions:
May cause device malfunction
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3.2.2.3 Other Control Signals

The address decoder in Figure 3-1 generates a signal that is low when the c

address for the MK6116 RAM components is present on the address bus by decodi

high order address bits. TheAddress_Select signal is combined using a logica

AND with either theLDS* or UDS* and theAS* address strobe to generate theCS1*

andCS2* signals which are connected to theCE* inputs of the MK6116s. TheLDS* and

UDS* signals are used to indicate data transfer over theD0-D7 andD8-D15 signals of

the MC68000 respectively. By ANDing theLDS* or UDS* signals with the

Address_Select signal, theCE* signal is generated for the appropriate RAM com

ponent. From the timing diagram provided by the manufacturer of the MC68000 show

Figure 3-2, it can be seen thatUDS*, LDS* andAS* are activated only when theR/W*

signal and the address signals are stable and/or valid. This means, that after ANDin

AS*, LDS* or UDS* andAddress_Select signals together, the resultingCS1* and

CS2* signals will be glitch free signals activating once and only once for every rea

write operation.

The CS1* and CS2* signals in turn are logical ORed to generate

Bank_Select signal, which will be active when either of the two memory compone

is selected. The termbankis used to indicate a collection of memory components that

addressed as one block. TheBank_Select signal is also used to generate theDTACK*

signal by passing it through a delay found in the DTACK Generator. A memory cycl

not terminated until theDTACK* signal is received. Thus by inserting a different dela

memory with different access times can be used for the design. For memory with lo

access time, a longer delay will be provided.

3.2.3  Observations about the Interface Design Example

The end product of data transfer interface design is an interface similar to the

shown in Figure 3-1. This work is concerned with the automation of the design proc

which requires a fundamental understanding of what needs to be done, why it mu

done and how it is done. This section discusses some concepts used, the steps tak

the reasoning behind the steps taken in the data transfer interface example. The su

points in italic, following each bullet point, are provided to give the reader an overview

the types of concepts and heuristics that must be represented in the knowledge bas

• The interface serves a purpose. The objective of the interface is to transfer some
cific data over the (D0-D15 ) data signals of the MC68000. All other signals in the
interface are used to facilitate this data transfer.
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The interface design is performed in the context of a specific purpose.

• The interface connects signals which are used to send information in and out of a
ponent. Signals are connected after analyzing the information that is transferred o
them.
Signals and the information on signals must be represented so they can be analy

• Signals are grouped according to the function of the information on them.
Signals must be classified and grouped according to the function they perform.

• Signals are connected between components, sometimes directly, sometimes thro
intervening circuitry.
A method must be provided to connect components directly through wires, if appr
ate. If signals can not be directly connected, an interface circuit must be generate

• Signals with similar function are directly connected together. For example the add
signals (A1-A11 ) on the MC68000 are connected to address signals (A0-A10 ) on the
MK6116s.
Design knowledge to recognize and connect signals of similar function is required

• Some signals must be converted to the proper format before they can be connect
such as theR/W* of the MC68000 signal being connected to theOE* signal on the
MK6116. The format includes characteristics of the signal such as the polarity, and
method of encoding information on the signals.
A method to represent the information signal format is required.
Design knowledge that enables design of interface circuitry to convert a signal to 
proper polarity is required.

• Some signals must be ‘conditioned’ with other signals before they become usable
another component. The term ‘conditioned’ refers to combining two signals in a b
ean logic operation to produce a third signal. An example of this is theR/W* signal
being ANDed with theAS* signal to generate the required glitch freeWR* signal on
the MK6116. The selection of signals for conditioning requires the detailed analysi
the timing diagrams.
Design knowledge of how to generate clean, glitch free signals is required.
A representation of timing diagrams is required.

• A component that connects to a microprocessor will have a select input (MK6116CE*
in the example) which will be asserted only when the component should be active.
design engineer must consider the conditions under which the component should
activated, where in the address space the component is located, what type of data
fer the component should respond to, and which part of the data bus the compon
connects to. The designer will often generate a single signal for each condition. A
these signals are then ANDed together to obtain the resulting select signal.
Design knowledge on how to activate a unique component is required.
Design knowledge to generate a signal for each activation condition is required.
Design knowledge is required to produce a single signal from multiple signals.
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• Components are placed in the address space of the processor by decoding the a
into a signal such asAddress_Select, which is then used in the generation of a
signal that activates the corresponding device.
Design knowledge for generating an address select signal is required.

• A component can have signals that indicate which part of the data bus will be use
data transfer. In the example these signals are theLDS* andUDS* data strobe signals.
Design knowledge about how to activate and use the correct data signals is requi

• Some signals are multi-purpose. TheLDS* andUDS* signals in the design example
carry information about both the missing MC68000A0 address bit, about how wide
the data transfer is (8-bit or 16-bit) and about when the data transfer occurs.
A method for representing and utilizing multi-purpose signals is required.

• Different signals from different functions may be combined in some fashion to gene
new signals. For example the address select signal is ANDed with theLDS* andUDS*
signals to generate theCS1* andCS2* signals, which drive theCE* signals on the
RAM components. TheCS1* andCS2* signals are combined using an OR function t
generate theBank_Select  signal.
Design knowledge about why and how to combine signals must be provided.

• A method may be provided to adjust the time allowed for the completion of the da
transfer. This makes it possible to use memory devices with different access time
the example this is done using theDTACK* input signal on the MC68000. TheDTACK
generator produces a delayedBank_Select signal which terminates the data transfe
after a certain time interval has elapsed.
Design knowledge about how to change the time to completion of data transfer is
required.

• Signals may be generated that will only be used internal to the interface. For exam
theBank_Select  signal in Figure 3-1 is generated but does not connect directly 
either the MC68000 or the MK6116. Such a signal is called aninternal signal.
A method for generating internal signals is required.
Design knowledge on how to generate and use the correct internal signals is requ

By analyzing many microprocessor components, knowledge representations

been developed for this work in the form of the component model, the interface mode

design rules given in later chapters.

This work emphasizes the reduction of the complex design and data represen

problem through abstraction. The next section gives an overview of the approach us

the development of the Interface Designer and explains how abstraction is used to r

the complexity of the design problem.
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3.3  Approach Used for Development of the Design Automation System

This section gives an overview of the approach and methodology used in the d

opment of the Interface Designer.

3.3.1  Imitating a Human Designer

Humans are in general better in grasping the overall structure of designs and co

up with high level strategies to solve the problem than in systematically working throu

series of detailed steps in an algorithmic methodology. One of the goals of this work

give the synthesis system the ability to perform higher level reasoning and make d

decisions that are based on human experts’ knowledge through the recognition of pa

Sometimes new goals, constraints or other conditions emerge only as the design pro

requiring human intervention in the design process [52]. This work develops techni

that allow the human expert’s knowledge to be captured in the database so that the

can be completed without human intervention.

3.3.2  Partitioning of the Interface Design System Knowledge

The Interface Designer is structured as a production system as shown in Figur

The representation of knowledge is divided into three parts: the component library

component model), the interface data structures (theinterface model), and design knowl-

edge in the form of production rules (design rules).

The system state database contains knowledge about the components that are

connected and knowledge about the interface connecting the component. The know

about the components isstatic: it is supplied by the manufacturer of the component and

stored in a library. The knowledge about the interface isdynamic: the interface data struc-

tures are created and modified during the execution of the Interface Designer produ

system. The inference engine builds up the interface data structure using the prod

rules and data from the component library.

3.3.3  Abstraction of the Design Knowledge Representation

The description or specification of a system where some aspects are empha

while others are suppressed, is calledabstraction. A good abstraction emphasizes deta

that are significant to the task at hand, while it suppresses those details that are ins

cant or immaterial [72]. At the highest abstraction level, only general aspects are g

while at the lower levels more and more details are provided. The design rules

abstracted in a similar fashion: the more abstract level design rules are concerned w
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general aspects of a design while the more detailed level design rules accomplish the

detailed specific tasks.

The abstraction levels developed for the component model, the interface mode

the design rules follow each other closely. For each abstraction level in the compo

model there is a corresponding abstraction level in the interface model and correspo

design rules to accomplish design at that level.

Abstraction of the interface design process is achieved through limiting the con

of the design rules: the condition of each design rule includes a test for the current d

level. Only if the current design level is active, can the rule be fired.

3.3.4  Design Based on Recognizable Patterns

A pattern is the configuration, behavior or other feature characterizing observ

system properties [75]. From analyzing interfaces designed by design engineers

found that some of the designs were accomplished by recognizing patterns and perfo

certain actions according to the recognized patterns. For example, a designer might

nize that component A and component B both have signals whose function is to co

the address of a data transfer, and therefore decides to connect them to each oth

designer then looks at the timing diagram of the address signals from the manufact

FIGURE 3-5.   Structure of the Interface Designer
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data sheet and recognizes that address from one component is multiplexed, while the

is non-multiplexed. The designer therefore decides to insert a latch which convert

multiplexed signal to a non-multiplexed signal. This example also illustrates abstracti

the design process: the recognition that an address exists is performed at a higher a

tion level than the recognition of the address signal timing behavior as multiplexed/

multiplexed.

Rule based production systems are powerful tools that are capable of pattern r

nition and can be used to perform design provided that the relevant patterns can be

sented in appropriate data structures. A large part of this work is concerned with

development of a method for representing the design knowledge using pattern base

structures and rules that can manipulate these structures.

Frames allow for the organizing, describing, relating and constraining of knowle

and therefore provide a method to represent typical features or patterns. Since the

provide a method for inheritance, data abstraction and information hiding, frames

chosen as the primary knowledge representation method for the Interface Designer.

3.4  Representing Components and their Behavior

The behavior of a component is the way it acts, reacts or functions under parti

circumstances. A component model has been created that can represent the behav

set of hierarchial frame based objects. At the higher abstraction levels the beh

describes operations a component can perform at the system level, such as trans

data or interrupting the processor, while at the lower abstraction levels, the operation

broken down into detailed description of the signal behavior involved in the opera

such as signalA changes state 10nsec before signalB changes state. This section presen

an overview of the component model. The details are provided in Chapter 4.

3.4.1  Modelling Capabilities of Components

A component’s ability to perform certain operations at the system level, is called

capabilityof a component. For this work, capabilities have been classified into two ty

Type I capabilities accomplish identifiable tasks that can be found in components of d

ent families and by different manufacturers. For a Type I capability the interface betw

the components is not predetermined: the manufacturer specifies how the signals b

not which signals must be connected together. The system designer must decide

signals should be connected and what interface circuitry must be inserted between s



40

capa-

pe-

shed

s con-

rface

choice

ght

each

s. A

l data

the

rchial

lower

ting

nal

-

for-

eir

ed an

ts, a

e data

ate

ating
The common Type I capability classes of a microprocessor component are interrupt

bility, bus arbitration capability and data transfer capability.

Type II capabilities accomplish tasks that are more difficult to identify and are s

cific to a set of components. For example it is difficult to describe the task accompli

when connecting the 8288 bus controller and the 8086 microprocessor. The 8288 bu

troller was made to be used specifically with the 8086 microprocessor, and the inte

between them is fixed (also calledtightly coupled): The manufacturer specifies which

electrical signals must be connected together between the components. There is no

or flexibility in designing the interface. Interface design for a Type II capability is strai

forward and can be accomplished using a simple procedure that directly connects

signal.

This work develops an expert system that can design Type I capability interface

model was developed to represent components with Type I capabilities as hierarchia

structures. The behavior of a capability is given in terms of its protocol. Specifically,

component model developed abstracts the protocol of a capability into several hiera

levels, where the higher levels give the protocol in abstract, general terms, while the

abstraction levels reveal more detail.

3.4.2  Modelling the Capability Protocol

Each system component will carry out the task of the capability by communica

various information over signal wires. The communication of information over sig

wires is called aninformation transfer. Each of these information transfers will accom

plish one specific task associated with the capability. The interaction of the different in

mation transfers used to carry out the task of the capability is called thecapability

protocol.

All information transfers involved in a capability are classified according to th

function. For example the passing of an address from one device to another is call

address information transfer. By studying many different microprocessor componen

set of information transfer classes was developed that can be used to represent th

transfer capability of most microprocessor system components.

3.4.2.1 Synchronizing the Protocols between Components

It was found that the function of one of the information transfers was to indic

when a protocol starts. For example a data transfer protocol will have a signal indic
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when the data transfer commences and bus arbitration will have a signal indicating w

bus is requested. The start information is used to synchronize all information tran

between components: all information transfers will take place relative to the start info

tion. Similarly, there will be an information transfer indicating the end of a capability p

tocol. The data transfer capability protocol developed for this work will have spec

information transfers indicating the start and the end of a protocol.

3.4.2.2 Overall Control of a Capability Protocol

The start and end information transfers are used to synchronize the prot

between components. The method of determining the time between the start an

information transfers is called the overall control of a capability protocol. If the time

fixed, it is calledsynchronous overall control, if the time can be changed through the u

of another information transfer, it is calledasynchronous overall control.

3.4.3  Modelling Information Transfers

The information transferred between components can be divided into two parts

information that is embedded in the states of signals, calledstate information, and infor-

mation that indicates when the information transfer takes place relative to a time r

ence, calledtiming information.

An information transfer is normally associated with a time reference signal and

nals with state information as shown in Figure 3-6. The transition on the time refer

signal is used as a time reference. The signals with the state information will hold u

information for some time interval relative to the transition. Some components may

more than one signal and more than one transition as the time reference.

.

FIGURE 3-6.   Information Embedded in the State of Signals and its Time Reference

Time reference signal

low logic level

high logic level

time

The occurrence of this transition gives a time reference indicating

INFORMATIONSignals
with state information

that the state information is correct and usable during a time period.

low logic level

high logic level
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These states are usually the voltage level of the signal (e.g. 5V for high logic lev

0V for low logic level). Information is embedded in the state of signals, and some kin

mapping is required from the physical manifestation of the state to the meaning o

state. The representation for the state information of a signal developed for this work

the form of a list of states and their associated meaning. For example, theR/W* signal of

the MC68000 microprocessor is used for the direction information, which indic

whether a read or a write operation is being performed. The state information repres

tion will associate a logic 1 on theR/W* signal with a read operation and a logic 0 with

write operation.

The timing behaviors of many microprocessor components were investigated a

was found that many variations of the relationship between the time reference and the

signals exist. The essential features and behavior important to modeling timing info

tion were extracted from the timing diagrams of many microprocessor components

result was a set of universal timing patterns, calledtiming templateswhich are used to rep-

resent the timing information for data transfer of any microprocessor component, w

will be discussed in Chapter 4.

3.5  Representing the Interface

This work develops an expert system that can design the digital system which

prises the interface between components. The expert system requires a representa

the interface digital system which will be built up during the interface design process

interface model was developed for this purpose, which represents the interface be

components as a set of hierarchial objects. This section presents an overview of the

face model. The details are provided in Chapter 5.

3.5.1  Partitioning the Interface

One common approach to represent a digital system such as the data transfer

face is to partition it into more tractable pieces called sub-systems [71] as show

Figure 3-7. The term ‘more tractable’ refers to sub-systems that are less complex tha

entire system they make up and therefore are easier to design [45].

This work takes the approach of partitioning the interface digital system into s

systems which can be designed from components we are familiar with. A familiar com

nent for digital design might be a Flip Flop or an AND gate, and they are consideredprim-

itive since they can not be further sub-divided. For more complex systems, the partitio

will have a number of layers. This means that the digital system is first partitioned
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sub-systems, and then those sub-systems are partitioned into smaller sub-system

the sub-system can be readily designed out of simple primitive components at the b

most layer. This type of design structure is often called top down design and integ

well with the hierarchial component model developed.

3.5.2  Hierarchy of the Interface Digital System

Emphasis was placed in the development of the abstraction hierarchy of the

face model to follow the abstraction levels developed for the component model hiera

This provides a significant advantage when developing the design rules since it allow

design process to be organized to proceed at the same hierarchial levels.

The interface abstraction layers are shown in Figure 3-8. Aninterface block(IB)

connects two components with capability x. An IB is sub-divided intoInterface Sub-

Blocks(ISB). Specifically each information transfer of x, such as information Y, is c

nected by aninformation connection ISBwithin the IB. The Information Connection ISB

is divided intoState ISBsandTiming ISBsfor connecting the state and timing informatio

of Y, respectively.

The ISB primitives (ISBP) are the elementary building blocks that can be use

build up an interface. The ISBPs are classified into two groups according to how the

.

FIGURE 3-7.   Partitioning a Digital Systems into Sub-systems

Digital System: Data Transfer Interface

Sub-system 1 Sub-system 2

Sub-system 1
Level 2

Level 1Level 1

Sub-system 1
Level i

Sub-system 1
Level i+1

D Q

Sub-system 1
Level i+1

Primitive 1 Primitive 2

Sub-system 1
Level i
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commonly used in the interface: combinatorial and memory ISBPs. A combinatorial I

takes the states of signals and changes them to some other state. A combinatorial IS

combinatorial circuit which implements a boolean function, such as a AND gate. A m

ory ISBP is any digital circuit that delays a signal going into it. For example, it can b

delay line, which physically delays a signal by passing it through a long wire, or it co

be a flip-flop that delays an output transition until a clock signal is received.

3.6  Representing the Interface Design Knowledge

The design process uses a top down approach: an interface is successively r

until it is completely built up from ISBPs. The organization and hierarchy of the com

nent representation and the interface representation lend themselves naturally to top

design using a rule based production system. The current interface status and the c

nent library are part of the system state database. Rules matched on the contents

state database are used to modify the contents of the state database to successive

the interface until it is complete. This section presents an overview of the design kn

edge required for interface design. The details are given in Chapter 6.

The Interface Designer is activated by an externally suppliedconnection request.

The connection request represents the knowledge about what components must b

nected, what the purpose of the connection is (i.e. the fact that it will be the data tra

.

FIGURE 3-8.   Interface Hierarchy

Component Component2

Interface Block (IB)

Information Y Information Y

State ISB

Timing ISB

Information
Connection ISB
for Information Y

ISB
Primitive

ISB D Q
Primitive

Connects:

Information Transfer Y
Capability x

State Information for Y
Timing Information for Y

Signals involved
with capability x

Signals involved
with capability x

for Capability x

Capability x Capability x

for

for
Information Y

Information Y
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connection) and various parameters that will be relevant for a connection. The gene

of the connection request is outside the scope of this dissertation and it is assumed

provided either manually by a design engineer or by another sub-system of the D

expert design system.

Rules are provided for the various levels of design. At the highest level, rules

provided to check the existence of the required capability of the components being

nected and if both components have the required capability, an IB will be created fo

capability.

Knowledge is provided about how to connect a capability in terms of the inform

tion transfers that make up the capability protocol. The knowledge is in the form of r

that indicate what to do with each information, or what to do if the information is

present.

Rules are provided for sub-dividing the Information Connection ISBs into State

Timing ISBs for connecting the state information and timing information. The rules de

oped are independent of the class of information being connected allowing the same

rules to be used by all classes.

Knowledge is provided to fill in a State ISB with the appropriate ISBP. The IS

can be anything from a simple inverter to a multiple input/multiple output combinato

circuit. Knowledge is provided in the form of rules that can utilize information about

states going into, and the required state on the output of the Information Connection

Timing information is connected using a Timing ISB. Knowledge at this level com

in the form of rules that can recognize signal behavior in relation to a time reference

that can make adjustments to the signal so that it has a different relationship to the

reference, if necessary. The adjustment is accomplished by inserting an appropriate

ory ISBP into the Timing ISB.

Other design knowledge in the form of rules is represented by the Inter

Designer. This knowledge includes heuristics about minimization/maximization of

aspect of the design, such as cost, power consumption or system speed and it in

checking a design for completeness to make sure that all signals are connected and

ISBs are completed. This knowledge also includes rules to verify timing behavior o

interface to assure that the final design meets the manufacturer’s specification for the

ponent.
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3.7  Frame Representation of the Components and Interface

The data structures used to represent the components and the interface are

down into a set of frame based hierarchial objects. This section introduces the proto

device and instance frames that were developed to represent a component and inte

different levels of abstraction.

A component or interface is built up from a set ofdevice frames.All frames will

have slots that are filled either with static values, such as numbers, or the names of

frames. For example, Figure 3-9 shows some device frames for the hypothetical X

microprocessor. The X2000 component is represented by the device frame namedX2000 .

The ^number-of-pinsslot is filled with the number of pins (40), and the^has-capability

slot is filled with the name of the device frame representing the data transfer capabil

the X2000, namelyX2000-DATA-TRANSFER-CAPABILITY . The data transfer capa

bility in turn has thê uses-timingslot filled with theX2000-ADDRESS-TIMING device

frame name.

.

FIGURE 3-9.   X2000 Device Frames

.

FIGURE 3-10.   Device and Prototype Frames

X2000 Device Frame

40

number-of-pins has capability

X2000-DATA-TRANSFER-CAPABILITY

X2000-ADDRESS-TIMING

uses-timing

MICROPROCESSOR X2000

has capability

X2000-DATA-TRANSFER-CAPABILITY

X2000-ADDRESS-TIMING

uses-timing

DATA-TRANSFER-CAPABILITY

SIGNAL-TIMING

is-a

is-a

is-a

Device Frame

Prototype Frame
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A device frame is created by generating an instance of a a template frame, ca

prototype frame,as shown in Figure 3-10. Each device frame is linked to its prototy

using the îs-a relation and will inherit characteristics from its prototype frame. A devi

frame will have the same slots as its prototype frame. The slots of the prototype fram

either empty or filled with default data.

The prototype frames are organized into a hierarchy of classes and sub-classe

allows knowledge relating to components to be organized into prototype frame cla

whose members tend to share common properties and concepts. Inheritance allow

find information (knowledge) about a prototype frame from its parent frames. This le

to an efficient knowledge representation method since information that is common to

eral child prototype frames can be stored in a single place in the parent prototype f

The more abstract, general prototype frames are near the top and the more detail

specific prototype frames are near the bottom of the hierarchy as shown in Figure 3-

prototype frame will inherit all slots from its parent through an ^is-a relation. In Figure 3-

11, theCOMPONENTprototype representing any microprocessor system compone

divided intoMICROPROCESSORandMEMORYcomponent sub-classes. In turn theMEM-

ORY components are divided intoRAM andROM component sub-classes.

A more complete example of device and prototype frames is shown in Figure 3

The MC68000 andZ80 device frames are created by instantiating theMICROPROCES-

SORprototype, theMK6116 device is created by instantiating theRAMprototype frame

.

FIGURE 3-11.   Prototype Hierarchy

MICROPROCESSOR

COMPONENT

is-a

MEMORY

is-a

ROM

is-a

RAM

is-a

EPROM

is-a

PROM

is-a

Prototype Frame
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and theMK2764 is created by instantiating theEPROMprototype frame. All four devices,

theMC68000, Z8000 , MK6116andMK2764, are considered sub-classes of theCOMPO-

NENTprototype frame and inherit allCOMPONENTproperties (such as ‘Uses Power

through thê is-a relations. Device properties can be specified in the device frame, or

can be inherited from the prototype default values. For example, theMK6116 is a 24 sig-

nal pin device, which is the default specified in the^number-of-pinsslot of theCOMPO-

NENT prototype frame.

The component prototype frames represent the set of possible frames that c

used to build a component in the component library. The interface prototype frames r

sent the set of possible frames that can be used to build an interface. The device f

represent instantiations of the prototype frames used to represent a specific compon

interface. The number of prototype frames is limited by the interface design rule b

Only those prototype frames that can be manipulated by the rule base are allowed to

The number of component device frames is limited only by the number of devices en

into the component library, while the number of interface device frames is limited only

number of different interfaces that can be designed. The strict separation of the devic

prototype frames provides an important advantage for the maintenance of the Inte

.

FIGURE 3-12.   Example Device Frames

MICROPROCESSORCOMPONENT

MC68000is-a

Z80

Uses Power

has-property

is-a

is-a 40

64

number-of-pins

number-of-pins

number-of-pins

24

RAM MK6116is-a

EPROM MK2764

28

number-of-pins

is-a

is-a

MEMORY

is-aROM

is-a

is-a

Master

type

Device Frame

Prototype Frame
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Designer: If device frames of a new component are created by instantiating existing p

type frames and entered into the component library, the rule base does not have to be

ified to be able to design with the new component. In other words, the maintenance

component prototype frames and the rule base is separated from the maintenance

component library.

TheMC68000device frame represents all MC68000 microprocessors. To repre

a single, specific MC68000 in the microprocessor system to be designed, an instan

theMC68000device frame is created, and given a name such asU1, as shown in Figure 3-

13. The instance frame is linked to the device frame through the ^instance-oflink. The

instance frame is used to represent an actual physical device that will be installed in

tem. A frame at the instance level can not be instantiated since it represents an actua

ponent. An instance frame will inherit all properties from the parent device frame and

grandparent prototype frames through the^instance-ofrelation. The example in Figure 3

13 shows the instance frames of a small microprocessor system that consists

MC68000 microprocessor, two MK6116 RAMs and one MK2764 EPROM.

3.8  Summary

This chapter developed the overall structure of the rule based interface design

tem. The design system was partitioned into a component model that represents the

components, an interface model that represents the interface between the componen

the design knowledge in the form of design rules which build up the interface, as show

Figure 3-14. The abstraction levels of the component model, the interface model an

design rules follow each other closely. This facilitates the development of well struct

.

FIGURE 3-13.   Component Instance Frames

MICROPROCESSOR

Device Frame Prototype Frame

RAM MK6116is-a

EPROM MK2764is-a

MC68000is-a U1

U3

U2

U4

instance-of

instance-of

instance-of

instance-of

Instance Frame
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design rules that can perform design at each level of the hierarchy. The component

is abstracted into capabilities whose protocol is built up from information transfers.

information transfers are abstracted into state and timing information transfers. In turn

timing information transfers are built up from timing templates. During the design p

FIGURE 3-14.   Interface Designer Knowledge Representation
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cess, design rules create IBs that connect capabilities. The IBs are sub-divided into

using design rules. The ISBs are finally sub-divided into ISBPs which can be impleme

using discrete logic or VLSI gates. The ISBPs are chosen using rules that recogniz

timing behavior of the timing templates.

The next three chapters give a detailed description of each of the three parts

interface design system: the component model, the interface model and the design 

Garbagee



52

repre-

sses
Chapter 4

Microprocessor System Component Model

4.1  Introduction

The development of a production system based interface designer requires a

sentation of the components in the form of a component library. This chapter discu

how a component is represented as a frame based semantic network called thecomponent

.

FIGURE 4-1.   Outline of the Component Model Presentation

Signals

States of Signals5V, 0V

Transitions Between States

- Name, pin numbers

- Asserted, negated, enabled

- Asserted to negated

Time Relations Between Events
- Event A is 5 nsec after Event B

Timing of Signals
- Multiplexed / Nonmultiplexed

State Information Transfer
- Description of states

Timing Information Transfer
- Description of when

Information Transfer
- Description of when, how and what

Capability
- Protocol in terms of information transfers

more detail

more abstract
Component Model

- Description of component behavior

Operations on States
- Boolean Logic OperationsF=A ^ B

- Attach Meaning to States states can be used

information is transferred.
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model. The component model is able to represent all aspects of a component’s beh

from the abstract capability to the detailed voltage specification of a signal’s logic lev

The primary objective in developing the component model was the developmen

representation that is sufficient to accomplish reliable interface design. This mean

only the aspects that are required to carry out and complete the task of interface desi

modeled.

An outline of the component model and its abstraction hierarchy was given in c

ter 3. This chapter gives a complete description of the component model, starting w

detailed description of the electrical signals and working up to the abstract descripti

the capability protocol. The order of presentation is shown in Figure 4-1. First, the re

sentation for the signals and the electrical states of signals is given. This is followed

representation of state changes of signals in the form of transitions and events. The

behavior of the signals is developed as a limited number of timing patterns, such as m

plexed and non-multiplexed signal timings. The concept of information transfer betw

components is developed as a combination of state information and timing inform

transfers. A description of the data transfer capability protocol is presented in terms o

information transfer, which finally allows the description of a component in terms o

capabilities.

4.2  Signals

Devices such as microprocessors and memories havepins. A pin is a metallic con-

tact which connects electrically to circuitry inside a device package. A pin used to tra

information to or from a device is called asignal. A signal is represented by a name suc

asA17 or R/W*, its location on the package such as pin 31, and its electrical charact

tics.

The signals in microprocessor systems are often divided into groups accordi

their function. A group of signals associated with a specific function is called aport. For

exampleA0, A1, A2 etc. are signals associated with the address port of the MC68

Each port will have an abstract classification associated with it, which represents the

of information being transferred over the port signals, such as address, data or dire

information. A unique name is used to designate each port such asXYZ, ADDRESS,

DATA.
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4.3  The State of a Signal

The logic state of a signal is a characteristic that can be propagated through a w

through a logic circuit. Every logic state has a unique name and has a physical mani

tion that corresponds to one or more electrical state. All the logic states defined for si

are given in Figure 4-2.

The logic states are organized as follows. A signal can receive information, calle

INPUT state or transmit information, called an OUTPUT state. A signal in OUTPUT s

can be either OPEN (disconnected) or ENABLED. An ENABLED signal supplies eith

high or a low voltage. An ENABLED signal is either a VALIDO or INVALIDO output

VALIDO means that useful information is present on the pin, while INVALIDO mea

that the information on the pin can not be used. If the signal is VALIDO it can be on

two binary states, either ASSO (asserted output) or NEGO (negated output).

A signal in INPUT state can be either FLOATING (not driven by anything)

DRIVEN. A DRIVEN signal is either at a high or low voltage level. A DRIVEN signal

either a VALIDI input or INVALIDI input. VALIDI means that information must be pro

vided on the pin since it will be used internally, while INVALIDI means that the inform

tion on the pin will not be used. If the signal is VALIDI it can be one of two binary stat

either ASSI (asserted input) or NEGI (negated input).

The asserted and negated levels of a signal have different interpretations depe

on manufacturer’s definition.Asserted lowor active lowmeans that the asserted state

represented by a low voltage while negated state is represented by a high voltage.Asserted

.

FIGURE 4-2.   Logic State Hierarchy

INPUT OUTPUT

FLOATING DRIVEN ENABLED OPEN

VALIDO INVALIDO

ASSONEGO

VALIDIINVALIDI

ASSINEGI
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highor active highmeans that the asserted state is represented by a high voltage whi

negated state is represented by a low voltage.

A graphical representation of the voltage levels versus time, as commonly foun

timing diagrams provided by component manufacturers, is shown in Figure 4-3.

4.3.1  Compatible States

When a manufacturer specifies a certain state for an input signal, it means th

input is required to attain that state for correct operation. For this reason the input st

called aninput requirement. When a manufacturer gives a certain state for an output

nal, it means that the output will be the specified state. For this reason an output s

called anoutput specification: the output signal pin will be at the specified state. Tw

states areIO compatibleif an output specification satisfies the input requirement. An o

put of one device can be connected to the input of another device if the output state

compatible with the input state. Table 4-1 shows compatible input and output states.

.

FIGURE 4-3.   Voltage Levels Associated with Sates

high voltage

low voltage

(2) (3) (4) (5)(1)

(1) ASSO (ENABLED, VALIDO)
(2) NEGO (ENABLED, VALIDO)
(3) OPEN
(4) INVALIDO (ENABLED)
(5) VALIDO (ENABLED)

If the signal is an output:

(1) ASSI (DRIVEN, VALIDI)
(2) NEGI (DRIVEN, VALIDI)
(3) FLOATING
(4) INVALIDI (DRIVEN)
(5) VALIDI (DRIVEN)

If the signal is an input:

time
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4.3.2  Representing the States of a Signals

The state of a signal is a basic property of a component. A notation has been d

oped to represent the state of a signal in the Interface Designer and for discussio

poses. The syntax of the notation is given using theBNF (Backus-Naur Form), where the

following symbols have meaning:

::== definition
| exclusive-OR
{} repeat zero or more times
[] optional
‘ ’ string

The BNF notation has been extended in two ways: square brackets are us

enclose an optional symbol or group of symbols, while curly braces are used to enc

symbol or group of symbols that may be repeated zero or more times. BNF notation

also be used to describe other properties of signals, such as state changes.

The expression that represents the state of a signal is called asignal stateand is

given as:

<signal state>::== ‘(’< logic state> <signal name>‘)’
<logic state> ::== INPUT | FLOATING | DRIVEN | VALIDI | INVALIDI | ASSI | NEG I

Input State Compatible Output States

INPUT OUTPUT

FLOATING OPEN

DRIVEN ENABLED

INVALIDO

VALIDO

ASSO

NEGO

INVALIDI ENABLED

INVALIDO

VALIDO

ASSO

NEGO

VALIDI VALIDO

ASSO

NEGO

ASSI ASSO

NEGI NEGO

TABLE 4-1.   Compatible States
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| OUTPUT | OPEN | ENABLED | VALIDO | INVALIDO | ASSO | NEGO
<signal name> ::== <identifier>
<identifier> ::== Unique character string

A boolean signal stateis a signal state that only involves the boolean logic sta

asserted and negated:

<boolean signal state>::== ‘(’<boolean logic state> <signal name>‘)’
<boolean logic state> ::== ASSI | NEGI | ASSO | NEGO

For example, (VALIDID0) represents the valid input logic state of the signalD0 and

(ASSOUDS) represents the asserted output boolean logic state of theUDS signal.

A <port state>gives a shorthand method of representing the state of all the sig

in a port, provided that all the signals have the same state:

<port state>::== ‘(’< logic state> <port name>‘)’
<port name> ::== <identifier>
<port> ::== ‘(’ <signal name> {<signal name>} ‘)’

For example, the port state (VALIDOADDRESS) where ADDRESS:=(A0, A1, A2,

A3, A4, A5, A6, A7), indicates that the address signalsA0-A7 have a valid output state.

The signal state represents a property of a signal, as in the example given a

where (VALIDI D0) represents the valid input logic state property of the signalD0. The

property of a signal can be either true or false: if the signalD0 has a valid input logic

state, the signal state (VALIDID0) is true, if the signalD0 does not have a valid input

logic state, the signal state (VALIDID0) is false. The statement ‘the signalD0 has a valid

input logic state’ is equivalent to saying ‘the signal state (VALIDID0) is true’.

4.4  Using Signal States to Describe Situations

Signal states are used to describe situations in microprocessor systems. For

ple, the Z80 microprocessor signal state (ASSOWR*) is used to indicate that the curren

memory access operation is a write operation. Often, a situation is described by the

of several signals. For example, for the MC68000, a memory access in the User Pro

data space is indicated if the state (NEGOFC0) is true, the state (ASSOFC1) is true, and

the state (NEGOFC2) is true.

To describe the state of several signals applicable to a situation, thesignal state

expressionwas developed, incorporating the AND, OR and NOT operators between

states of signals. A signal state expression using the AND operator indicates that e

the argument signal states is present on the given signals, or each of the argument

states is true. A signal state expression using the OR operator indicates that at least

the argument states is present on the given signals, or at least one of the argument



58

ument

r out-

e the

pres-

n logic

bool-

te the

ne

put

m the
states is true. A signal state expression using the NOT operator indicates that the arg

signal state is not present on the given signals, or the argument signal state is false.

<signal state expression> ::== <signal state> | <or state expression> | <and state expres-
sion> | <negation state expression>

<or state expression> ::== ‘( OR’ <state list> ‘)’
<and state expression> ::== ‘( AND ’ <state list> ‘)’
<negation state expression> ::== ‘( NOT’ <signal state expression> ‘)’
<state list> ::== <signal state expression> {<signal state expression>}

All signal states in a signal state expression must either be input signal states o

put signal states. The mixing of input and output signal states is not allowed sinc

interpretation of such an expression would be ambiguous.

For example,

(AND (NEGI R/W) (OR (ASSI LDS) (ASSI UDS))) (EQ 4-1)

Equation 4-1 shows a signal state expression that indicates that theR/W signal is

negated and eitherLDS or theUDS signal is asserted.

In practice it was found that only boolean logic states are used in signal state ex

sions. A signal state expression using boolean signal states is equivalent to a boolea

expression, where the boolean variables are replaced with signal states. This allows

ean algebraic theorems, such as De Morgan’s theorem, to be applied to manipula

state expression. For example,

(AND (ASSO A0) (NEGO A1))=
(NOT (OR (NOT (ASSO A0)) (NOT (NEGO A1)))) (EQ 4-2)

4.5  State Changes in Signals

4.5.1  Transitions

A transition is the change of the logic state of an input or output signal from o

logic state to another logic state at some instant in time. A transition is given as:

<transition> ::== ‘(‘ [< logic state1>] ‘!’ < logic state2> <signal name> ‘)’
<logic state1> ::== <logic state>
<logic state2> ::== <logic state>

If <logic state1>is omitted, it is assumed to be the opposite state of<logic state2>.

<logic state1>and<logic state2>must either both be input signal states or both be out

signals states. The opposite logic states are shown in Table 4-2, and are derived fro
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logic state hierarchy in Figure 4-2 by determining which states are at the same level

hierarchy.

For example, assume an output signalXYZ changes state from asserted to negat

This transition can be written as (ASSO ! NEGOXYZ) or in a more compact form as (!

NEGOXYZ).

A port transition is the change of state of the set of signals associated with a p

where each signal in the port has the same transitions:

<port transition> ::== ‘(‘ [< logic state1>] ‘!’ < logic state2> <port name> ‘)’

A port transition is simply a shorthand way of specifying the transition for each

nal in a port, provided that all signals have the same transitions. For example the por

sition (! ASSOADDRESS) can be expanded into: (! ASSOA0), (! ASSOA1), (! ASSO

A2), . . . .(! ASSOA11) if theADRRESS port consists of the signalsA0, A1, . . .A11.

4.5.2  Events

Theeventextends the concept of transition from a single signal to several signal

signal state expression represents a certain combination of signal states. When the

nation of signal states becomes true at some instant in time, an event occurs. An ev

defined as follows:

<event> ::== <transition> | ‘(’ ‘!’ < signal state expression> ‘)’

For completeness, a transition is also defined as an event. The ! in front of the<sig-

nal state expression>indicates the event that occurs when the signal state expres

changes from false to true. The signal states that make up an event must either all be

signal states or all be output signal states.

Examples of events are:

(OPEN A1) ! (VALIDO A1) (EQ 4-3)

(! (OR ((ASSO LDS) (ASSO UDS)))) (EQ 4-4)

Logic State Opposite Logic State

ASSO NEGO

ASSI NEGI

VALIDO INVALIDO

VALIDI INVALIDI

ENABLED OPEN

DRIVEN FLOATING

TABLE 4-2.   Opposite States
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Equation 4-3 shows an event, which includes a transition, that occurs when thA1

signal changes from OPEN to VALIDO. Equation 4-4 shows an event using a signal

expression. Normally theUDSandLDSsignals are negated. This means, that normally

signal state expression(OR ((ASSOLDS) (ASSOUDS))) will be false. As soon as both or

either of theLDSor UDSsignals change from negated to asserted, the state expressio(OR

((ASSOLDS) (ASSOUDS))) will become true, and the event occurs.

4.5.3  Detectable Events

A detectable eventis the change of state of one or more output signals which can

detected using some type of electronic circuit. The concept of detectable events is

oped to allow the detection of the time of occurrence of the event: if the time of occurr

can be detected, it can then be used as a relative time reference to other events. Det

events involve changes of signal states between the asserted and negated logic stat

event that only involves boolean logic states is a detectable event. Theoretically the

other state changes that are detectable, such as (OPEN ! ENABLEDXYZ). In practice

these events can not be detected reliably, and are not considered detectable in this

For example, Equation 4-4 is a detectable event, while Equation 4-3 is not a detec

event.

4.5.4  Complementary Events

An event occurs when one or more signals change logic state. When the signa

are involved in the event change back to the original state, acomplementary eventoccurs.

The event:

( <logic state1> ! <logic state2> <signal name> ) (EQ 4-5)

has complementary event:

( <logic state2> ! <logic state1> <signal name> ) (EQ 4-6)

and the event:

( ! <signal state expression1> ) (EQ 4-7)

has complementary event:

( ! (NOT <signal state expression1> )) (EQ 4-8)

For example, the complementary event to Equation 4-3 is:

(VALIDO A1) ! (OPEN A1) (EQ 4-9)

The complementary event for Equation 4-4 is:
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(! (NOT (OR ((ASSO LDS) (ASSO UDS))))) (EQ 4-10)

4.6  Modeling Time Relationships Between Events

4.6.1  The Timing Link Between Events

Electrical signals in microprocessor systems are used to transfer information. K

ing which signal is used to transfer the information and how the information is forma

is not enough to transfer the information successfully. It must also be known when

information will be transferred. For example, the knowledge that some address si

will contain a binary formatted address is of no use unless one knows exactly whe

signals contain the address. Manufacturers specify when information transfer takes

by giving the relative times between events of certain signals. The time relations

between events of signals are given in the component manufacturer data books in th

of timing diagrams and tables of timing parameters. This is illustrated in Figure 4-4 fo

MC68000 read cycle. Several signals are involved in the data transfer, such asCLK, A1-

A23, R/W*, AS* andUDS*/LDS* . The manufacturer specifies when the address sign

A1-A23 become valid (i.e. when the (INVALIDO ! VALIDOADDRESS) event occurs)

relative to the time of occurrence of events on theCLK, AS* andUDS*/LDS* signals.

Different types of relations between events are provided, such as ‘event A precedes

B’ or ‘event A is always 10nsec after event B’. For example in Figure 4-4 the (! AS

AS*) event and the (! VALIDOADDRESS) event indicate that the address becomes va

before the assertedAS signal.

.

FIGURE 4-4.   Timing Diagram of the MC68000 Read Cycle

ADDRESS

AS*

UDS* LDS*

DATA (D0-D15)

R/W*

CLK

DTACK*

S0 S2 S4

Valid DATA

Valid ADDRESS

Event

Relation
between Events
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Interface design requires knowledge about the time relationships between eve

method was developed to represent the relationships in the Interface Designer. Th

relationships between events are represented usingtiming links. A timing link gives the

relative time of an event, called thetail event, relative to another event, called thehead

event. There is no implied precedence between the head and tail events: the tail eve

occur before or after the head event. The timing link represents an unidirectional time

tionship from the head to the tail event. Unidirectional means that if a timing link gives

time of event A relative to event B, it may not be possible to infer the time of event B r

tive to event A. For example, if a link specifies that a tail event (! VALIDOADDRESS) is

always 20ns before a head event (! ASSOAS*), one can not assume that the (! ASS

AS*) event always will be 20nsec after the (! VALIDOADDRESS) event.

Time relationships between events can be viewed as directed graphs. The

nodesE represent the events and the directed graph linksR represent the timing links

between events. For example, Figure 4-5(b) shows the directed graph representation

timing diagram shown in Figure 4-5(a). The directed graph gives the time relationsh

of theE2 event relative to theE1 event.

4.6.2  Repeated Event Sequences in Timing Diagrams

Often a timing diagram is used to show a sequence of events. For example, Fig

6(a) shows a sequence of complementary events for theWR* signal. Repeated even

sequences for microprocessor components often correspond to repeated operatio

components can carry out. For illustration purposes in this work, complementary e

.

FIGURE 4-5.   Example of Event Time Relationship

(b) Directed Graph Representation
Relationship R

 R

ADDRESS

AS*

Valid ADDRESS

Head Event E1 = (! ASSO AS*)
Tail Event E2 = (! VALIDO ADDRESS*)

(a) Timing Diagram Representation

 E1

 E2

Event

Relation
between Events

 E2

 E1

Events E
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(Section 4.5.4) in a sequence are given names with a + or - symbol attached to the

the name. For example eventname+has complementary eventname-. Using the +/- con-

vention in naming the complementary events helps in the understanding of diag

showing temporal ordering between events. The + will be associated with the ea

while the - will be associated with the later complementary event. In most circumstan

the + event is associated with the more ‘positive’ or ‘beginning’ event such as an even

tiating something, a signal going from INVALIDO to VALIDO or a signal going from

negated to asserted, while the - event is associated with the more ‘negative’ or ‘end’

such as an event terminating something, a signal going from VALIDO to INVALIDO o

signal going from asserted to negated.

The timing diagram for a repeated event sequence can be redrawn for a single

of the repeated sequence as shown in Figure 4-6(b). A directed graph representation

repeated event sequence is shown in Figure 4-6(c). In the directed graph, a subtle pr

for the signal behavior shown in the timing diagrams is represented by the graph l

The signals that generate the events are not allowed to change between the events

property is attached to the directed graph links, then the original event sequence sho

Figure 4-6(a) can be obtained from the directed graph Figure 4-6(c).

4.6.3  Properties of Timing Links

Timing links are used to represent different time relationships between events.

section describes the time relations represented by the timing links. Timing links

properties such as the precedence between the head and tail events and the time o

.

FIGURE 4-6.   Repeated Event Sequence Representation

(a) Original Write Signal Event Sequence
wr+ wr-wr+ wr- wr+ wr-

Twr+

Twr-

(b) Single Cycle Event Sequence:

WR* signal

WR* signal

next cycle

wr+ wr-

(c) Directed Graph Event Sequence

 Precedence Relationship RP

 RP  RP
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rence of the tail event relative to the head event. For example, a timing link can repres

simple precedence relationship:

Event B isalways after event A,

or the timing link can give the guaranteed time of an event relative to another event:

Event Balways occurs between 10nsec and 20nsec before event A.

The interval 10nsec to 20nsec is called thetiming parameterof the timing link. A timing

parameter is a time interval with a lower and upper limit. The timing parameter repres

a range of time values of when an event can occur. A time interval is written by enclo

the interval limits, in nano seconds, in brackets. In the above example, the timing par

ter would be written as (-20 -10) since negative time values are used to indicate that

B occurs before event A. An interval (a b) is written so that a≤ b. A timing parameter that

is an exact time such as 20nsec, is considered an interval of zero length and is writ

either a single value (20) or as a range with the same lower and upper limits (20 20). U

the notation for intervals, the previous timing link description could be written as:

Event Balways occurs at time (-20 -10) relative to event A.

An event may not always occur with another event, but it may still be related to the o

event as in:

If Event B occurs, itwill occur at time (-20 -10) relative to event A.

Timing links between events on the same signals can also convey information abo

signals’ behavior between the events as in:

Event Bwill occur at a time (50 70) relative to event A and thesignals involved in

events A and Bwill not change state between events A and B.

As these examples show, timing links have several properties and character

which include:

• The direction of the signals involved in the events: Input to Input, Output to Outpu
Output to Input or Input to Output.

• A timing parameter

• If there is precedence between the events

• If an event always occurs with another event, or only sometimes

• If the signals change state between the events (if both events involve the same si
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There are a total of six timing links developed that are sufficient to represen

practical cases and are presented in the next sections.

4.6.4  Timing Links Between Events

Four possible timing links based on the direction can be found in the specificatio

time relationships between two events as illustrated in Figure 4-7.

The input to output timing links and the output to input timing links are call

causaltiming links since there is a direct cause and effect relationship between the

and tail events. A cause and effect relationship implies a precedence between the he

tail events. For example, for a MC68000, the assertedDTACK*signal will cause theUDS*

signal to become negated. This means that the (! ASSIDTACK*) event will have a causal

timing link to the (! NEGOUDS*) event, and the (! ASSIDTACK*) event must precede

the (! NEGOUDS*).

The input to input and output to output event relationships are callednon-causal

timing links since there is no cause and effect relationship between the events. The

dence of the events related by a non-causal timing link is not known. For a non-causa

ing link the tail event could occur at any time relative to the head event.

If the tail event of a timing link is an input event, the timing link specifies aninput

requirement, since the link dictates how the input must behave. If the tail event is an ou

event, the timing link specifies anoutput specification, since it dictates how the outpu

behaves.

.

FIGURE 4-7.   Possible Event Relationships

Input Event

Output Event

Component

Output Event

Input Event

Component

Output Event

Output Event

Component

Input Event

Input Event

Component

(MC68000)

(MK6116)(MC68000)

(MK6116)

(! VALIDO DATA)

(! ASSI CE*) (! ASSO UDS*)

(! ASSI DTACK*)

(! ASSI CE*)

 (! VALIDI ADDRESS)(! VALIDO ADDRESS)

(! ASSO AS*)

Link
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If all timing links for the events of a device have strict precedence between eve

petri net called asignal transition graph(STG) can be used to represent the timing beha

ior. STGs are directed graphs consisting of the eventsT and the precedence relationP

between the event nodes. When state transition graphs were developed they were a

to designs which were delay insensitive (i.e. unbounded positive delays), but they

been extended to include timed delays [69][27].

Instead of a petri net based approach this work develops its own specialized ti

links to represent the timing behavior patterns for several reasons:

• This work only requires a representation that gives the general pattern of a timing
behavior, not the detailed relationships between all signals. STGs provide too mu
detail, thus adding unnecessary complexity.

• This work requires that links have certain properties in addition to a time value. Fo
example such a property may be a link that specifies that a signal will not change
between two specified events.

• This work requires that the links in timing patterns can have a general behavior a
ated with them such as: The setup time of signal A relative to a reference event is
ally negative or close to zero. This type of behavior can then be used to develop t
concept of a propagation delay invariant timing templates as explained in Section 4

There are some similarities between STGs and the timing behavior model deve

for this work, and it may be possible to extend STGs to include some of the special

cepts developed here.

The following sections describe the timing links developed for this work and th

associated properties.

4.6.4.1 Causal Timing Links

A timing link between either an input event and an output event or an output e

and an input event is called a causal timing link.

The input to output event link represents the response output event to some

event and is called aresponds-withtiming link. Due to the cause and effect relationsh

between the events (i.e. an input event will cause the output event), there is strict p

dence and the timing parameter (a b) associated with the responds-with timing li

restricted to a≤ b, a≥ 0 and b≥ 0.

The output to input event link expects an event on an input port in response t

event on an output port, hence it is called anexpectstiming link. Normally, there is strict

precedence between the output and input events. It was found however that when de
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ing the timing behavior of more than two events as done later in this work, that an ex

timing link is required that can take on a negative timing parameter value. For this rea

an expects link is defined with no restrictions on precedence. The timing parameter

of the expects link is a≤ b, -∞ ≤ a≤ +∞, and -∞ ≤ b ≤ +∞.

4.6.4.2 Non-Causal Timing Links

A non-causal timing relationship is one between two output events or two in

events. For two output events or two input events that are related, the important know

about the events is not the order in which they occur, since that may change, but w

event always occurs with the other event, and what the relative time between the eve

The always-accompanied-bytiming link represents a non-causal timing lin

between two input events or two output events that always holds true. A typical exa

of this is the time relation between a transfer request signalAS* event and theADDRESS

signal event of a MC68000 microprocessor as shown in Figure 4-8. It is known that

as+ event occurs on theAS* signal, it will always be preceded by theadd+ address event

on theADDRESSsignals at a certain time. Similarly, if anas-event occurs on theAS* sig-

nal, it will be followed by theadd- address event on theADDRESSsignals at a certain

time.

Sometimes an event is not always accompanied by another event, butif it is accom-

panied by another event, a certain timing relationship exists between the events. Thi

ing link is called anaccompanied-bytiming link. An example of the accompanied-by lin

is shown in Figure 4-9. TheDS* signal indicates that a data transfer operation will occ

It is sometimes accompanied by aWR* signal as shown in the figure with a certain timin

relationship to theDS* signal. If ads+ andds-event sequence occurs, thewr+ andwr-

.

FIGURE 4-8.   Example of the Always-Accompanied-by Link

add+ add-

as+ as- as+ as-
AS* signal

ADDRESS

add+ add-

always-accompanied-by link
signal
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event sequence may or may not occur, and if it does occur it will have a given timing

tionship as specified by the accompanied-by timing parameter.

The timing parameter (a b) associated with the always-accompanied-by and ac

panied-by timings link is a≤ b, -∞ ≤ a≤ +∞, and -∞ ≤ b ≤ +∞.

4.6.5  Timing Links Between Complementary Events

Figure 4-10 shows a typical write data transfer operation for a microproces

Always-accompanied-by can be used to specify links between the wr+ and dat+ e

and the wr- and dat- events. The timing diagram shown in Figure 4-10 conveys more

mation about its behavior to the designer than that given by the two always-accompa

by links. The timing diagram also indicates that theWR*signal does not change betwee

the wr+ and wr- events, and that theDATAsignal does not change between the dat+ a

dat- events. Special always-accompanied-by links have been developed to repres

behavior of signals between complementary events.

The always-accompanied-by link between complementary events can be spli

two types: acomplementary-precedestiming link where the signals involved in the event

will not change until the complementary event occurs called, and aneventually-precedes

timing link where the signals are allowed to changed between complementary events

.

FIGURE 4-9.   Example of the Accompanied-by Link

.

FIGURE 4-10.   Typical Data Write Operation Timing Diagram

wr+ wr-

ds+ ds-ds+ ds- ds+ ds-
DS* signal

WR* signal

wr+ wr-

accompanied-by link

WR*

DATA

dat+ dat-

wr+ wr-

always-accompanied-by
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is illustrated in Figure 4-11 (a) for a typical data write operation. Link 5 is a complem

tary-precedes link which indicates that theDATAsignals will not change between the dat

and dat- events and that the dat+ event occurs before the dat- event. Link 6 is an e

ally-precedes link where theDATA can change between the dat- and dat+ events.

The complementary-precedes and eventually-precedes links always have p

dence: the head event will always occur before the tail event. This means that their t

parameter (a b) is a≤ b, a≥ 0 and b≥ 0.

Using the timing links developed, the behavior of microprocessor system sig

can now be specified. For the timing behavior of the data signal in Figure 4-11(a), link

and 5 are complementary-precedes links while link 6 is an eventually-precedes link. L

1 and 2 are always-accompanied-by links. The links developed make it possible to g

graphical representation of the data write timing behavior as shown in Figure 4-11

Using the graphical representation given in Figure 4-11(b), it is possible to reconstruc

timing diagram representation shown in Figure 4-11(a).

.

FIGURE 4-11.   Typical Data Write Operation Timing Links

wr+

wr-

dat+

dat-

(t1min, t1max)
tmin < tmax

WR*

DATA

dat+ dat-

wr+ wr-

Always-Accompanied-By

Complementary-Precedes

Eventually-Precedes

dat+ dat-

wr+ wr-

dat+ dat-

(a) Timing Diagram forWR* Signal andDATA Signal

(b) Timing Graph ForWR* Signal andDATA Signal Events

1 2
3

4

5 6

(t2min, t2max)
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4.6.6  Timing Link Summary

This section developed a method to represent the time relationships between e

in the form of links. Table 4-3 shows a summary of all the timing links and their prop

ties.

It should be pointed out that the timing links were developed with foresight a

how they will be used to represent the timing behavior of signals in the Interface Desi

Specifically, the timing behavior of signals are often similar but not identical, and the

ing links will allow the similarities to be extracted as patterns which the Interface Desig

can use to perform design. For example the behavior of theDATAsignal relative to the

WR* signal in Figure 4-11(b) is the typical behavior of a non-multiplexed signal in

microprocessor system. By giving this timing behavior a name such as XYZ, any sim

timing behavior can be simply described by stating that it is of type XYZ and giving

specific timing intervals associated with each link. This type of representation integ

very nicely with frame based semantic networks used for this work: the timing behavi

every signal is based on a timing template (such as pattern XYZ) with specific tim

parameters for each link specified in an instantiation of the timing template. This wi

discussed in more detailed in the section on modeling signal timings.

Timing Link Head

to

Tail

Specification

or

Requirement

Classifica-
tion

Precedence Timing

Parameter

(a b), b>a

Responds-with in to out Specification Causal Yes a, b≥ 0

Expects out to In Requirement Causal No -∞ ≤ a ≤ +∞
-∞ ≤ b ≤ +∞

Always-Accompanied-by out to out

in to in

Specification

Requirement

Non-Causal No -∞ ≤ a ≤ +∞,

-∞ ≤ b ≤ +∞

Accompanied-by out to out

in to in

Specification

Requirement

Non-Causal No -∞ ≤ a ≤ +∞,

-∞ ≤ b ≤ +∞

Complementary-precedes out to out

in to in

Specification

Requirement

Non-Causal Yes a, b≥ 0

Eventually-precedes out to out

in to in

Specification

Requirement

Non-Causal Yes a, b≥ 0

TABLE 4-3.   Component Timing Links
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4.6.7  Notation Used to Represent Timing Links Between Events

A timing link represents the time relationship between two events. Atiming link

expressionis used to represent the relation between the events and the associated

parameters. A timing link expression is given using the following notation:

<timing link expression> ::== <head event> ‘->‘ < tail event> {<tail event>}‘@’ < time>
<head event> ::== <event>
<tail event> ::== <event> | <port transition>
<time> ::== ‘(‘ <time value> [, <time value>] ‘)’
<time value> ::== <numeric constant>| ‘-~’ | ‘+~’
‘-~’ represents a time of negative infinity
‘+~’ represents a time of positive infinity
<numeric constant> ::== character string representing time in nano seconds.

The RHS of a timing link expression consists of a set of one or more events. (A

transition can be expanded into a set of transitions). The<time> gives the timing parame-

ter that indicates when the tail event will occur relative to the head event. For examp

(! (OR (ASSO UDS*) (ASSO LDS*))) -> (IVALIDO ! VALIDO A0) @ (-~ -10)

states that the address signalA0 will go VALIDO 10 nsec or earlier before the occurrenc

of either an assertedUDS* or assertedLDS* signal. This link expresses what is ofte

called the setup time of theA0 relative to the assertedUDS* or LDS* signals: The A0 sig-

nal becomes stable and valid 10 nsec before the assertedUDS* or LDS* signals.

In this work, timing links are normally used to indicate when information trans

takes place. This means that the head event is used as a relative time reference point

time of occurrence of the tail event. For practical design reasons, an event that is use

time reference should be a detectable event. The head event for timing link expre

developed for this work is therefore normally a detectable event.

4.7  Modeling Signal Timings

Section 4.5 and Section 4.6 showed how state changes for signals are mode

events and how timing links represent time relations between events. This section b

on the concepts of events and timing links to developsignal timings. A signal timing can

be thought of as a method of specifying when and how information is transferred bet

two components in a digital system relative to one or more detectable reference eve

4.7.1  Developing the Concept of Timing Templates

One of the difficulties the interface designer faces when connecting two compon

is the large variety of signal timing behavior that can be encountered. Often the ge
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aspects of signal timing behavior are similar between components, while the detaile

nal timing specifics are different. To overcome this problem the designer may use

heuristics by recognizing the general timing behavior patterns of a signal timing.

example, the designer may look at a timing diagram and recognize that the output ad

signal of one device has the general behavior of a multiplexed signal, while the i

address signal of another device has the general behavior of a non-multiplexed signa

designer recognizes the general signal interrelationships and knows that he must st

information carried by the multiplexed signals before connecting it to the non-multiple

input signals. The designer knows that this storage can be accomplished with a D-L

The designer inserts the D-Latch into the interface and then verifies that none of the

cific setup and hold times of the input are violated. This work takes a similar approa

organizing the knowledge about the timing behavior of a signal. The timing beha

knowledge is split into ‘a pattern’, which represents the general aspects of the ti

.

FIGURE 4-12.   Representation of Signal Timing of Non-Multiplexed Signal A3

VALIDO

AS*

A3

hold timesetup time
(-20, -10) (10, 20)

VALIDO

REF

SIG1

hold timeThsetup timeTs
range:(-~ 0) range:(0 +~)

Non-Multiplexed Signal Timing Template

sig1+=(! VALI A3)

Ts=(-20, -10)
Th=(10, 20)

A3 Signal

Signal Timing for A3 signal

The DetailsA Pattern

A3 signal timing is represented as two parts

Always-Accompanied-By
Eventually-Precedes

Complementary-Precedes

Based on:
Non-Multiplexed
Timing Template

ref+ ref-

sig1+ sig1-
ref+=(! ASSO AS*)
ref-=(! ASSO AS*)

sig1-=(! INVALI A3)

Timing Details
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behavior, and ‘the details’ which represent the exact timing parameters such as setu

hold times, as shown for the non-multiplexed signal timing in Figure 4-12.

The general behavior pattern of a signal timing is called itstiming template. A signal

timing template classifies the characteristics, properties and behavior of a signal t

including:

• A description of the different events involved in the signal timing

• A description of each of the timing links and the associated events

• A range of allowed values for the timing parameters for each of the timing links

Signal timings that have similar characteristics, properties and behavior belong t

same class of timing templates.

After studying the signal timing behavior of many components, it was found that

setup timing parameter was almost always less than or equal to zero, while the hold

almost always was greater than or equal than zero. This property of the timing templ

included as theallowed range of valuesfor the timing parameters of a timing link. Fo

example, (-~ 0) for the setup time and (0 +~) for the hold time in Figure 4-12.

The allowed range for a timing parameter in a timing template allows representa

of heuristics used in interface design. It allows assumptions to be made about the t

behavior of a signal by simply looking at the timing template. In the non-multiplex

example of Figure 4-12, the setup and hold time allowed ranges enable us to assum

the SIG1 signal will become valid before the ref+ event, and it will remain valid un

after the ref- event, without having to consider the details of the timing.

The details for a timing are given by specifying the events and timing parameter

the example, the ref+ and ref- events are specified as (!ASSOAS*) and (!NEGOAS*).

The timings and their templates integrate well with frame based semantic netw

A set of frames representing the templates for all possible signal timings is created.

when a component is entered into the database, the appropriate signal timing tem

frames are instantiated for each signal timing and the details for the specific signal tim

are filled in.

4.7.2  Propagation Delay Invariance of Timing Templates

Timing templates were developed to provide a method that allows signals with s

lar timing behavior to be represented by the same timing template. Conceptually, if a
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nal is based on a given timing template class at one point in a circuit, it will be base

the same timing template class at any other point in the circuit.

The concept ofpropagation delay invariancewas developed to provide a method t

represent the design engineer’s knowledge of the effect of circuit elements, such as

on the behavior of a signal timing. A design engineer knows that conceptually, if a si

has a given timing behavior at one end of a circuit wire, it will have the same tim

behavior at the other end of a wire. However, physically, any two points of the same s

in a circuit will be separated by an inherent delay determined by the distance betwee

two points. Therefore the timing templates must have a property that preserves the b

ior of the timing template class even in the presence of inherent circuit delays whic

unknown until the design is implemented. The Interface Designer represents this heu

as the propagation delay invariance property of the timing templates.

The concept of propagation delay invariance is extended to other simple elect

devices such as buffers. A buffer is an active device that is used to restore the voltage

of a signal and/or increase the drive capability of a signal. Conceptually the timing be

ior of a signal before and after a buffer should be similar. In other words, the delay in

duced by a buffer can be treated as a simple inherent delay of the circuit and shou

fundamentally change the timing behavior of a signal.

The utility of propagation delay invariance can be seen from a simple exam

Assume there exist two microprocessor components: for component A, a silicon d

packaged in a plastic dual in-line package with signal pins, while component B use

same silicon die which is mounted on a printed circuit board with the signals going t

edge connector. Additionally, the address signals of component B have a buffer inser

increase the current drive capability. The propagation delay invariance property allow

timing behavior of the signal pins of component A and the edge connector signal pi

component B to be represented by the same timing templates. This provides three i

tant advantages: First, only one single model for the timing behavior for both compon

has to be developed. Second, rules representing design heuristics used for interface

of component A can also be used for component B. Third, the timings of signals withi

interface can be based on the same timing templates as those used for the compon

It is known that the propagation delay is greater than zero, finite and generally o

order of magnitude of the propagation delay of the technology used to implemen

design. However, the exact value is not known until a technology is chosen and the d
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is implemented. We shall call this type of delay anompdelay (for Order of Magnitude

Propagation delay). Typical values for an omp delay in LS TTL technology are 7-10n

An example of the effect of propagation delay on the signal timing, if the signa

delayed, is shown in Figure 4-13. SignalA3, based on a non-multiplexed timing templat

is delayed by an amountδ due to either physical separation or a buffer. Even though

resulting signalA3’ has different setup and hold timing parameters relative to the sa

referenceWR*, and the setup time changed sign (Ts < 0 and Ts’ > 0), theA3 andA3’ sig-

nals should be based on the same class of timing template.

Similarly, an example of the effect of a propagation delay on the signal timing if

reference is delayed is shown in Figure 4-14. The referenceWR*, is delayed by an amoun

δ due to either physical separation or a buffer to produceWR*’. Even though the signalA3

has different setup and hold timing parameters relative to the two reference signalsWR*

andWR*’, and the hold time changed sign (Th < 0 and Th’ > 0), the signal timings relative

to theWR* andWR*’ signals should be based on the same class of timing template.

4.7.3  Developing Propagation Delay Invariant Timing Templates

The last section established that signal timing templates must be propagation

invariant to assure that a timing template is unaffected by small delays inherent in a m

processor system. This section presents the methods used to make the signal timin

plates propagation delay invariant.

.

FIGURE 4-13.   Propagation Delay Invariance of Timing Template (Signal is Delayed)

WR*

Timing1 for A3 signal

δ
A3 A3’

WR*

Timing2 for A3’ signal

VALIDO VALIDO

δ represents a small inherent delay in the system (i.e. wire delay)
The timing template of signal A3 should be the same as the timing templa
signal A3’ even though A3’ is delayed byδ

Th Th’=Th+δTs Ts’=Ts+δ

A3 A3’

always-accompanied-by

WR*
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So far the timing templates presented consist of events, links between event

allowed range for the timing parameters for the links in the timing template. An exam

of a timing template was given in Figure 4-12 for the non-multiplexed signal timing te

plate. Is the timing template shown in Figure 4-12 propagation delay invariant?

answer is no, which can be seen from a simple example illustrated in Figure 4-15. As

there is a signalA3 with a signal timing that has a setup and hold timing parameter o

relative to the timing referenceWR*. Since 0 is included in the timing parameter range f

the template setup and hold times of Figure 4-12, this timing does indeed follow the

multiplexed timing template of Figure 4-12. IfA3 is delayed by a finite delayδ, the setup

and hold times of the resultingA3’ signal will change to +δ. A setup time of +δ violates

the allowed range imposed on the timing template of Figure 4-12 on the setup time of

.

FIGURE 4-14.   Propagation Delay Invariance of Timing Template (Reference is Delayed)

.

FIGURE 4-15.   Simple Setup and Hold Time Example

WR*

A3

Timing1 for A3 signal

WR*’

A3

Timing2 for A3 signal

VALIDO VALIDO

δ represents an inherent small delay in the system (i.e. wire delay)
The timing template of signal A3 relative to signal WR*
should be the same as the timing template for A3 relative to WR*’

Th Th-δTs Ts-δ

always-accompanied-by
δWR* WR*’

A3

even though WR*’ is delayed byδ

WR*

A3

(0) (0)

Timing for A3 signal

δA3 A3’

WR*

A3’

(+δ) (+δ)

Timing for A3’ signal

VALIDO VALIDO

always-accompanied-by
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0 (i.e. +δ does not fall within the interval (-~ 0)). Due to this violation, the signal timing

theA3’ signal can not be based on the timing template of Figure 4-12.

To make the timing template presented in Figure 4-12 propagation delay invaria

must be modified slightly as illustrated in Figure 4-16. To allow for the inherent delay

the system, the limits for the setup and hold time must be extended by an omp delay

ten as -omp and +omp). This is shown with the special symbol. T

indicates a range from the omp delay and the indicates the rang

negative infinity.

This section showed how a non-multiplexed timing template using always-accom

nied-by links can be made propagation delay invariant by adjusting the limits of

allowed timing parameter range. When developing the component model timings

sented in Section 4.8, all allowed timing parameters were investigated and adjust

allow for propagation delay invariance. Non-causal timing links are adjusted by exten

the allowed timing parameter limits by an omp delay, while causal timing links norm

do not require any adjustment since their allowed range due to causality must be (0

4.7.4  The Component Model Timings

The signal timings developed for the component model fully specify the behavio

signals relative to one or more reference events. Thereference eventsare detectable events

that are fundamental to the operation of a capability. For example in data transfer th

always an event indicating that a data transfer operation has started and an event ind

that a data transfer operation is about to complete.Fundamental to the operation of a

capability means that if the signals used to transfer some information are connected

signals generating the reference events must also be connected. For example cons

connection of the address signals on a microprocessor and a memory device. Conn

.

FIGURE 4-16.   Updated Non Multiplexed Signal Timing Template

Valid

REF

SIG1

hold timesetup time
limit: -~ to +omp limit: -omp to +~

hold time rangesetup time range

{{

omp propagation delay
(-~ +omp) (-omp +~]
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of the address signals alone is not enough to transfer the address information: some

signals (i.e. the signals that can be used for timing reference such as a data strobe

also be connected. In this case, the signals that generate the timing reference eve

considered fundamental to the operation of the capability.

4.7.5  Two Reference Event Timings for Data Transfer

This work develops a set of timing templates that can be used to represent the t

behavior of any information signal involved in data transfer. The signal timings develo

are based on two reference events, the first event, ref+, represents the initiation of th

transfer, while the second event, ref-, represents the termination of the data transfe

reference events are illustrated in timing diagrams as transitions on areference signal. The

reference is a virtual reference signal since the reference events are often genera

several signals, but only one signal is shown. The signal timing of any information si

is given relative to the two reference events. The reference consists of two compleme

detectable events ref+ and ref-, while the information signal consists of compleme

events sig+ and sig-.

The data transfer signal timings encountered in the microprocessor system co

nents investigated are divided into two groups.Non-interactive timingsgive the timing

behavior of an information signal relative to the two reference events whileinteractive

timingsgive the timing behavior of an information signal relative to the reference eve

and also the behavior of the reference events relative to the information signal ev

Interactive timings are used to specify the timings of signals that are used in the ov

control discussed in Section 3.4.2.2 on page 41. The difference between the two gro

timings can be seen in the direction of the timing links between the reference and info

tion signal events: If there is a timing link from an information signal event to a refere

event, the timing is an interactive timing, otherwise the timing is a non-interactive tim

Figure 4-17 shows an example of a non-interactive timing, where the refer

events have a timing link to the information signal events. This type of timing is typic

found for address signals in microprocessor systems such as theA1 signal of a MC68000

.

FIGURE 4-17.    Non-interactive Timing Example

VALIDOinformation signal

reference signal timing link
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microprocessor. There are no timing links from the information signal events to the r

ence events.

Figure 4-18 shows an example of an interactive timing where the reference e

have a timing link to the information signal events as in the non-interactive timing,

where an information signal event has a timing link to a reference event. A typical ex

ple for an interactive timing information signal is theDTACK* signal of a MC68000

microprocessor.

4.8  The Data Transfer Signal Timings

A signal timing for data transfer describes the relationship between two complem

tary events of an information signal (sig+ and sig-) relative to two timing reference ev

(ref+ and ref-). Figure 4-19 shows the timing links that are always assumed to be pr

between the ref+ and ref- events and the sig+ and sig- events unless otherwise spe

The signal timings described in this section are illustrated by showing the tim

links between events other than those shown in Figure 4-19. The range of the allowe

ues for the timing parameter of the timing links are shown using the symbol

or with respect to the reference event, as explained in Section 4.7.3, i

timing parameter is bounded by infinity on one side and an omp delay on the other.

.

FIGURE 4-18.   Interactive Timing Example

.

FIGURE 4-19.   Theoretical Timing Relations

information signal

reference signal timing link

 information signal

reference signal

complementary precedes

ref+ ref-

 sig+  sig-
eventually precedes
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FIGURE 4-20.   Non-Interactive Timing Templates - Part 1

VALID STATEinformation signal (O, I)

reference signal (O, I) hold time link
setup time link

always-accompanied-by

setup range hold range
(-omp +~)(-~ +omp)

information signal (O, I)

reference signal (O, I)

ALE signal (O, I)

VALID

hold time linksetup time link

clock hold time link
clock setup time link

hold range (-omp +~)
(-~ +omp) setup range

always-accompanied-by

clock hold rangeclock Setup range

ale-ale+

ref+ ref-

(-omp +~)(-~ +omp)

information signal (O)

reference signal (I)

VALID

hold time linksetup time link

responds-with

(0 +~) setup range hold range (0 +~)

Strobe Timing

Follows Timing

Latch Timing

information signal (O)

reference signal (O)

ASSONEGO NEGO
hold time link

setup time link

(-omp +omp) setup range hold range (-omp +omp)

accompanied-byLogic Timing
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causal timing link, where the timing parameter value is bounded by 0 one side and +

ity on the other, the symbol  is used.

All signals shown in a signal timing template are marked with an O for output o

I for input, indicating the allowed direction of the signals with respect to the compone

For discussion purposes, all timing links in the signal timings presented are g

names such as ‘setup time link’, ‘hold time link’, ‘response time link’, ‘acknowledge ti

link’ or ‘access time link’. The timing link names have slightly different meanings for t

different timing templates, and must be discussed in the context of the timing templa

which they are used. Figure 4-20 and Figure 4-21 present the non-interactive S

Latch, Follows Logic, Pulse-Latch and Follows-Latch timing templates, while Figure 4

presents the interactive Handshake, Wait and Pulse timing templates. A detailed de

tion of the different timing templates can be found in Appendix A.

.

FIGURE 4-21.   Non-Interactive Timing Templates - Part 2

information signal (I)

reference signal (O)

VALID

hold time link

setup time link

expects

(-~ +omp) setup range
hold range (0 +~)

access time link

(0 +~) access range

Pulse-Latch Timing

information signal (I)

reference signa (I)

VALID

hold time link

setup time link

hold range (-omp +~)
setup range (-~ +omp)

always-accompanied-by

Follows-Latch Timing
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4.8.1  Interactive Timings and the Initiate to Terminate Time Interval

The three interactive timings represent three fundamentally different methods

to adjust the time interval between the initiate and terminate events of the reference. I

ing the method of adjusting the initiate to terminate interval has two important advant

for modeling the signal timing of components and interface design:

First, it allows the concept of delay information to be developed. Delay informa

is information transferred between components that is used to adjust the initiate to t

nate interval. For example on a MC68000, the DTACK signal is used to pass informa

.

FIGURE 4-22.   Interactive Timing Templates

Handshake Timing (Inf ormation Signal is Input)

reference signal (O)

information signal (I)

hold time linkacknowledge time link

response time link

response range (0 +~)
acknowledge range (0 +~)

hold range (0 +~)

responds-with

expects

Pulse Timing

Wait Timing (Inf ormation Signal is Input)

reference signal (O)

information signal (I)

response time link
setup time link

acknowledge time link

acknowledge range (0, +~)

minimum range (0, +~)

response range (0, +~)

responds-with

complementary-precedes

minimum time

expects

setup range (0, +~)

Information Signal / Reference (O, I)

access range

Complementary-precedes

access time link
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to the MC68000 that indicates when it should terminate a data transfer. This work

develops universal techniques to connect information transfer, which can also be us

connect delay information.

Second, it allows separation of the interactive and non-interactive aspects o

information transfer. The separation provides a method of abstracting information tra

into more primitive and therefore simpler information transfers. For example, the des

tion of a read data transfer of a MC68000 is often presented relative to theUDS* and the

DTACK* signal as shown in Figure 4-23. The assertedUDS* event causes the memor

device to supply the valid data after an interval (A). Once the memory device supplie

data onD15, DTACK*is asserted after interval (B). An interval (C) later, theUDS*signal

is negated. Instead of a single timing behavior involving three signals, the timing beh

of the read data transfer is modeled as a Handshake Timing between theUDS* and

DTACK* signals and as a Follows-Latch Timing between theUDS* and theD15 signal.

The three interactive timings represent different methods of specifying the initia

terminate interval of the reference. The Handshake Timing specifies how the interva

be increased (from a lower limit), by delaying the time of occurrence of the asserted i

mation signal event as shown in Figure 4-24(b). The Wait Timing specifies what the i

val is if no information signal transition occurs as shown in Figure 4-24(c), and it spec

how the interval can be increased from a lower limit by delaying the time of occurrenc

.

FIGURE 4-23.   MC68000 Read Data Transfer

UDS*

DTACK*

D15

(A)

(B)

(C)

UDS*

DTACK*

UDS*

D15

interactive non-interactive

(D)
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the negated information signal event as shown in Figure 4-24(d). The non-intera

Pulse Timing simply specifies what the interval is, as shown in Figure 4-24(a).

4.8.2  Multiple Reference Signal Timings

The input reference on a device can consist of several signals. Often the ti

parameters of timing links to information signals are given relative to initiate and te

nate events of each of the reference signals. For example, Figure 4-25 shows th

access time T1 and T2 for a typical EPROM memory device relative to two signals,OE*

andCE*. How is the reference consisting of multiple signals given? And how are the o

signal timings given relative to this reference?

.

FIGURE 4-24.   Initiate to Terminate Timing Link Example

Reference

responds-with complementary-precedes

(300 350)
Figure 4-31(a)

Reference

Reference

Information Signal

(Variable)

(40 80)

(0 50) Figure 4-31(b)

Reference

Information Signal

(300 350)

(Variable)

(0 30) (40 80)

Pulse Timing

Handshake Timing

Figure 4-31(c)
Wait Timing

Figure 4-31(d)
Wait Timing
Case 2

Case 1

ref+ ref-

ref+ ref-

ref+ ref-

ref+ ref-

ref+ -> ref- @ (300 350)

ref+ -> ref-
@ (Variable) +(40 80)

ref+ -> ref- @ (300 350)

ref+ -> ref-
@(0 30)+(Variable)+(40 80)

expects

Information Signal

(DTACK*)

(WAIT*)

(WAIT*)
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By investigating a signal timing such as the one shown in Figure 4-25, it was r

ized that the reference consists of the logical AND of the signals involved as show

Figure 4-26. This resulted in the development of the concept of the AND signal tim

An AND signal timing provides a separate timing parameter for the timing links fr

each of the signals involved in the reference as shown. For example, the AND-Fo

Timing given in Figure 4-26 indicates that the timing is a Follows Timing, with differe

access timing parameters supplied for each of the reference signals.

.

FIGURE 4-25.   Data Access Timing for a Typical Slave Device

.

FIGURE 4-26.   AND-Follows Timing

VALIDData

T2

T1

CE*

OE*

responds-with

hold time linksaccess time links

VALID

reference signal =

Tn

T1

S1

Sn

S1*S2*…Sn

.

.

responds-with

setup time link

setup timing parameter (relative to S1)

setup timing parameter (relative to Sn)
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The following AND timings were found to exist: AND-Follows Timing (Figure 4

26), AND-Pulse Timing, AND-Strobe Timing, AND-Pulse-Latch Timing, AND-Latc

Timing, AND-Handshake Timing, AND-Wait Timing.

AND timings are similar to the other timings described in this section except t

have separate timing values associated with each reference signal. If one of the timi

a data transfer capability is given as an AND timing, all other data transfer capability

ings for that device are also given as AND Timings.

4.8.3  Signal Timing Summary

A total of seven output signal timings (Table 4-4) and seven input signal timi

(Table 4-5) were developed to represent the timing behavior of an information signa

data transfer. If the input timing reference consists of more than one signal, the inpu

ings will be AND timings, which means separate timing parameter values are provide

events on each of the signals used for the reference. Of the total number of nine signa

ings, six are non-interactive timings, while three are interactive timings which can be

to adjust and/or specify the initiate to terminate interval of the reference.

Strobe Timing

Follows Timing

Latch Timing

Logic Timing

Pulse Timing

Handshake Timing

Wait Timing

TABLE 4-4.   Output Specification Timings

Strobe Timing

Latch Timing

Pulse-Latch Timing

Follows-Latch Timing

Pulse Timing

Handshake Timing

Wait Timing

TABLE 4-5.   Input Requirement Timings
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4.9  Modeling Information Transfer

Information transferis the conveyance of information over signal wires. Inform

tion transfer over electrical signal wires requires the interpretation of some state tha

be found on the signal wires and an indication of when the state can be interpreted.

an information transfer is divided into two parts: thetiming informationindicating when

certain states are present on the signal and astate informationindicating the meaning or

interpretation of the state. The models developed so far allow us to give the timing i

mation of signals in the form of signal timings. The state information of a signal requ

the attachment of an interpretation or meaning to a set of states.

The concept of attaching an interpretation to a set of states is best explained us

example. The information transfer associated with the direction of a data transfer

MC68000 microprocessor is given in Figure 4-27. The timing information for this exa

ple is given by a signal timing that is based on a Strobe Timing template with a setup

of (-20 -10) and hold time of (10 20) as shown Figure 4-27. The timing information

used to indicate when the state information is transferred. TheRW*signal is used to indi-

cate a read if asserted and a write if negated. The state information for this inform

transfer is given by associating two keywords, ‘READ’ and ‘WRITE’, representing

concepts of reading from and writing to a component, with the appropriate states o

RW* signal.

The division of the information transfer into timing and state information integra

well with the frame based data structures used for component representation. An inf

tion transfer frame has slots containing the names of the timing information frame an

.

FIGURE 4-27.   Information Transfer Example

VALIDORW*

Reference Events

Timing Information State Information

StateInterpretation

‘READ’

‘WRITE’

(NEGO RW*)

(ASSO RW*)

Information Transfer
for direction information

(Interpretation Table)

(-20 -10) (10 20)

for MC68000
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state information frame. The state information frame is a table that associates som

words with signal states. The Interface Designer will look for the keywords to perfor

specific task, such as determining the state of a signal during a read operation.

4.10  Modeling the Data Transfer Capability

Data transfer is a capability whose specific purpose is to move specific informa

from one place to another in the microprocessor system. This well defined inform

will be called thedata information.

To complete the transfer of thedata information, there must be other informatio

transfers associated with it that indicate when thedata information should be transferred

how it should be transferred and where it should be transferred to/from. The descripti

how the different information transfers involved accomplish the data transfer is called

protocol of the capability. This section discusses a method of representing the protoco

the data transfer capability as a set of information transfers.

4.10.1  Organization of Data Transfer in a Microprocessor Systems

For data transfer to occur, requires a device to transmit the data, a device to re

the data, and a device to initiate and terminate the data transfer. For data transfer

found that all devices that are capable of initiating data transfer also terminate the

transfer, thus the initiator and terminator are the same device.

Once the data transfer is initiated, thedata information will eventually be trans-

ferred between two or more devices. There always will be one source for thedata infor-

mation and one or more destinations for thedata information. To initiate a data transfe

the initiator / terminator indicates to the transmitter to start the process of sending

data information to the receiver, while at the same time indicating to the receiver to

prepared to accept thedata information from the transmitter. To terminate the data tran

fer, the initiator / terminator indicates to the transmitter and receiver that thedata infor-

mation transfer is about to be completed. It should be noted that the terminatio

discussed here does not refer to some indication that the transmitter has transmitt

data information or that the receiver has accepted/received thedata information (i.e. an

acknowledge). It simply indicates that the data transfer process is about to be comp

The sequence of initiation, transfer and the termination is called adata transfer cycle. The

initiation and termination of the data transfer cycle can be recognized by events o

control signals. The initiation and termination events are used as the two reference e

for all data transfer signal timings.
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In most practical cases either the transmitter or receiver will also be the initiator

minator of the data transfer. A device that can receive and transmitdata information and

is also the initiator/terminator is commonly called amaster. A device that can receive and

transmitdata information but can not initiate and terminate the data transfer is co

monly called aslave.

In this work we will only consider the data transfer between master and slave c

ponents. The techniques developed for interface design can be extended to data t

for the more general receiver/transmitter model with a third device as the initiator/term

tor.

4.10.2  Classification of the Data Transfer Information Transfers

In classical treatment of microprocessor systems [18][65][35], data transfer is p

tioned into thedata information itself, the address information which indicates where

data is transferred to/from, and the control information which includes any other infor

tion required to complete the data transfer.

When investigating data transfer for microprocessors it was found that often pa

the information that indicates where data is transferred to/from consists of the ad

information plus some other information, such as information about the type of data s

(e.g. supervisor or user). For this reason it was decided to include the address inform

with the control information.

The control information is classified into information sub-classes: request, direc

address, type, size, width and delay. It should be noted that the same physical signal

used to transfer two or more different sub-classes of information.

The information supplied by the master that provides an indication of the direc

of data transfer is thedirection information, such as theR/W signal of the MC68000.

The location ofdata information is provided by using a linear address that rep

sents an index to a location. This information is calledaddress information, such as the

A1-A23  signals of the MC68000.

Thedata information transferred during a data transfer may be classified accor

to the type of information it represents. The classification of the information represe

by the data information is indicated usingtype information supplied by the maste

such as theFC0, FC1 andFC2 signals of the MC68000.
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Thedata information requested to be transferred often has different size from

transfer to the next, such as 8-, 16- or 32-bit words. The information associated wit

size of the transfer is calledsize information and is supplied by the master such as t

SIZE0  andSIZE1  signals of the MC68020.

There often can be more than one data path between two devices. For example

bit microprocessor has 4 separate 8-bit wide data paths available to transmit an 8-bit

mation word. The actual data path used to transfer data is selected by the slave in th

of width information, such as theDSACK0* DSACK1* signals of the MC68000. The

width information indicates to the master how wide the actualdata information path is

and which path is used.

Thesize andwidth information is used to completely specify dynamically size

data information transfers. For example, thesize information of a MC68020 micropro-

cessor might indicate a 16-bit word size data transfer request (of a possible 8-, 16- o

bit word). The device that responds to the data transfer may only be able to transfer d

8-bit words. The slave then indicates to the MC68020 that the transfer is only 8 bits u

theDSACK0*andDSACK1* width information signals. To complete the transfer of th

16-bit word the MC68020 will then request the transfer of the second 8-bit word.

4.10.3  The Request Information

Conceptually, the initiation and termination events can be treated simply as info

tion transferred between components. This information is called therequest information.

A design engineer will often connect therequest information implicitly whenever sig-

nals are connected between components, since therequest information is embedded in

signals which have functions other thanrequest information transfer. For example the

UDS* signal on a MC68000 contains both thesize information andrequest informa-

tion.

Making therequest information explicit provides a major advantage. It allows

to formalize the behavior of therequest information in a manner similar to all the othe

information transfers as state and timing information. This makes it possible to manip

and connect therequest information explicitly using the same method developed f

the other information transfers. Furthermore, the Interface Designer will be able to

ceed with the connection of the other information transfer signals with the knowledge

therequest  information will always be connected.
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A Logic Timing with a setup and hold time timing parameter of value (0) provid

us with a simple method to give the timing of therequest information. For example, in

the MC68000, the signals involved in initiate and terminate events are theUDS* and

LDS* signals. The MC68000request information consists of the MC68000request

timing information and the MC68000request state information as shown in Figure 4

28.

4.10.4  The Delay Information

The fundamental events underlying all data transfer operations are the initiate

terminate events of the reference generated by the master. The method to control th

period from the initiate to the terminate event is called theoverall control. The informa-

tion transfer associated with the overall control is called thedelay information. The con-

cept ofdelay information arose when investigating the interactive and non-interac

aspect of an information transfer as explained in Section 4.8.1. The delay information

resents the interactive aspect of the information transfer and is used to specify the

interval from the initiate to terminate event of the reference.

The delay information is classified into two types:Overall asynchronous control

andoverall synchronous control.

4.10.4.1 Overall Asynchronous Control

For overall asynchronous control the time between the initiate and terminate e

of the reference is adjustable. The terminate event of the reference can not occur unt

a delay information signal event occurs as shown in Figure 4-29. The adjustable

.

FIGURE 4-28.   Request Information Example

Reference

UDS*, LDS*

(0)(0)
(OR (ASSO UDS*) (ASSO LDS*))

’Request-Active-State’

MC68000 Request Information

MC68000 Request Timing Information

MC68000 Request State Information
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period is increased by delaying thedelay information event (grey circle in Figure 4-29)

The delay information for this type of overall control will be based on either a Han

shake Timing or a Wait Timing. For overall asynchronous control,delay information

flows from the slave to the master.

4.10.4.2 Overall Synchronous Control

For overall synchronous control the time period between the initiate and termi

events of the reference is fixed. Figure 4-30 shows a reference with a fixed time p

between the initiate and terminate events. Thedelay information for a data transfer of

this type will always have a timing of class Pulse Timing. For overall synchronous con

no information flows from the slave to the master.Delay information for overall synchro-

nous control simply specifies the initiate to terminate interval.

4.10.5  Summary of Information Transfer between Master and Slave

All the control and the data information discussed has an information flow direc

associated with it. Each control information either flows out of the master and into

slave or out of the slave and into the master as shown in Figure 4-31.

.

FIGURE 4-29.   Overall Asynchronous Control

.

FIGURE 4-30.   Overall Synchronous Control

reference (O)

delay information signal (I)

adjustable time period
responds-with

move this event to adjust

reference and delay information (O)

Fixed time period

complementary-precedes



93

on of

tion

e data

ation

be

for-

r pro-

een

the

s of

at the

ows

tim-
4.11  Conclusions

A component model has been created which allows a hierarchial representati

the component. The protocol of a capability is given as a set of state-timing informa

transfers. A set of information transfer classes has been developed to represent th

transfer capability of all microprocessor components. For data transfer, the inform

transfer classes aredata , address , direction , type , size , width , request

and delay information. Details of the frames representation of the component can

found in Appendix B.1.

Each information transfer is given as state and timing information. The state in

mation attaches meaning to the states of signals, while the timing information transfe

vides information of how and when information is transferred. A method has b

developed to represent similarities between timing behavior of different signals in

form of timing templates. All similar signal timings are represented by the same clas

timing template. The timing templates are propagation delay invariant: This means th

timing template of a signal will not change from one end of a wire to the other. This all

component signal timings with similar timing behavior to be represented by the same

ing template.speel-errorr

.

FIGURE 4-31.   Information transfer between master and slave

data Info

MASTER SLAVE

address Info

type Info

direction Info

size Info

width Info

delay Info

request Info
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Chapter 5

Microprocessor System Interface Model

This chapter develops data structures to represent the interface connecting the

ponents. The information organization is closely related to the hierarchial structure o

component model and the top down design methodology used to accomplish the int

design.

5.1  The Interface Block

An interface block(IB) represents the complete digital system that connects a ca

bility of two or more components together. For example, Figure 5-1 shows an IB that

nects the x capability of Component1 and Component2. These components could be

devices such as microprocessors, memories, UARTs or any digital systems such as

printer. The IB will have all the information signals related to the capability of the devi

flowing into and out of it.

5.2  The Information Connection Interface Sub-Blocks

The protocol of a capability is given as a sequence of information transfers ove

signal wires that connect to the signal pins of the devices. The IB is divided into inter

sub-blocks (ISB) calledInformation Connection ISBsor simply Info ISB.Each Info ISB

.

FIGURE 5-1.   Interface Block (IB)

Component1 Component2

Interface
Block
(IB)

Inputs Outputs
(I) (O)

Capability x

Capability X

Signals

Signals
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can have one or more information input port and a single information output port as sh

in Figure 5-2. The protocol of a capability determines which information transfer inpu

output ports are connected by Info ISBs. The output from an Info ISB can go to the i

of another Info ISB or to the input of one of the devices being connected.

5.3  Partitioning the Info ISBs

The intended function of the Info ISB is two-fold:

1. State Conversion: The states of the ISB information input port signals are used to g
erate the correct states on the output of the Info ISB.

2. Timing Conversion: The timings of the ISB information input port signals are used t
generate the correct timing on the output of the Info ISB.

To accomplish the two functions, the Info ISB is partitioned into ISBs for state c

version and ISBs for timing conversion, calledState ISBandTiming ISBrespectively. The

choice of using separate State and Timing ISBs is a natural one since the state conv

can be accomplished with a combinatorial circuit, while timing conversion is acc

plished with a memory device such as a Flip-Flop. This can be seen with a simple e

ple. A microprocessor with a multiplexed address bus and a memory with a

multiplexed inverted address bus are to be connected. To accomplish the timing co

sion, the microprocessor address bus must be demultiplexed (this is usually done

transparent D-Latch). To accomplish the state conversion the address signals m

inverted (this is usually done with an inverter).

The State and Timing ISBs will take the input signals of the Info ISB, make

appropriate conversions, and then generate the output signals. Figure 5-3 shows

.

FIGURE 5-2.   Information Connection Interface Sub-Blocks (ISB)

Device1 Device2Interface
Block
(IB)

ISB ISB

ISB

ISBInfo A
Info B

Info C

Info D Info D’

Info A’
Info B’

Info E

Info F

ISB
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ways of organizing the state and timing conversion within an Info ISB. In Figure 5-3

the timing conversion is performed first, followed by a state conversion. In Figure 5-

the state conversion is performed first, followed by the timing conversion, while

Figure 5-3(c) the timing and state conversion is performed in parallel. Attempting to

form the state conversion and timing conversion in parallel results in a design dilem

After the timing and state conversion, two signals will exist which must now be use

produce a single output signal as shown in Figure 5-3(c). It is difficult, if not impossi

to define what the block marked ‘Combine?’ in Figure 5-3(c) has to accomplish.

Figure 5-4 shows the organization of the Info ISB that was chosen to accomplis

task of timing and state conversion. The timing conversion is performed on each s

entering the Info ISB. The output of each Timing ISB goes into the State ISB.

The order of the State and Timing ISBs was chosen to allow the timing behavio

each signal to be fine-tuned before the state conversion takes place. This imitates th

a designer will normally accomplish the task of timing and state conversion. For exam

assume a designer must generate a decoded address signal from a multiplexed addr

Normally the designer will demultiplex the address signals (timing conversion) and

pass the demultiplexed address signals into the address decoder (state conversion)

.

FIGURE 5-3.   Timing and State Conversion Order

(a) Timing Conversion First, State Conversion Second

StateTiming
ISB ISB

Signal In Signal Out

State Timing
ISBISB

Signal In Signal Out

State

Timing
ISB

ISB
Signal In Signal Out

Combine?

(b) State Conversion First, Timing Conversion Second

(c) State Conversion and Timing Conversion in Parallel
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5.3.1  The Timing ISBs

The output signals of one device will exhibit certain timing behavior, and the o

device will require its input signals to have a certain timing behavior. To connect the

devices, the timing behavior of the output information must be translated (modified) u

a Timing ISB so that all timing requirements of the device receiving the information

satisfied. There are basically only two methods of changing the timing of a signa

clocked memory device and a pure delay.

A clocked memory devicecan store the state of a signal until the occurrence of

event called a clock event.

A pure delaytakes an event and delays it a certain amount of time (e.g. a w

buffer, delay line or, under some circumstances, a combinatorial circuit). A pure delay

generate an identical version of the event sequence, except delayed in time.

The signal timings developed in this work give the general timing behavior of

nals in the form of timing templates and the specific timing behavior of the signals in

form of timing parameters. The pure delay and clocked memory device are used to c

different aspects of a signal timing. A clocked memory device such as a D-Latch will

mally change the timing template a signal is based on. A pure delay such as that fr

wire, buffer or combinatorial circuit will normally only change a signal’s timing param

ters, while preserving a signal’s timing template. A signal’s timing template is prese

for a small pure delay, since the timing templates were designed to be small delay in

ant as discussed in Section 4.7.2.

.

FIGURE 5-4.   Details of Information Connection ISB

State

Timing
Converter

Timing
Converter

SI1
SI2

SI3
SI4
SIk

Information Connection ISB

Information
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InfoB
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For example, Figure 5-5 shows the effect of a clocked memory device and a

delay on the timing of a signalSIG1 . Figure 5-5(a) shows the signalSIG1, which is

based on a Latch Timing template passing into a transparent D-Latch (a clocked me

device) to produce signalSIG2 . The signal timing ofSIG2 is completely different than

that of theSIG1 signal and is based on a Strobe Timing template. Figure 5-5(b) sh

the information signalSIG1 , passing through a buffer with delayd to generateSIG3 . The

timing of SIG3 is also based on a Latch Timing template and the timing parameters

increased by the amount of the delayd.

The above discussion of the effect of pure delay and clocked memory devices o

timing behavior of a signal is general and should be used as a guideline. There are e

tions where a pure delay changes the timing template of a signal (for example if the

delay is longer than an omp delay), or where a clocked memory device preserves th

ing template of a signal and only changes the timing parameters.

The Timing ISB is designed by analyzing the required ISB output timing and

available ISB input timing and choosing either a clocked memory device or a pure del

accomplish the appropriate timing conversion.

5.3.2  The State ISBs

The output signals of one device have certain states, and the other device

require its input signal to have certain states, with a meaning associated with each

The meaning of a state refers to items such as a specific address for address inform

or a specific direction for direction information. To accomplish the connection of the s

.

FIGURE 5-5.   Effect of Pure Delay and Clocked Memory Device on a Timing

SIG1

reference

ALE

Latch timing
D

CK

Q

(a) Clocked Memory Device (D-Latch)

ALE

SIG1 SIG2

(b) Pure Delay (buffer or wire)

SIG1 SIG3

ValidSIG2

reference

Strobe timing

[y +~][-~ x]

[b +~][-~ a]

delay d SIG3

reference

ALE

Latch timing

[b+d +~][-~ a+d]
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information, the state information between two devices must be translated using

kind of circuitry, so that they are compatible with each other.

For most information exchanges in microprocessor systems the translation inv

only logical operations on asserted or negated signal states, and simple combin

logic can be used for the state translation. The combinatorial state translation involve

input to m-output combinatorial circuit, which can be generated using m n-input, 1-ou

combinatorial circuits as shown in Figure 5-6[37].

Sometimes the state translation involves states other than ASSERTED

NEGATED. In these cases specialized hardware, calledlevel converters, must be utilized

for the state translation. For example, a tri-state buffer can be used to change the sta

signal from ENABLED to OPEN as shown in Figure 5-7.

The State ISB is designed by analyzing what the required output state of the

and inserting the appropriate State ISB made up of either combinatorial circuits or sp

ized signal level converters such as tri-state buffers.

.

FIGURE 5-6.   Combinatorial State

.

FIGURE 5-7.   Tri-state Buffer

State ISB

Boolean
Function F
n-Input to
m-Output
Decoder

n m– –Inputs Outputs

Combinatorial
Circuit

n

m 1-Output

–

–

Inputs

n-In to 1-Out

Combinatorial
Circuit–
n-In to 1-Out

n
Inputs

Combinatorial
Circuits

Signal In
From ENABLED Output

Signal Out
Required to be OPEN at one time,
ENABLED at another time

Enable
This Signal will make the Signal Out
Either OPEN or ENABLED
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5.4  Interface Sub-Block Primitive Circuits

The IB is organized into a hierarchial series of ISBs as shown in Figure 5-8. At e

level of abstraction, the ISBs become more and more detailed. At the lowest leve

ISBs are simple digital circuits with known, well defined behavior. These simple dig

circuits are devices such as AND gates, OR gates, flip-flops or buffers. They are the

ing blocks from which the ISBs are ultimately constructed. These digital circuits

calledISB primitives (ISBP).

An ISBP is a simple, well defined digital circuit. The circuit can have any numbe

input and output signals. It is considered primitive since its input / output behavio

known, and it can not be broken into smaller sub-circuits by the Interface Designer. T

are basically three types of ISBPs that are allowed in an ISB and that are primitive:

• Combinatorial primitive circuit, which includes any combinatorial circuit without feed
back.

• Memory primitive circuit, which includes flip-flops, latches and delay elements.

• Level Conversion Primitives, which includes tri-state buffers and open collector drive

The choice of which ISBPs to use to build up the interface is up to the inter

designer. The knowledge about which ISBP to use to manipulate state and timing info

tion is represented with design rules.

.

FIGURE 5-8.   Interface Block Organization

Device1 Device2
Interface
Block (IB)
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Port1

Port4

Port7
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5.4.1  Common ISBPs and their Behavior

A set of eight ISBPs was developed for the Interface Designer. The set of ISBPs

chosen to facilitate the design of all possible State and Timing ISBs the Interface Des

may encounter. For example, the state conversion is normally accomplished using a

binatorial circuit, thus the combinatorial circuit was chosen as one of the primitives. S

larly, the timing conversion to convert a multiplexed signal to a non-multiplexed sign

normally accomplished by a D-Latch, thus the D-Latch was chosen as one of the IS

All state and timing conversion possibilities between IB inputs and outputs were ex

ined, resulting in the ISBPs presented in this section. The set of ISBPs chosen

unique, and it is possible to develop a different set ISBPs to facilitate the design o

State and Timing ISBs.

The ISBP’s behavior is divided into two domains: the value domain and the t

domain. Thevalue domaindeals only with the logic function of an ISBP. It represents t

transformation of I/O values and ignores the I/O timing relations. The logic functio

what a designer generally remembers about a device without looking up specific deta

a data book. For example take a D-Flip-Flop: a designer usually will remember tha

data input will be transferred to the Q output on a clock transition, but he will often

remember what the specific setup and hold times are. This knowledge represents th

function. Thetime domaindeals with the I/O timing relations such as event propagat

delays and signal setup and hold times for any signal going into and coming out o

ISBP. Values associated with the I/O timing relations of an ISBP are referred to asISBP

parameters.

In the Interface Designer, the ISBPs are represented using a VHDL [2] beha

description which defines their behavior precisely. There are four advantages to rep

the ISBPs using VHDL: First VHDL provides a well developed, standardized metho

describing a digital circuit using familiar programming language forms. Second, spe

ing the ISBPs using VHDL allows the complete structure of the designed interface t

given using VHDL. This means that once the frame based IBs and ISBs are comp

they can easily be translated into structured VHDL code which utilizes the VHDL ISB

Third, VHDL provides a method of simulating the behavior of a design without the de

and expense of hardware prototyping. And fourth, the VHDL description of the inter

can be used for synthesis: The actual hardware can be synthesized using a VHDL s

sis tool. There are other hardware description languages, such as VERILOG, that co

used to describe the ISBPs. VHDL was chosen due to its availability and ever incre

industry support.
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The final output of the Interface Designer will be the description of an impleme

tion of the microprocessor system interface. By representing the ISBPs using VHDL

eral methods of implementing the microprocessor system are possible. The V

description can be manually converted to an implementation using discrete logic su

TTL gates, since the ISBPs were chosen to easily map to available TTL devices

VHDL description can also be used for automatic synthesis of the interface for diffe

target implementation platforms, using field programmable devices such as PALs,

INX programmable logic devices, Alterra EPLDs, or custom VLSI devices such as

arrays.

The ISBPs developed for this work are presented in this section. For each IS

circuit diagram logic symbol is provided, showing its inputs and outputs. A timing d

gram is used to indicate relationships in the form of events and states between the

and output of the ISBP. Finally, the VHDL code description is given for each ISBP in

form of an entity definition and an architecture for each entity. Following commonly u

terminology a device described in VHDL is called anentity, while the description of its

operation of the device is called itsarchitecture.

5.4.1.1 Combinatorial ISBP

Any single output combinatorial circuit of arbitrary complexity, without feedback

a Combinatorial ISBP. The behavior of the Combinatorial ISBP is represented by its B

ean equation F, which is a function of the inputs I1 … In as shown in Figure 5-9 and the

propagation delay TPD. The effect of any changes on the inputs of the Combinatorial IS

.

FIGURE 5-9.   Behavior Model of Combinatorial ISBP

I1
I2
I3

In

O

n-Input
Combinatorial
function

(no delays)

O = F(I1,I2, … In)

I1,I2, … In

O O

 time relationTPD

TPD

I1,I2, … In
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propagate to the output after a delay TPD. A VHDL behavior model of a 2-input AND

Combinatorial ISBP is given in Table 5-1. The Combinatorial ISBP is also used within

description of other ISBPs such as the Leading Edge Delay.

5.4.1.2 D-Flip-Flop Clocked Memory ISBP

An edge triggered D-Flip-Flop is a simple memory ISBP with two inputs (D and

CLK) and one output (Q). It was chosen because it is simple to analyze and it can be u

to build other edge triggered Flip-Flops such as J-K-Flip-Flops.

An edge triggered D-Flip-Flop latches the input data on the NEGATED

ASSERTED clock edge as shown in Figure 5-10. A VHDL behavior model of the D-F

Flop ISBP is given in Table 5-2. The time domain behavior of the D-Flip-Flop inclu

three time relations shown Figure 5-10: Tsu and Th are the input setup and hold time

requirements, while TCLK is the clock edge to output delay (tclk in VHDL code). Th

entity  AND2 is
generic (tpd : TIME :=10ns);
port (IN1, IN2: in  STD_LOGIC; OUT1: out  STD_LOGIC);

end  AND2;

architecture  BEHAVOIR of  AND2 is
begin

OUT1 <= IN1 and  IN2 after  tpd;
end  BEHAVOIR;

TABLE 5-1.   VHDL Behavior Model of 2 Input AND ISBP

.

FIGURE 5-10.   Behavior Model of Edge Triggered D-Flip-Flop ISBP

D Q

CLK

SI

SO

CLK

IN1(D)

OUT1(Q)

CLK

IN1
OUT1

D-Flip-Flop

ThTsu

TCLK

TCLK
Tsu, Th

TCLK

SO=SI

 time relation
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VHDL D-Flip-Flop shown here is a simplified version of the one actually used. The c

plete VHDL code for the D-Flip-Flop, which also includes a reset signal, is shown

Appendix C.2.6. The current Interface Designer does not use the D-Flip-Flop directly

uses it to implement Pure Delay ISBPs (discussed below). Once the capabilities o

Interface Designer are expanded, the D-Flip-Flop ISBP could be used to build outpu

isters or to synchronize an asynchronous signal to a system clock.

5.4.1.3 Other ISBPs

The other ISBPs developed are the D-Latch (Figure 5-11), Pure delay (Figure 5

Leading Edge Delay (Figure 5-13), Trailing Edge Delay (Figure 5-14), Tri-State Bu

entity  D_Flip_Flop is
generic (tclk : TIME :=10ns);
port (IN1, CLK : in  STD_LOGIC; OUT1: out  STD_LOGIC);

end  D-Flip-Flop;

architecture  BEHAVOIR of  D_Flip_Flop is
begin

process  (CLK)
begin

if  rising-edge(CLK) then
OUT1<=IN1 after  tclk;

end if ;
end process ;

end  BEHAVOIR;

TABLE 5-2.   VHDL Behavior Model of D-Flip-Flop ISBP

.

FIGURE 5-11.   Behavior Model of D-Latch ISBP

SI

SO

CLK
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ThTsu
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CLKCLK
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of
(Figure 5-15) and Open Collector Buffer(Figure 5-16). The VHDL behavior model

these ISBPs is given in Appendix C.2.

.

FIGURE 5-12.   Behavior Model of Pure Delay ISBP

.

FIGURE 5-13.   Behavior Model of Leading Edge Delay Primitive

.

FIGURE 5-14.   Behavior Model of Trailing Edge Delay Primitive
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5.4.1.4 ISBP Timing Simulation

A simulation test bench for the VHDL ISBPs was developed to verify their ope

tion. The VHDL test bench was compiled and simulated using Mentor Graphics Corp

tion VHDL tools. The result of the simulation is shown in Figure 5-17. ‘in1 ’, ‘ in2,

.

FIGURE 5-15.   Behavior Model of Tri-State Buffer Primitive

.

FIGURE 5-16.   Logical Model of Open Collector Buffer Primitive

FIGURE 5-17.   Simulation of Primitives
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clk, en ’ and ‘sys-reset ’ are three signals generated within the simulation te

bench. ‘in1 ’ connects to theIN1 input of a device, ‘in2, clk, en ’ connects either

to the IN2 input, CLK clock input orT tri-state enable input of a device, while ‘sys-

reset ’ connects to thereset input of a device. Theout1 output is shown for the 2

input AND gate (AND2), D-Latch (D-LATCH), D-Flip-Flop (D-FF), Pure Delay (PURE

DEL), Leading Edge Delay (L_EDGE), Trailing Edge Delay (T-EDGE), Tri-state Buf

(TRI_BUF) and the Open Collector Buffer (OPENCOL). The test bench used a gate p

agation delay tpd of 4ns, a clock to output delay tclk of 5 ns and a tri-state enable

delay of 8 ns. The Pure Delay has a 50 ns propagation delay, while the Leading Edg

the Trailing Edge Delays have a propagation delay of 100 ns and 150 ns respectivel

Pure, Leading and Trailing Edge Delays are implemented using D-Flip-Flops clo

with the ‘sys-clock ’ signal.

The timing diagram verifies the correctness of the VHDL specification of the ISB

and the operation of the ISBPs. For example, the timing diagram shows the delay o

in1 , 0 to 1 edge by approximately 50 ns, 100 ns and 150 ns for the Pure, Leading

Trailing Edge Delays respectively. As expected, the delays are not exactly 50, 100 an

ns due to the inherent delays of the ISBPs.

5.5  Interface Representation Summary

This chapter discussed how the interface is represented as a hierarchial data

ture that will be created and built up during the interface design process. The interfac

a capability is represented using an Interface Block. The IB is sub-divided into Info IS

These in turn are sub-divided into Timing and State ISBs. The timing and State ISB

given using ISBPs. A set of ISBPs was developed to allow for the conversion of c

monly found timing and state information formats. The ISBPs include a Combinato

ISBP, a Tri-state Buffer and Open Collector Buffer ISBP for state information conver

and a D-Latch, D-Flip-Flop, Pure Delay, Leading Edge Delay and Trailing Edge D

ISBP for timing information conversion. Each ISBP has a VHDL representation wh

allows testing and implementation of the interface using various technologies. Deta

the frame representation of the interface can be found in Appendix B.2.

thiswordchecksspelling
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Chapter 6

The Interface Design Process

6.1  Introduction

This chapter introduces the interface design methodology and its representat

the Interface Designer. Automation of the interface design process is complicated b

fact that often no formal method or precise algorithm exists for all aspects of this de

process. A human designer will use heuristics to complete the design. In this work

heuristic knowledge about interface design is represented in the form of design rule

utilize knowledge at specific abstraction levels of a component’s capability. This is on

the primary reasons for the emphasis placed on abstraction in the development of the

ponent and interface models presented in Chapter 4 and Chapter 5.

Figure 6-1 gives an overview of the underlying fundamentals of the design proc

A component (Component1) has output information signals with a given state-timing

put specification SigSpec1 as specified by the component manufacturer. An output s

cation gives the state and timing specification of an output signal. Another compo

(Component2) receives some input information signals with a given state-timing i

specification SigSpec2 as specified by the component manufacturer. A state-timing

specification gives the state and timing requirements of an input signal.

The design of the interface blocks follows a top down design practice. This m

that the problem of the interface design is broken down into the design of interconn

sub-systems, which in turn are broken down into the design of more detailed sub-sy

.

FIGURE 6-1.   Interface Design Process

Component1 Component2

IB

FIB

Output Specification=
SigSpec1’=

Output Spec

InformationA:
Output
Specification

InformationB:
Input
Specification

SigSpec1 SigSpec2

FIB(ISBP Parameters, SigSpec1)
is propagated
Forward

SigSpec1

ISBP Parameters
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until finally at the most detailed level simple, well defined ISBPs are chosen to build

interface. These ISBPs will have ISBP parameters associated with them, such as pro

tion delays and setup and hold times, whose values will not be known until after the i

face design has been completed and an implementation technology has been chose

is one of the problems that makes interface design difficult: the design must proceed

out knowing the values of the ISBP parameters.

The design of the interface block has one fundamental goal: It must allow the

interfaced components to operate within the limits of the specification supplied by

component manufacturers. As shown in Figure 6-1, the design process developed

work accomplishes this goal by propagating the output specification of Compon

SigSpec1, forward through the Interface Block (IB), resulting in an output specifica

SigSpec1’. The output specification of the IB, SigSpec1’, is derived as a function FIB, of

the ISBP parameters and the output specification of Component1, SigSpec1. On

design is complete, an implementation technology is chosen with known ISBP par

ters, and the timing parameters of SigSpec1’ are evaluated. The implementation tec

ogy also could be chosen before starting the interface design, and the SigSpec1’ t

parameters can be evaluated as SigSpec1 is propagated forward through the IB. The

face Designer uses the first approach, where the implementation technology is c

after design completion, to give the user the option of evaluating different implementa

technologies for a given design. In any case, once the timing parameters of SigSpec

known, they are verified against the SigSpec2 input specification, assuring that the f

mental goal is satisfied.

This chapter first presents the hierarchial tasks used to perform interface desig

satisfy the above fundamental goal. This is followed by an overview of the termino

used for the building blocks and signals within the Interface Designer. The rules deve

to accomplish each of the Interface Design tasks are then presented in separate sec

6.2  Abstraction of the Interface Design Tasks

The interface design is divided into several hierarchial tasks which will be acc

plished using rules in a production system. The design tasks are organized into the

layers shown in Figure 6-2. The top level Component Selection design task (Leve

selects components and decides which components must be connected by an int

The second level Capability Interface design task (Level B) creates an interface bloc

each capability that must be connected between components. Next, the interface

connecting a capability is broken into a set of Information Connection ISBs (Level
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The fourth level of the design hierarchy divides the Information Connection ISB into S

and Timing ISBs (Level D). The next task fills the State and Timing ISBs with ISB

(Level E). After an implementation technology is chosen, timing verification is perform

(Level F). Finally the interface is implemented using a VHDL description which allo

the design to be simulated or realized using real components (Level G). If problem

found during the timing verification or the implementation phase of the interface des

most likely the components are incompatible and the design process should be rep

using a different selection of components.

This work places emphasis on the development of design rules that can accom

the design tasks by assembling and connecting building blocks applicable to a part

abstraction level. By using design rules specific to a design abstraction level, task int

pendence is reduced. This in turn reduces the number of rules required to achieve

task and it simplifies the development and maintenance of the rules. For example, a

rules was created to accomplish the division of a generic Information Connection ISB

State and Timing ISBs (Level D). These rules are independent of the actual classific

of the information being transferred, found in Level C (i.e. they are independent o

information transfer such asaddress information ordirection information), and

they are independent of the actual timing templates of the signal timing found in Lev

(i.e. they are independent of the timing behavior such as multiplexed Latch timing or

multiplexed Strobe timing). The number of rules is reduced since it is not necessa

provide an Information Connection ISB division rule for each class of information tra

fer, or for each timing template. If a new class of information transfer has to be adde

FIGURE 6-2.   Interface Design Task Abstraction Levels

(B) Capability Interface

(C) Information Connection Interface

(D) Timing Information Interface (D) State Information Interface

(E) Primitive Circuit Design

(G) Implementation

(F)Timing Verification

(A) Component Selection
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the capability, the rules dividing an information transfer into state and timing parts do

have to be modified since they are independent of the information class. Thus the m

nance of the rules is also simplified.

This work is primarily concerned with the design of the interface between com

nents (levels B to G), not the selection of the components (level A). Design rules

developed to accomplish the interface design which follow the design task abstractio

els found in Figure 6-2.

6.3  Overview of the Interface Block Design Terminology and Process

Figure 6-3 shows a typical IB. The IB is sub-divided into Information Connect

ISBs, also called Info ISBs. The Info ISBs are used to connect information transfer p

between components. Each information transfer port will consist of one or more sig

Thecomponent output signals(A) will be connected toIB input signals(B). The IB input

signals are connected toInfo ISB input signals(C). Each Info ISB may have one or mor

input signal. In Figure 6-3, ISB1a and ISB1b have one input signal, ISB2 and ISB4

two input signals, while ISB3 has three input signals. Each Info ISB input signal is c

nected to the input signal of a Timing ISB. The output signal of the Timing ISB is ca

the intermediate signal(I) and it is connected to the input of the State ISB. The output

the State ISB is connected to theInfo ISB output signal(D). The Info ISB output signal

can be connected to the input of any external component as anIB output signal(F), or it

can be connected to other Info ISBs as aninternal signal(E). An internal signal is an Info

ISB output signal that only connects to other Info ISB inputs. The only signals conne

to the inputs of an Info ISB (C) are IB input signals (B) or internal signals (E). Each sig

in Figure 6-3 has an associated timing: The component output timing (A), IB input tim

(B), Info ISB input timing (C), Info ISB output timing (D), internal timing (E), IB outpu

timing (F), component input timing (G) and intermediate timing (I).

The interface design process builds up the IB from building blocks specific to e

design task abstraction level. Design of the interface commences at the highest abst

level with the creation of an IB. The IB is created from an IB prototype without specify

internal details, but with all IB input signals (B) and IB output signals (F) specified.

At the next task abstraction level, the IB is filled in with Info ISBs interconnec

with Info ISB input and output signals. When each Info ISB is first created, a goal in

mation specification is established for the ISB output. Thegoal informationis the desired

output state-timing specification of the Info ISB, and the Interface Designer will de
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the Info ISB so that the output specification of the Info ISB matches the goal informa

The design methodology to determine the goal information will be discussed

Section 6.5.5.

The Info ISBs are built up from State and Timing ISB building blocks. Finally t

Timing and State ISBs are built up using ISBPs as building blocks. The ISBPs are ch

in a way to generate the desired goal information on the Info ISB output. This is acc

.

FIGURE 6-3.   Design Process Overview and Terminology
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[77],
plished by first filling in the State ISB with a Combinatorial ISBP, and then filling in ea

Timing ISB with a Timing ISBP.

An Info ISB can only be designed if its input state and timing specification

known. This means that any Info ISBs whose inputs come from component output

designed first, since the signal timings of any component output signals are known

the component library (ISB1a,b and ISB2 in Figure 6-3 are designed first). As an Info

is designed, its specific output timing parameters, such as the setup and hold times,

determined. Any Info ISB that uses the known outputs can then be designed. In the e

ple in Figure 6-3, both Info ISB3 and ISB4 can be designed after ISB2 has been comp

since the internal signal (E) comes from the output of ISB2. Since the design of an

ISB involves the generation of its output signal timing, the output timings of the IB will

known after the completion of all Info ISBs. Once an implementation technology is c

sen the IB output timing can then be checked to see whether it satisfies the comp

input timing, thus verifying that a correct interface has indeed been produced.

The following sections present the rules developed to accomplish each of the I

face Design tasks.

6.4  Creating the Interface Block

The Interface Designer is invoked by a connection request to design a required

face. A connection request specifies the components selected, the class of capabi

connection must satisfy and specific information related to the capability.

The data transfer interface connection request contains a list of the componen

must be connected through an IB, the address map assigning a unique address to

the components being connected, the direction of the data transfer, type of data to be

ferred and information about the data bus size used for the data transfer. Other inform

that may be included in the connection request is an indication on what the design pr

is: Should the Interface Designer emphasize high speed, low cost, small PC boar

estate or low power consumption? The connection request must provide all the info

tion necessary to complete the interface design.

This work is not concerned with how the connection request is generated.

assumed that the connection request is provided either directly by the user of the d

system or through a higher level expert system similar to the one used in the MAPLE

MICON [10] and KDMS [45] microprocessor system synthesis systems.
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An IB for a capability is created by a rule that is triggered by a connection req

frame as shown in Figure 6-4. The signals in and out of the IB are all the signals invo

in the capability X.

6.5  Partitioning the IB into Info ISBs

To partition the IB, the protocol of the capability is treated as a series of informa

transfers which are connected using Info ISBs. Each information transfer is assoc

with a specific function in the protocol of the capability. For data transfer the proto

requires thataddress , data , type , size , direction , request , delay and

width information transfer signals be considered for connection using Info ISBs.

decision on which information transfer ports will be connected depends on which in

mation transfer ports exist and the capability being connected. Rules are used to rec

the presence or absence of information transfer ports on a component. Figure 6-5

typical Info ISBs created by these rules when they are triggered (in Figure 6-5 an Info

is called an ISB).

The primary knowledge for this design task are rules that consider how the diffe

information transfers in a capability should be connected. Figure 6-5 shows a ty

example set of information transfers involved in a microprocessor to memory data tra

interface. It should be noted that some of the information of a certain classification ca

found on both components being connected (for exampleaddress , direction ,

request anddata information in Figure 6-5), while others are only found on one co

ponent (for exampletype  anddelay  information in Figure 6-5).

FIGURE 6-4.   Capability Connection IB Creation
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The organization of the interface block shown in Figure 6-5 is somewhat depen

on the design style of the designer. Different designers may produce equally co

designs with a different layout of Info ISBs.

Figure 6-5 also shows the generation of internal information ports. AnInternal

information portrefers to any port generated within the IB and only connects to the inp

of other Info ISBs within the IB, such as the internaldecoded request information.

Internal information ports are introduced since they provide a flexibility method of re

senting the knowledge and heuristics a designer uses for interface design. Internal

mation serves two purposes, which may overlap. First, an internal information port ca

used to generate information internal to the interface that is not available directly from

components, such as the internalaccess information in Figure 6-5. Second, an interna

information port can be used to provide information signals commonly used in a stan

.

FIGURE 6-5.   Example Microprocessor / Memory Interface Info ISBs
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format. For example a designer will normally use an address decoder to gener

decoded address signal. The decoded address signal is then used in conjunction wit

signals (such as a data strobe) to generate the chip enable signal for a memory com

or to generate the enable signal on a bus transceiver. The internaldecoded address

information generated in ISB1b of Figure 6-5 is equivalent to the decoded address s

This example also shows that internal information ports provide a powerful tool to s

rate the utilization of information from the generation of information.

A set of rules is required to generate the Info ISBs in the context of the capab

being connected. These rules must be aware of all the possible information input an

put ports for a capability and they must include knowledge about how to determine

goal information. These rules are divided into the following categories:

1. Knowledge on how to connect information ports of the same class.

2. Knowledge on how to generate internal information ports.

3. Knowledge on how to use theextra informationprovided by an output port of a compo
nent if there is no matching input port on the other component.

4. Knowledge on how to generate themissing information required by the input port of a
component if there is no corresponding output port on the other component.

5. Knowledge on how to generate the goal information of an Info ISB.

The rules required to represent each of the five categories are discussed in th

lowing sections.

6.5.1  Rules Used for Connecting Information Signals of the Same Class

If information ports with the same class exist between two components, they sh

be connected. Rules are used to recognize the presence of the same class of informa

If Master has Info and Slave has Info Then generate ISB to connect Info

data  (In/Out) data  (In/Out) data  to data

address  (Out) address  (In) address  to address

direction  (Out) direction  (In) direction  to direction

type  (Out) type  (In) type  to type

size  (Out) size  (In) size  to size

request  (Out) request  (In) request  to request

width  (In) width  (Out) width  to width

delay  (In) delay  (Out) delay  to delay

TABLE 6-1.   Connections Rules for the Same Information Class
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the components that are being connected. These rules, if triggered, will create an Inf

for each common information class found. For example, in Figure 6-5 ISB1 connect

address information ports between Component1 and Component2. Table 6-1 list

the connection rules developed to connect data transfer ports of the same class.

6.5.2  Rules for Generating Internal Information Ports

The design of the Info ISBs is modularized and simplified through the use of in

nal information ports with known classification, states and timing. The standardized i

nal information signals can be used by the Interface Designer during numerous parts

IB design.

The utility of internal information ports can be illustrated with the simple exam

design shown in Figure 6-6. The purpose of this Info ISB is to activate theCEsignal on

the memory whenever the address signals have a certain state and whenever eithe

UDSor LDS signals are asserted. By using internal signals the process of generatin

CEsignal can be broken into three simple independent tasks: The generation an in

decoded address information signal (SELECT), the generation of an interna

decoded request signal and the generation of theCE signal from the internal

decoded address anddecoded request information signals. The AND function

in ISB3 assures that theCEsignal will only be activated when the address is in the corr

range (A12-A15 are asserted) and when one or more of therequest information sig-

nals from the microprocessor is asserted. From another viewpoint, ISB3 combine

internaldecoded address information with the internaldecoded request infor-

.

FIGURE 6-6.   Example Extra Address Information Merge using three ISBs

Address A12
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mation. Since the combination process involves only standard internal signals gene

by the designer, a ‘standardized’ method can be used to generate the CE signal, nam

combination of the internaldecoded address anddecoded request signal using

the AND gate in ISB3. If theaddress information from the microprocessor is differen

(i.e. different address or more address signals), only ISB1 must be changed, and the

ISB3 can be used for the combination process.

By using internal information ports two important advantages are realized. F

rule development becomes simpler since it is usually easier to develop many simple

that carry out small, well defined independent tasks, than it is to develop one comple

that carries out a more elaborate task. Second, the rule tasks can be partitioned into

of independent sub-tasks, which makes the rule base easier to maintain and debu

example one group of rules generates the internal signals and another group utiliz

internal signals.

Several microprocessor system designs were investigated to see which interna

are commonly generated, and how these internal ports are utilized. The internal info

tion ports represented in the Interface Designer are:

Internaldecoded request information Single signal that specifies events that initiate a
terminate data transfer

Internaldecoded address information Information indicating when a given memory
block in the address space is being accessed.

Internaldecoded type information Information indicating when a given memory
block in the type space is being accessed.

Internal decoded size information Information indicating what specific data bus sig
nals are used for data transfer.

Internaldecoded read information Information indicating when a read data transf
is in progress.

Internaldecoded access information Information indicating when a data transfer is i
progress in a given address range, type space a
for a specific data bus size.

Table 6-2 shows internal information generation rules. These rules were deve

to be able to generate all commonly used internal information found in a data tra

interface. As can be seen in Table 6-2, there are two categories of internal inform

generation. One is the internaldecoded request , decoded read andaccess

information which are always generated. The other category has internal information

generated only if specific extra information is present on a component:decoded

address , type and size information. The next section describes how the Interfa

Designer utilizes extra information.
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6.5.3  Rules Used for Utilizing Extra Information

Often an output port of a certain classification on one component does not ha

similar information input port on the other component. This output information por

called anextra information port. For example, the microprocessor often provides atype

information output port, while the memory does not providetype information input port.

Design rules are provided that recognize the extra information ports (signals)

subsequently utilize the information if it is required for the correct operation of the in

face. For example, in the interface block of Figure 6-5, the extratype , address and

request information are used to generate internaldecoded type , address and

request information which are then applied to ISB5. ISB5 takes all three internal inf

mation ports and generates the internalaccess information, which is then sent to the

memoryrequest information input port after passing through ISB6. ISB6 is genera

to allow state and timing conversion of the internalaccess information as required by

therequest  information input of the memory.

Table 6-3 lists all the possible extra information that could be found on either c

ponent during data transfer interface design. Sincerequest anddirection informa-

tion must always be found on both a master and a slave component, extrarequest and

If Then Generate Internal

extraaddress  information on master decoded address  information (A)

extratype  information on master decoded type  information (B)

extrasize  information on master decoded size  information (C)

Always decoded request  information (D)

Always access  information

AND of (A) (B) (C) (D) if present

Always decoded read  information

TABLE 6-2.   Internal Information Generation Rules

If Extra Information Then

address  on master utilize the extraaddress  information

direction  on master error in component library

type  on master utilize the extratype  information

size  on master utilize the extrasize  information

request  on master error in component library

data  on master or slave error in component library

width  on slave incompatible component

delay  on slave incompatible component

TABLE 6-3.   Extra Information Manipulation Rules
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direction information on the master (but not the slave) indicates that there is an e

in the component library and the Interface Designer will stop the design process wi

error message. If a slave component haswidth or delay information output, but the

master component does not have a matching input, it indicates that the components c

are not compatible with each other. The Interface Designer will not be able to pro

with the design and will stop after printing an error message indicating the componen

incompatible.

In this work, the utilization of the extraaddress , type or size information is

accomplished through the use of internal information ports. The Interface Designer

first generate internal decoded information port signals for the extra information

explained in the previous section and then take the decoded extra information whic

now in a standard format and logically combine them with thedecoded request

information to generate the internalaccess  information.

Extra information is thus handled using two different methods. For ex

request, direction, width, data anddelay information an error in the

component library or in the selection of components is indicated, while for e

address, type andsize information internal decoded information ports are gene

ated.

6.5.4  Rules Used for Generating Missing Information

The components being connected often do not have an information output po

every information input port. These output information ports are calledmissing informa-

tion ports. For example, a microprocessor often has a delay information input port, w

the memory does not provide a delay information output port.

Design rules are provided to recognize the missing information ports and attem

utilize available information to generate the missing information. For example, in

interface block of Figure 6-5 thedelay information output is missing from the memory

The delay information is generated from the internalaccess information signal by

passing it through ISB8. It will not always be possible to generate the missing infor

tion. For example, a microprocessor may have less address signals than are require

memory component. There is no obvious method of generating the missing addres

nals directly from the available information. In fact, ifaddress or type information

are found to be missing during interface design, it most likely indicates that incompa

components were chosen during the higher level system design phases. In these ca

Interface Designer will stop the design process. If the Interface Designer finds mis
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data , request or direction information on the master, it indicates that an error

the component library, since these information ports must always be present on the m

Table 6-4 summarizes the rules developed to generate Info ISBs for missing i

mation ports. The Interface Designer will generate missingsize , width and delay

information ports. The other missing information will generate error messages.

6.5.5  Generating the Goal Information of an Info ISB

When an Info ISB is created, a goal information is determined for its output.

goal information represents the Interface Designer’s understanding of what the outp

the Info ISB should be once design has been completed. As such, the Interface De

will use the goal information as a guideline for designing the Info ISB. The goal inform

tion is divided into two parts: the goal state and the goal timing. The goal state of the

ISB is the state the output of the Info ISB must attain during information transfer.

The goal timing is a timing template and represents the abstract timing behavi

the output of an ISB. This fundamental technique allows rules to be developed that r

sent the heuristic knowledge a designer uses when designing the interface. This he

knowledge allows the design of an ISB to proceed without knowing specific tim

parameters of a timing and relying only on the general behavior of the signals (i.e. the

ing template of the signals). This is critically important since the timing parameters a

function of the ISBP parameters which are not known until the design is complete an

been implemented in a chosen technology.

Two methods are used by the Interface Designer to determine the goal informa

The first method is used when the goal information is for an Info ISB that generates i

nal information. This method uses simple rules that represent the heuristics a de

If Missing Information Output Port

for Matching Information Input Port

Then

data  master or slave flag error in component library

address  on master flag invalid component selection

type  on master flag invalid component selection

size  on master generate ISB that suppliessize  information

request  on master flag error in component library

direction  on master flag error in component library

width  on slave generate ISB that supplieswidth  information

delay  on slave generatedelay  information fromaccess  infor-
mation

TABLE 6-4.   Missing Information Generation Rules
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would use to generate the internal information signals and are shown in Table 6-5

goal states and timings in Table 6-5 were obtained by analyzing many different micro

cessor system designs and looking for similarities between the behavior of internal i

mation signals of the same classification. For example, it was found that m

microprocessor systems have an internaldecoded address information signal that is

asserted during data transfer and which has a non-multiplexed timing. Therefore, fo

internaldecoded address information, the goal state is chosen as asserted and

goal timing is chosen as a Strobe timing.

The second method is used when the goal information is for an Info ISB output

connects to a component information input port. This method analyzes the inform

input specification obtained from the component library. The goal timing is determine

finding an output timing template that is compatible with the component input timing t

plate. An output timing template is compatible with an input timing template if the tim

parameter range of the output timing falls within the timing parameter range of the i

timing template. For example, the setup time parameter range of a Logic timing is (-

+omp) which falls within the setup time parameter range of the Strobe timing (-~ +om

This means that the Logic output timing can be a goal timing for a Strobe input tim

There may be more than one output timing template that can satisfy the timing para

range of an input timing template.

The goal timings for all the possible component input timing templates were de

mined by considering all the output timing templates whose timing parameter range c

satisfy the input parameter range. (The possible input and output timing templates

discussed in Chapter 4). Those output timing templates that have timing parameter

fall outside the input timing parameter ranges are eliminated. For example, Figur

shows how the setup time parameter range violation is used to eliminate the Follows

ing as a goal timing for the Strobe input timing. As shown, the Logic timing and Str

output timing setup time parameter range satisfies the Strobe input timing setup

If ISB Generates Internal Then Goal State Goal Timing

decoded address  information asserted Strobe timing

decoded size  information asserted Strobe timing

decoded type  information asserted Strobe timing

decoded request  information asserted Logic timing

decoded direction  information asserted Strobe timing

access  information asserted Logic timing

TABLE 6-5.   Internal Information ISB Goal Information
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parameter range, while the Follows output timing setup time parameter range falls ou

that of the Strobe input timing parameter range. A similar conclusion can be drawn fo

hold time parameter range for the timings in the example, resulting in the conclusion

Strobe output timing and Logic output timing are both goal timings for an Strobe in

timing, while the Follows output timing is not.

.

FIGURE 6-7.   Strobe Input Timing Specification Goal Timings

VALID STATESignal

Reference

Signal

Reference

ASSONEGO NEGO

Input Timing Specification:
Strobe timing

Output Timing Specification:
Strobe timing

Output Timing Specification:
Logic timing

VALID STATESignal

Reference

Both of these specified ranges

Signal

Reference
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Output Timing Specification:
Follows Timing

Allowed Range

fall within the required range of the input timing specification.

The allowed range of this parameter falls outside of the
required range of the input Strobe Timing requirement above

Allowed Range

Allowed Range

Allowed Range

(i.e. there is no upper bound) Therefore Follows output timing
can not be the goal timing of a Strobe input timing
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A list of possible goal timings for each input timing template is shown in Table 6

Table 6-6 shows that some input timing templates map onto more than one goal tim

The set of timings that can satisfy a component input timing template are calledinput

specification compatible timings. From Table 6-6, two sets of input specification compa

ble timings can be seen: Strobe and Logic timing, and Follows, Strobe and Logic tim

The timings in italics are assigned as the goal timing when an Info ISB is created. Du

interface design, the Info ISB output timing can be changed to any timing in a set of i

specification compatible timings, if necessary. For example, if the input timing templa

a component is a Pulse-Latch timing, the set of input compatible timings contains the

lows, Strobe and Logic timing. Table 6-6 shows that the Follows timing is chosen a

goal timing for the Pulse-Latch timing, which means that the Info ISB output timing i

to a Follows timing when the Info ISB is created. During the design of the Info ISB

Interface Designer may realize that the output timing of the Info ISB naturally ha

Strobe timing if all Info ISB input timings are Strobe timings. Instead of complicating

interface by adding circuitry that generates a Follows timing output, the Info ISB ou

timing may be changed to Strobe, since both Follows and Strobe timings are in the

set of input specification compatible timings.

In the timing verification phase of interface design, the ISBP parameters of the i

face blocks are assigned values which depend on the implementation technology. A

timing will place more restrictions (constraints) on the ISBP parameters than a Strobe

ing since the Logic timing has a more restricted range for its timing parameters. A m

restricted range on an ISBP parameter means that it will be more difficult to find va

that permit correct operation of the IB. In Table 6-6, the timing templates that place

least restrictions on the ISBP parameters are those shown in italics, and are the go

ings chosen for a given component input timing template.

Component Input Timing Template Goal Timing for Component Input Timing Template

Strobe Strobe, Logic

Pulse Strobe, Logic

Latch Latch

Pulse-Latch Follows, Strobe, Logic

Follows-Latch Follows, Strobe, Logic

Handshake Handshake

Wait Wait

TABLE 6-6.   Goal Timings
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6.6  Creating the State and Timing ISBs

Once an Info ISB is created, a rule is used to partition it into State and Timing I

as shown in Figure 6-8. The rule creates the State and Timing ISB building block fra

and connects the building blocks with signals. One State ISB is created for each Info

while an individual Timing ISB is created for each signal entering the Info ISB. The o

put of each Timing ISB is connected to the input of the State ISB.

The Timing ISB will be used to change the timing template of the Info ISB inp

signal to that of the goal timing of the Info ISB, or to one of the input specification co

patible timings, while the State ISB is used to change the state of the Info ISB input

nals to the goal state of the Info ISB. The Timing ISB passes the Info ISB input st

unchanged, while conceptually the State ISB passes the timing template of the Timin

output unchanged. In practice, however, the State ISB will affect the timing in two w

First, the Combinatorial ISBP within the State ISB will have a non-zero propagation d

and second, if the State ISB input timing templates are different, the combination o

different timing templates in the State ISB may produce a completely different tim

template. Since these aspects of the State ISB deal with timing, a procedure was dev

that allows the timing aspects of the State ISB to be dealt with when designing the Ti

.

FIGURE 6-8.   State and Timing ISB Creation
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ISBs. This allows the State ISB to be designed independently by considering only the

information into and out of the Info ISB. The following section discusses the generatio

the ISBP for the State ISB. This is followed by a section discussing the generation o

ISBPs for the Timing ISBs, which also deals with the effect of the State ISB on the

ISB output timing.

6.7  Generating the Combinatorial ISBP for the State ISB

A Combinatorial ISBP is inserted into the State ISB as shown in Figure 6-9. If st

other than asserted or negated must be generated on the output of the Info ISB, a lev

version ISBP such as a Tri-state Buffer or an Open Collector Buffer will also be inse

into the State ISB. The combinatorial logic expression is determined by finding the B

ean logic equation that maps the Info ISB input state to the ISB goal state. For exam

Figure 6-6, the internal address decode signalSELECT, has the goal state (assoSELECT).

This state must be attained whenever the Info ISB input state is (AND (assoA15) (asso

A14) (assoA13) (assoA12)). The Combinatorial ISBP will have the Boolean logic equ

tion: SELECT = A15*A14*A13*A12 , where*  represents the Boolean AND operation

It is required that the Timing ISBs must pass the signal states from the Info

input unchanged to the State ISB inputs. Care was taken when developing the T

ISBs to guarantee that this is the case.

.

FIGURE 6-9.   State ISB Primitive Circuit Creation
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6.8  Designing the Timing ISB using ISBP

The design of the Timing ISB involves two parts. First, an ISBP called aTiming

ISBPis chosen as the basic building block of the Timing ISB. The Timing ISBP is cho

to assure that the desired output timing template (the goal timing) is produced on the

ISB output. Second, the Info ISB output timing is finalized by considering the effect of

chosen Timing ISBP and of the State ISB on the Info ISB input timing. Figure 6-10 il

trates the action of the rules developed for Timing ISBP design.

The development of the rules that insert the correct ISBP into the Timing ISB

central to this work since they represent an important heuristics a designer uses to

plete interface design. The premise seems straight forward: the Timing ISB design

must insert an ISBP into the Timing ISB that will generate the Info ISB output timing te

plate (which was set to the goal timing), given the input timing template of the Info ISB

practice, this task is complicated by the fact that after the ISBP has been inserted in

Timing ISB, the Info ISB output timing must be determined as a function of all its IS

parameters. When the Combinatorial ISBP was chosen, only the input and output sta

the Info ISB were considered. Now that the output timing of the Info ISB must be de

mined, the effect of the Combinatorial ISBP on the input timings must also be consid

The Info ISB output timing is therefore a function of the Timing ISB input timing, t

Timing ISBP parameters and also the Combinatorial ISBP parameters and is deter

through a process calledtiming propagation.

.

FIGURE 6-10.   Timing ISBP Design
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6.8.1  Overview of the Timing ISB Design Process

Figure 6-11 illustrates the signals and timings of an Info ISB. The output tim

template of an Info ISB was determined when it was created: it was set to the goal tim

The signal generated by the Timing ISB is the intermediate signal. The timing of the i

mediate signal is determined so that after the intermediate signals pass through the

ISB, the required output timing template or one of the input specification compatible

ings is generated.

As a simple example of the Timing ISB design process, consider the Info ISB sh

in Figure 6-12 which has 2 inputs: a multiplexed input (Latch timing) and a non-mu

plexed input (Strobe timing). The output of the ISB must be a signal with the Strobe

ing. An experienced designer knows that if each of the intermediate timings is a S

timing, then the State ISB output timing and hence the Info ISB output timing will b

Strobe timing. The problem of generating an ISB Strobe output timing is thus chang

the problem of generating intermediate signals with a Strobe timing.Signal 2 already

has a Strobe timing, and thus can be used directly (Timing ISB2 is just a wire).Signal 1

has a Latch timing, which is changed to a Strobe timing in Timing ISB1 using a D-La

Both signals going into the Combinatorial ISBP now have a Strobe timing, and as wi

shown in Section 6.8.4.1, if all signals going into a Combinatorial ISBP have a Strobe

ing, the output will also have a Strobe timing.

The Interface Designer decides which Timing ISBP to use through a set of rules

generates the intermediate timing templates. These rules are based on heuristics a

.

FIGURE 6-11.   Info ISB with Timing ISBs
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designer would use for each possible Info ISB input timing / Info ISB output timing co

bination.

Once an ISBP has been chosen and inserted into a Timing ISB, the Info ISB o

timing will be finalized. The building blocks of an Info ISB, are parameterized ISBPs s

as buffers, combinatorial logic, flip-flops, latches and delays. The Info ISB output tim

is represented in terms of the ISBP parameters and the timing parameters of the Inf

input timings. For example, in Figure 6-13 an Info ISB used for generating the inte

decoded address information is shown. It consists of two Timing ISBs and one Sta

ISB. The Timing ISBs are made up of Wire ISBPs which pass the Info ISB input sig

unchanged to the Combinatorial ISBP with zero propagation delay (Tpd2=0). The State

ISB is made up of a Combinatorial ISBP with a propagation delay of Tpd1. Now assume

that theaddress information on the microprocessor has a setup time of -25ns relativ

.

FIGURE 6-12.   Interface Sub-Block example

.

FIGURE 6-13.   Example for Info ISB Timing Propagation
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the initiate event. The output of the Combinatorial ISBP will have a setup time

-25+Tpd2+Tpd1 = -25 +Tpd1relative to this initiate event.

The process of determining the output timing parameter of thedecoded

address information signal in terms of the ISBP parameters Tpd1 and Tpd2, and the

microprocessoraddress information timing parameter is calledtiming propagation: the

output timing of an Info ISB is determined by propagating the Info ISB input timing sp

ification forward through the Timing ISBs, and then the State ISB, to the Info ISB outp

The next section provides detailed information on how a Timing ISBP is cho

This is followed by a section that provides a more detailed insight into the process of

ing propagation for the different ISBPs.

6.8.2  Choosing the ISBP to build up the Timing ISB

As shown in Figure 6-11, the input timing of an Info ISB will be based on one of

seven output timing templates, while the output timing of the Info ISB will be based

one of the six goal timings. This means there is a total of 42 possible input/output tim

template possibilities for an Info ISB. The Interface Designer must therefore provide

that can handle all of the Input/Output timing combinations that can occur during inter

design.

Table 6-7 lists the input and output template combinations allowed for an Info I

marked with a ‘Yes’. Table 6-7 was determined by investigating each of the combina

in the context of microprocessor system design as accomplished by the Interface De

and asking two questions:

Strobe Logic Latch Follows Handshake Wait

Strobe Yes Yes Yes Yes

Logic Yes Yes Yes Yes Yes Yes

Pulse

Latch Yes Yes Yes Yes

Follows Yes

Handshake Yes Yes

Wait Yes Yes

TABLE 6-7.   Permitted Input / Output Timing Templates for Info ISB
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Info ISB Output Timing Template
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1. Can the combination possibly occur during the design process used by the Interfa
Designer?

and

2. If the combination can occur, is it possible to perform the timing template convers

Only if both questions can be answered with a yes, is the combination allowe

Table 6-7.

For an example applicable to the first question, the columns for the Handshak

Wait output timing template are considered. It is found that the Interface Designer

only encounter Logic, Handshake and Wait Info ISB input timings since there are

two possible sources ofdelay information: thedelay information from the output of

another component, which always will have a Wait or Handshake timing or the inte

access  information signal, which will always have a Logic timing.

For an example applicable to the second question the Strobe output timing is co

ered. The Interface Designer can conceivably generate Strobe, Logic, Latch and Fo

input timings. The Follows input timing however must be eliminated, since the setup

event into the ISB for the Follows timing can have a later time of occurrence than that

mitted by the Strobe timing as shown in Figure 6-14. This means that it will not be po

ble to generate a Strobe output timing from a Follows input timing. This combination

normally not occur, and if it does occur the Interface Designer will print an error mes

.

FIGURE 6-14.   Follows Input to Strobe Output Timing Template

Signal

Reference

VALID

Follows Timing

Strobe Timing

The above Follows Timing event may be later than

Info
ISB

the permitted output event time for the Strobe Timing template
below. Hence this timing conversion is not possible.

Signal

Reference

VALID

holdsetup

(out of Info ISB)

(into Info ISB)
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stating that the design can not be completed and that a different component shou

selected.

Table 6-8 shows the intermediate timings for the Info ISB input/output combi

tions that are permitted. The intermediate timings were chosen to satisfy three criter

1. The intermediate timing must be able to produce the desired output timing after pa
through the State ISB.

2. If different intermediate timings are allowed for a given output timing (i.e. the timin
found in a column in Table 6-8 are different) then the combination of one or more
those timings must also be able to produce the desired output timing after passin
through the State ISB.

3. It must be possible to use one of the Timing ISBPs presented in Section 5.4 to per
the timing conversion to the intermediate timing.

The methodology used to verify that each of the three criteria is satisfied will be

cussed in Section 6.8.4, “Combinatorial ISBP Timing Propagation”.

If the Info ISB input timing and the intermediate timing are identical, the Timi

ISBP is simply a wire which connects the Info ISB input signal directly to the intermed

signal. In Table 6-8, any intermediate timings that can be generated using a wire are s

in italics.

Those intermediate timings not shown in italics require a non-trivial (i.e. non-w

Timing ISBP to convert from the Info ISB input timing. These Timing ISBPs must be a

to convert from Strobe to Latch, Logic to Latch, Logic to Handshake, Logic to Wait, La

to Strobe, Handshake to Wait and Wait to Handshake timing.

Strobe Logic Latch Follows Handshake Wait

Strobe Strobe Strobe Latch Strobe

Logic Logic Logic Latch Logic Handshake Wait

Pulse

Latch Strobe Strobe Latch Strobe

Follows Follows

Handshake Handshake Wait

Wait Handshake Wait

TABLE 6-8.   Intermediate Timing Templates for Input / Output Timings of Info ISBs
Bold entries require a non-trivial Timing ISBPs
Italic entries require a Timing ISBP that consists of a simple Wire ISBP
Regular font entries can be avoided through proper choice of components
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Info ISB Output Timing Template
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In real world design situations, it was found that a designer will normally av

component combinations that require generation of multiplexed signal from a non-m

plexed signal (Strobe to Latch) since an overly complex design will result. The Inter

Designer is a proof of concept system that represents a design expert’s knowledge of

face design. To limit complexity, no Timing ISBPs are provided for those Info ISB in

and output timings that a human designer will normally avoid. These timing convers

include the Strobe to Latch, Logic to Latch, Handshake to Wait and Wait to Handsha

these timing combinations occur, the Interface Designer will display an error mes

indicating that the Interface Designer can not complete the design due to a comp

incompatibility and that different components should be chosen. If timing conversion

these combinations are desired at a later date, they can be added to the Interface D

by using the appropriate timing conversion rules.

The timing conversion provided in the Interface Designer includes Latch to Str

(using a D-Latch), Logic to Handshake (using a Leading Edge Delay) and Logic to

(using a Trailing Edge Delay). The intermediate timings for which a non-trivial tim

conversion is required are shown inbold in Table 6-8.

The next sections provide a description of how the signal timings are propag

through Timing and Combinatorial ISBPs. The techniques developed are presented

examples. To illustrate timing propagation through Timing ISBPs, timing propaga

examples for a D-Latch ISBP and a Leading Edge Delay ISBP are provided. Two e

ples are given for the Combinatorial ISBP: one treats the case where all input timing

Strobe timings, the other treats the case where the input timings are Logic and Strob

ings.

6.8.3  Timing ISBP Timing Propagation

Timing propagation for each Timing ISBP must be developed in the context of IS

input timings and the ISBP parameters. Other than the Wire ISBP, which represen

trivial case that passes any signal timing unchanged from one end of the wire to the

a Timing ISBP has only one possible input timing template and several ISBP param

This is in contrast to the Combinatorial ISBP discussed in the next section which ha

ISBP parameter (Tpd) and several input timing templates.

This section describes the process developed to propagate the timing on the in

a Timing ISBP to the output. Specifically it shows by two examples how expressions

derived that give the output timing parameters, such as setup and hold times, in ter

the input timing parameters and the Timing ISBP parameters.
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6.8.3.1 D-Latch ISBP Timing Propagation

A D-Latch ISBP was developed to generate a Strobe timing signal from a Latch

ing signal. In more practical terms, a D-Latch ISBP is used to convert a signal that h

multiplexed timing to a signal that has a non-multiplexed timing. As shown in Figure 6

a D-Latch has four ISBP parameters associated with it that can be used to comp

describe it. Delay dD is the delay for any event that occurs on theI D input and passes

through to theOQoutput, provided that the clock is in a state that passes theD input to the

Qoutput (i.e. the latch is in the transparent state). dCLK is the clock event to output chang

delay. The D-Latch also has data input setup and hold times ds and dh associated with it.

The behavior of the D-Latch is described in detail in Section 5.4.1.3.

Figure 6-16 shows the output Strobe timing of a D-Latch for a Latch timing inp

Expressions for the output setup and hold times are desired. The output setup time TO can

be obtained by considering what causes the INVALID to VALID output signal transiti

it is the INVALID to VALID input signal transition onI D. The output setup time TsO rela-

tive to the reference initiate event can therefore be expressed as the sum of the setu

of the input signalI D relative to the initiate event, Ts=TsCLK + TsI, and the signal delay

dD from theD input to theQ output of the D-Latch.

The output hold time ThO can be obtained by considering what causes the VALID

INVALID output signal transition: It is the NEGATED to ASSERTED input signal trans

tion on CLK. The output hold time TsO can therefore be expressed as the sum of the h

time of the clock ThCLK, and the clock input to output delay dCLK of the D-Latch.

TsO=TsCLK+TsI+dD (EQ 6-1)

ThO=ThCLK+dCLK (EQ 6-2)

.

FIGURE 6-15.   Model of D-Latch ISBP

.

.

.

.

ID

ICLK

OQ
dD

dclk

Q

CLK

D

D-Latch
ds

dh

ID setup and
hold times
relative to ICLK
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Given any Latch input timing with timing parameters TsCLK, TsI, ThCLK, and a D-

Latch ISBP with parameters dD and dCLK, the timing parameters of the resulting Strob

output timing of the D-Latch ISBP can be calculated using Equation 6-1 and Equatio

2.

Equation 6-1 and Equation 6-2 are independent of the D-Latch input setup (ds) and

hold time (dh) parameters. However for the D-Latch to operate correctly, the setup

hold time parameter range of the ID input signal must satisfy ds and dh. To assure that this

is the case, two timing constraints are generated. Atiming constraintis a relationship

between ISBP parameters (such as propagation delays) and/or component timing p

ters (such as setup and hold times) that must always be satisfied. Throughout this

whenever a timing constraint is generated, it is assumed that it will be satisfied afte

design is complete. Later, during the timing verification phase, values will be assign

the ISBP parameters and the constraints will be evaluated. However at this point i

design (timing propagation phase) the timing constraints are simply generated.

Two timing constraints are generated for the D-Latch ISBP:

ds ≥ TsI (EQ 6-3)

.

FIGURE 6-16.   Timing for Latch Output if Input is Latch Timing

Reference

CLK(ALE)

TsCLK ThCLK

Reference

Output

TsO=TsCLK+TsI+dD

Output timing (Strobe)

ID

TsI ThI

ThO=ThCLK+dCLK

Valid

Input timing (Latch)

Valid

Constraints: ds ≥ TsI
dh ≤ ThI

Causal Relations

Ts=TsCLK+TsI
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dh ≤ ThI (EQ 6-4)

Whenever timing propagation for a D-Latch ISBP is performed to generate exp

sions for the output timing, the two timing constraint expressions shown in Equation

and Equation 6-4 are also generated.

6.8.3.2 Leading Edge Delay ISBP Timing Propagation

The Leading Edge Delay ISBP was developed to allow conversion of a Logic tim

signal to a Handshake timing signal. In more practical terms, the Leading Edge D

ISBP is used to generate the acknowledge signal for a microprocessor that uses the

shake timing for thedelay information. A Leading Edge Delay ISBP has one input a

one output. It has the property of delaying the leading edge of the signal by a de

amount, while the trailing edge is delayed by a propagation delay.

Figure 6-17 shows the model for the Leading Edge Delay ISBP developed for

work, in terms of a leading edge ISBP parameter dvar and the trailing edge ISBP paramete

dprop which is the propagation delay of a combinatorial AND function. The dprop delay is

dependent on the implementation technology, i.e., it is the propagation delay of a 2-

AND gate for a given technology (typically 3-7nsec for standard TTL logic). The dvar

delay however can be any value (usually dvar>>dprop) and will be implemented using dif-

ferent techniques depending on the desired value of the delay. Small values of dvar from

10-1000ns usually will be implemented with delay lines, while delays greater than 1

are usually implemented using shift registers or counters.

Figure 6-18 shows the Logic input timing parameters TsI and ThI relative to the ref-

erence events. The model used for this work shown in Figure 6-17 shows that the le

.

FIGURE 6-17.   Model of Leading-Edge Delay ISBP

Input
dvar

Outputdprop

Output

Input

dvar + dprop dprop

Trailing EdgeLeading Edge

dvar>>dprop
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edge will be delayed by dvar and dprop, while the trailing edge will be delayed only by

dprop. Therefore the output setup and hold times of the Leading Edge Delay ISBP ca

expressed as:

TsO = TsI+dvar+dprop (EQ 6-5)

ThO = ThI+dprop (EQ 6-6)

It should be noted that the primary purpose of the Leading Edge Delay ISBP w

delay the leading edge of a pulse by a certain amount represented by dvar. An ‘ideal’ Lead-

ing Edge Delay ISBP has an ISBP parameter dpropof zero. However in practice a Leading

Edge Delay ISBP with zero dpropcan not be built and therefore the propagation delay dprop

had to be introduced. For the Leading Edge Delay ISBP, the dvar timing parameter will be

calculated after the interface has been implemented in a chosen technology, and wh

other timing parameters of the interface have been assigned a value. This is explai

more detail in Section 6.9.3.

6.8.3.3 Summary of Timing ISBP Timing Propagation

Using the techniques introduced with the two examples given in this section

process of timing propagation for a Timing ISBP is specified as a procedure for e

input / output combination of a Timing ISBP. Table 6-9 summarizes the procedure

simple steps utilizing the equations developed in this section.

.

FIGURE 6-18.   Logic input and Handshake Output Timing

Reference

Input

Input timing (Logic)

Asserted NegatedNegated

Output

Reference

Asserted

NegatedNegated

Output timing (Handshake)

TsI ThI

TsO = TsI+dvar+dprop ThO = ThI+dprop
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6.8.4  Combinatorial ISBP Timing Propagation

This section describes the process developed to propagate the timing on the in

a Combinatorial ISBP to the output. Specifically it shows by example how expression

derived that give the output timing parameters, such as setup and hold times, in ter

the Combinatorial ISBP input timing parameters (which in turn are given as ISB input

Timing ISBP parameters) and the Combinatorial ISBP parameter, Tpd.

Table 6-10 shows the possible input timings into the Combinatorial ISBP for e

output timing. This table can be directly obtained from Table 6-8 since the Combinat

ISBP output timing template is the same as the Info ISB output timing template. For

eral output timing templates more than one intermediate timing template can be fou

The Combinatorial ISBP is modeled as a boolean function F(I 1, ... I n) with a

propagation delay Tpd on the output as shown in Figure 6-19. An event on an inputI j will

have an effect on the output after a propagation delay Tpd. For timing propagation to pro-

ceed, expressions must be found that give the timing parameters of timing TO of the output

Timing ISBP Input Timing Output Timing

(Intermediate
Timing)

Steps to Propagate Timing Parameters

D-Latch Latch Strobe Propagate input to output (Eq. 6-1 , 6-2 )

Generate 2 constraints for input setup and hold
times (Eq. 6-3 , 6-4 )

Leading-Edge
Delay

Logic Handshake Propagate input to output (Eq. 6-5 , 6-6 )

Trailing-Edge
Delay

Logic Wait Propagate input to output

(similar to Eq. 6-5 , 6-6 )

TABLE 6-9.   Steps for Timing ISBP Timing Propagation

Possible Input Timings Template

(one of intermediate timings)

Combinatorial ISBP Output Timing
Template

Strobe, Logic Strobe

Strobe, Logic Logic

Latch Latch

Strobe, Logic, Follows Follows

Handshake Handshake

Wait Wait

TABLE 6-10.   Possible Input Timing for each Output Timing Template for Combinatorial ISBP
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Oas a function of the input timing parameters and Tpd. Note that only the timing templates

as shown in Table 6-10 can be input timings to the combinatorial ISBP.

It will be shown that the output timing parameter expressions can be built up by

sidering each input to the Combinatorial ISBP in any order. This will allow the Interf

Designer to derive the expressions incrementally using rules that will systematically

cess each of the Combinatorial ISBP input signals in an arbitrary order.

The technique used to develop the timing propagation expression is presented

two examples to give the reader an understanding of the issues involved. The first ex

shows how expressions for the output timing are obtained for Combinatorial ISBP tha

all Strobe input timing. The techniques presented for the first example using all S

input timings can be applied to Combinatorial ISBPs that have the same timing tem

on each of the inputs. The second example provides timing propagation expression

Combinatorial ISBP that has both Strobe and Logic timing inputs.

6.8.4.1 Example of Strobe Input Timings for Combinatorial ISBP

Strobe timings are associated with VALID/INVALID transitions of signals. It

known that if all inputs of an arbitrary combinatorial function are VALID, then the outp

will be VALID, otherwise the output will be INVALID. This fact can be used to determin

the output timing of a Combinatorial ISBP. When the last input becomes VALID, the o

put will become valid after Tpd, and when the first input becomes invalid the output w

become INVALID after Tpd.

Figure 6-20 shows the Strobe input timings for inputs I1 to In with their respective

setup and hold times Ts and Th. An input that becomes VALID will not cause

INVALID!VALID transition on the output unless all other inputs are VALID. The time o

occurrence of the INVALID!VALID transition on the output will therefore be determine

by Tpd and by the input whose time of occurrence of the INVALID!VALID transitio

.

FIGURE 6-19.   Model of Combinatorial ISBP

.

.

.

.
Signal In, Timing Tn

Output O

Boolean

O = F(I1,..., In)
Function Tpd

Signal I1, Timing T1

Timing TO
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occurs latest in time. An event A is later in time than an event B if event A occurs a

event B. Since the times as used in the signal timings are always relative to some refe

event at time zero, a later event will have a greater signed time value than an earlier

The setup times of the inputs under discussion will usually be bounded by ‘-~’ on the

side. For example a signal may have a setup time of (-~ -5) relative to some refe

event. This setup time means that the address will become valid at time -5ns or earli

implies ‘or earlier’). A simple operator was developed that selects the time interval

extends the latest in time. This operator is called theLater-of operator and it allows the

setup time for the output of the Combinatorial ISBP to be written as:

TsO = Later-of{Ts1+Tpd, Ts2+Tpd, ..., Tsn+Tpd} (EQ 6-7)

Note that the ‘Later-of’ operator is commutative: Later-of{A, B} = Later-of{B, A}

For example:

Later-of{(-~ -10) (-~ -5)} = Later-of{(-~ -5) (-~ -10)} = (-~ -5).

.

FIGURE 6-20.   Timing for Combinatorial ISBP Output for all Strobe Input Timings

Reference

I1
Ts1 Th1

Input timing (Strobe)

Reference

Output

TsO=

Output timing (Strobe)

I2

Ts2 Th2

In

Tsn Thn

ThO=

Valid

Valid

Valid

Valid

Later-of{Ts1+Tpd, Ts2+Tpd, ..., Tsn+Tpd} Earlier-of{Th1+Tpd, Th2+Tpd, ..., Thn+Tpd}

.

.

.

.
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This example shows the result of the Later-of operator on two time intervals -1

and earlier, and -5ns and earlier. The resulting time interval is -5ns and earlier (-~

since -5ns is later than -10ns.

The determination of the output hold time of a Combinatorial ISBP with all Stro

input timings proceeds similar to the setup time. The first input to become INVALID w

cause an INVALID!VALID transition on the output. The time of occurrence of t

VALID!INVALID transition of the output will be determined by Tpd and by the input

whose time of occurrence of the INVALID!VALID transition occurs earliest in time. A

event A is earlier in time than an event B if event A occurs before event B. An earlier e

will have a smaller signed time value than a later event. The hold times of the inputs u

discussion will usually be bounded by ‘+~’ on the right side. For example a signal

have a setup time of (5 +~) relative to some reference event. This setup time mean

the address will become valid at time 5ns or later (+~ implies ‘or later’). A simple oper

was developed that selects the time interval that extends the earliest in time. This op

is called theEarlier-of operator and it allows the hold time for the output of the Combin

torial ISBP to be written as:

ThO = Earlier-of{Th1+Tpd, Th2+Tpd, ..., Thn+Tpd} (EQ 6-8)

Note that the ‘Earlier-of’ operator is also commutative: Earlier-of{A, B} = Earlie

of{B, A}.

In general, the setup and hold time ranges for a Strobe timing are (-~ +omp)

(-omp +~) (see Appendix A.1.1 for a description of the Strobe timing). Given that

1. All the inputs to the Combinatorial ISBP are Strobe timings whose setup and hold
times fall within (-~ +omp) and (-omp +~).

2. The propagation delay invariance of timing templates (see Section 4.7.3 for a des
tion of propagation delay invariance and the omp delay).

3. The propagation delay TPDis a small delay where omp+TPD=omp, by definition of
omp.

It follows that each of the arguments of the Later-of and Earlier-of expressions g

in Equation 6-7 and Equation 6-8, and therefore both TsO and ThO, also fall within the

setup and hold time ranges of a Strobe timing. A signal timing whose timing param

satisfy all timing parameters of a timing template can be represented using that ti

template. This means that the output timing of a Combinatorial ISBP that has all in

with a Strobe timing can be represented using a Strobe timing template.
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The analysis of the ISBP output timing was independent of the boolean functi

of the Combinatorial ISBP, since only VALID/INVALID states have to be considered

the Strobe timing. Since the Earlier-of and Later-of operators are commutative the ex

sions shown in Equation 6-7 and Equation 6-8 can be generated by adding a propa

delay term to the argument list of the Earlier-of{} and Later-of{} operators as each of

I1 to In input signals is investigated individually. The commutative property means tha

final expressions will be independent of the order in which the inputs are considered

6.8.4.2 Example of Logic Timing Inputs Mixed With Strobe Timing Inputs

The second example of timing propagation for Combinatorial ISBP is for mi

Logic and Strobe input timings. This typically occurs for an address decoder signal

Strobe timing that is gated (ANDed) with a signal that has a Logic timing. Normally w

such a circuit is designed, its purpose is to produce an output without glitches or an

lies that has a Logic output timing. This is illustrated in Figure 6-21. Two address sig

A14 and A15 (Strobe timing) and a data strobe signal DS (Logic timing) go into a Com

natorial ISBP to produce an output signal O. To assure that the output is glitch free

output of the Combinatorial ISBP was chosen by the Interface Designer to be a Logic

ing (i.e., the goal timing of the Info ISB output is a Logic timing). To assure that the ou

timing adheres to the timing parameter ranges of the Logic timing, we must place s

restrictions on the relationships between the input Strobe and Logic timings:

.

FIGURE 6-21.   Overview of Input and Output Timings for Combinatorial ISBP

Output

I2

I3

............

Valid

Valid

I1 O

Combinatorial
ISBP

A15

DS

A14

Event B must occur before Event A

Event A

Events B

 F = I1 * (I2 +I3)
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1. The leading event of the Strobe timing signals (events B in example) must occur be
the leading event of the Logic timing signal (event A in example).

2. The trailing edge event of the Strobe timing signals must occur after the trailing e
of the Logic timing signals.

3. The boolean logic function must logically AND the asserted level of the signals w
Logic timing to the other signals (For example, in Figure 6-21 the DS signal with Lo
timing is ANDed with the address signals A14, A15).

If these restrictions are satisfied, then we can guarantee that the leading and tr

edges of the output will be glitch free as required.

Restriction 3 is normally automatically satisfied through the use of components

are known to work with each other without extraordinary interface circuitry and

employing a design strategy that will logically AND important intermediate informat

signals (as discussed in Section 6.5). The Interface Designer always checks that s

with Logic input timing are in fact ANDed with the other signals.

Figure 6-22 shows the two timing constraints (restrictions 1 and 2) that are ge

ated for each Strobe timing input signal, one for the setup time and one for the hold

If there arek Strobe timing input signals there will be 2k constraints. The constraints o

the Strobe input setup and hold times are expressed as a function of the propagation

TPD and of the output setup and hold times:

TsO ≥ Tsi +Tpd (EQ 6-9)

ThO ≤ Thi +Tpd (EQ 6-10)

By expressing the constraints in terms of TsO and ThO the process of obtaining the

constraints is simplified. It makes it possible to look at each input signal independ

and in any order, and if it has a Strobe timing, simply generate the two constraints s

in Equation 6-9 and Equation 6-10.

The setup and hold times of the output timing can be expressed using Equatio

and Equation 6-8 with then Logic input timing signals as shown in Figure 6-22. Th

expressions for the setup and hold times of the output timing are independent of th

nals that have a Strobe timing, due to the three restrictions above placed on the input

Strobe timing.

As an example, assume that there are 3 input signals to an Info ISB as show

Figure 6-21. I1 has a Logic timing, while I2 and I3 have a Strobe timing. Then TsO=Later-

of{Ts1+Tpd}=Ts1+Tpd and ThO=Earlier-of{Th1+Tpd}=Th1+Tpd. Four constraints will be

generated: TsO ≥ Ts2+Tpd, TsO ≥ Ts3+Tpd, ThO ≤ Th2+Tpd and ThO ≤ Th3+Tpd. Once
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all inputs have been processed, TsO and ThO can be substituted into the constraints givin

Ts1 ≥ Ts2, Ts1 ≥ Ts3, Th1 ≤ Th2 and Th1 ≤ Th3.

6.8.4.3 Summary of Combinatorial ISBP Timing Propagation

Using the techniques introduced with the two examples given in this section

process of implementing the timing propagation for a Combinatorial ISBP can be s

fied as a simple procedure consisting of one or more steps for every input / output co

nation. Care was taken when developing the procedures to assure that the inputs

Combinatorial ISBP could be considered individually and in any order. Table 6-11 s

marizes the steps developed for all combinations of input and output timings. Gene

the steps consist of propagation of input timing parameters from the input to the o

using the expressions from Equation 6-7 and Equation 6-8, and the extraction of

.

FIGURE 6-22.   Timing for Combinatorial Output for Logic and Strobe Input Timings

Reference

I1 Ts1 Th1

Input timing (Strobe or Logic)

Reference

Output

TsO=Later-of{Ts1+Tpd, ..., Tsn+Tpd}

Output timing (Logic)

In+1

Tsn+1 Thn+1

In+k

Tsn+k Thn+k

ThO=Earlier-of{Th1+Tpd, ..., Thn+Tpd}

StrobeValid

Valid

Logic

Strobe

Timing Constraints: TsO ≥ Tsn+1+Tpd

TsO ≥ Tsn+k+Tpd

ThO ≤ Thn+1+Tpd

ThO ≤ Thn+k+Tpd

Logic

In Tsn Thn Logic
.
.
.

.

.

.

.

.

.

.

.

.
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straints given by Equation 6-9 and Equation 6-10. Some of the timing propagation p

dures (marked with*) also include a check to verify that the appropriate signals

ANDed together.

6.9  IB Timing Verification

Once all Timing and State ISBs have been filled in with ISBPs, the structure o

IB is completely defined as illustrated in Figure 6-23. The figure also shows that the

nals out of the IB with TimingOUT will be connected to the input signals of Compone

Comb. Input Timing Comb. Output Timing Steps to Propagate Timing Parameters

Strobe Logic Generate 2 Constraints (Eq. 6-9 , 6-10 )

Logic* Logic Propagate input to output (Eq. 6-7 , 6-8 )

(Check for AND combinatorial equation)

Strobe Strobe Propagate input to output (Eq. 6-7 , 6-8 )

Logic Strobe Propagate input to output (Eq. 6-7 , 6-8 )

Strobe Follows Propagate input to output (Eq. 6-7 , 6-8 )

Logic Follows Propagate input to output (Eq. 6-7 , 6-8 )

Follows Follows Propagate input to output (Eq. 6-7 , 6-8 )

Latch Latch Propagate input to output (Eq. 6-7 , 6-8 )

Handshake* Handshake Propagate input to output (Eq. 6-7 , 6-8 )

(Check for AND combinatorial equation)

Wait* Wait Propagate input to output (Eq. 6-7 , 6-8 )

(Check for AND combinatorial equation)

TABLE 6-11.   Steps for Combinatorial ISBP Timing Propagation

.

FIGURE 6-23.   The Interface Output to Component Connection

Component2

Output Specification=

InformationB:
Input
Specification

TimingOUT =F(Tpd, Tclk, Timing1)

Tpd=y

Tclk=x

ISBP

ISBP

Info ISB

IB

Timing1 TimingIN

Connect

State ISB

Timing ISB
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with TimingIN. To allow the interface to operate correctly, the timing parameters

TimingOUT must satisfy the timing parameters of TimingIN. For example, if the in

signal on component2 requires a certain setup time parameter range, the IB output

setup time must fall within that range. The output timing TimingOUT is a function of

ISBP parameters which may or may not satisfy the input specification of compon

depending on the implementation. The process of checking whether the IB output ti

satisfies the component input timing for a given implementation is calledIB timing verifi-

cation.

The verification proceeds in two steps. First a timing constraint, called aconnection

timing constraint, is extracted for every timing parameter of every component input t

ing. As stated before, atiming constraintis a relationship between ISBP parameters (su

as propagation delays) and component timing parameters (such as setup and hold

that must hold for correct operation of the interface. Second, all timing constra

extracted during the interface design must be verified. This includes both the conne

timing constraints and the timing constraints extracted during timing propagatio

explained in Section 6.8.3 and Section 6.8.4. The timing constraints are verified by c

ing an implementation technology, assigning numeric values to the ISBP parameter

then evaluating the constraints.

6.9.1  The Connection Timing Constraint Extraction Process

The timing of the signals in the interface block is given relative to the compon

that generates the initiate and terminate events for the data transfer (this is usually th

master for the current data transfer). Figure 6-24 shows a simple example interface

non-multiplexed address signalA1 of a microprocessor and the non-multiplexed addre

signalA0 of a memory component. Since both address signals have a non-multiplexe

nal timing, the Timing ISB for theA1 signal will simply be a Wire ISBP. Since the Wire

ISBP passes the input signal unchanged, this discussion only has to consider the buf

The timing relationship between signals in the IB is shown in simplified form

Figure 6-25. The microprocessor generates signalA1 which has timing specification T1,

relative to the reference signalDS. The outputA1’ of the buffer has timing specification

T2 relative to the reference signalDS. The ISBP for the buffer has a propagation delay d

Thus we can state that the timing T2 ofA1’ is the same as the timing T1 relative toDS,

except that theA1 signal is delayed by d1. The propagation delay d1 depends on the t

nology that will be used to implement the interface. For example a LSTTL buffer will h

a minimum delay of 2ns and a maximum delay of 8ns, written as the interval (2ns 8
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The Interface Designer also determines the signal timing T7 of theCE’ signal relative to

the microprocessor referenceDSsignal. The component manufacturer specifies the tim

relationship T3 of the memoryA0 signal relative to theCE signal.

.

FIGURE 6-24.   Example Interface for an Address Signal

.

FIGURE 6-25.   Relative Timing Relationships for Example Interface

Microprocessor

LSB Address A1

Memory

A0

Buffer C1:

Address
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CE

Delay d1

Combinatorial:
Delay d3

Combinatorial:
Delay d2

Input Timing

for A0
Specification T3

Output Timing

for A1
Specification T1

Output Timing
Specification T2
for A1’

Output Timing
Specification T4
for Request (DS)

Output Timing
Specification T5
for other Address

Output Timing
Specification T6
for Decoded Address (DA)

Output Timing
Specification T7
for CE’

C2 C3

A1’

CE’

Wire ISBP

Microprocessor

LSB Address A1

Memory

A0

Address

DS

CE

T2

T7

Reference

T1

Reference’

A1’

CE’

T3

T4

ISB1

d3

d1
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The microprocessor signalA1’ is connected to memory signalA0. To assure that the

memory component will operate as specified by the component manufacturer, the

face Designer must assure that the timing parameters of theA1’ signal satisfy the timing

parameters of theA0 signal. In order to compare the timing parameters of two signa

both signals must be given relative to the same reference events. SignalCE’ is to be con-

nected directly to the signalCEwhich is the reference for theA0 signal in timing T3. A

timing TX is to be found, as shown in Figure 6-26(c), that gives the timing of signal A

relative toCE’. Timing parameters between TX and T3 can therefore be compared s

both timings are relative to the same reference (CE’ connects toCE). Figure 6-26 shows

how the timing parameters for timing TX are obtained.

.

FIGURE 6-26.   Finding Timing TX of A1’ relative to CE’

Reference (DS)

A1

Ts=(-~ -25) Th=(10 +~)

Timing T1

Reference (DS)

A1’

Ts2=(-~ -25)+d1 Th2=(10 +~)+d1

Timing T2

Reference’ (CE)

A0

Ts=(-~ -10) Th=(0 +~)

Timing T3

Reference (DS)

DS
Ts=(0) Th=(0)

Timing T4

Reference (DS)

CE’
Ts7=(0)+d3 Th7=(0)+d3

Timing T7

CE’

A1’

TsX=Ts2 -Ts7= ThX=Th2 -Th7=

Timing TX

(-~ -25)+d1-d3 (10 +~)+d1-d3

connects
connects

(c)

(a) (b)
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In Figure 6-26(a) timing T1 is a Strobe timing with a setup time of 25ns and a h

time of 10ns relative to the reference signal (DS). Timing T2 of A1’ , determined by the

Interface Designer, also is a Strobe timing with a setup time of (-~ 25)+d1 and a hold

of (10 +~)+d1 relative to the same reference signal (DS), where d1 is an ISBP paramete

propagation delay.

In Figure 6-26(b), timing T4 is a Logic timing with a setup and hold time of 0ns r

ative to the reference signal (DS). Timing T7 of theCE’ signal, determined by the Inter

face Designer, is also a Logic timing with a setup and hold time of 0ns+d3 = d3, relativ

the same reference signal (DS), where d3 is an ISBP parameter propagation delay.

The events on theCE’ signal in T7 occur d3 ns later than the events on the refere

DS. SinceDSis the reference signal in both T2 and T7, it can be concluded that the ev

on theA1’ signal occur d3 ns earlier relative to the events on theCE’ signal. These rela-

tionships are shown as timing TX in Figure 6-26(c). TheA1’ signal has a setup time

parameter of (-~ 25)+d1-d3 and a hold time parameter of (10 +~)+d1-d3 relative to

CE’ signal. It should be noted that timing TX is a Strobe timing since signal timings

small delay invariant, and both d1 and d3 are small delays.

This example showed that the timing relationship of the reference events bet

components is required to verify the timing parameters of two signals being connecte

the example shown in Figure 6-26, the required timing relationship is between theDSref-

erence signal on the microprocessor and theCEreference signal on the memory. The tim

ing relationship between these two signal is given in timing T7. As it turns out, the tim

of the reference events between components is always available in the form ofrequest

information output of the IB. In fact, therequest information was designed primarily to

provide a simple, consistent method to obtain the timing relationship between refe

events between components. The Interface Designer will connect all information

found on a component, and in doing so will always generate a connection for

request information ports. Due to the design methodology employed, the timing

request information will always be in the form of a Logic timing. For timing verifica

tion and constraint extraction, the Interface Designer directly looks at the IBrequest

information output port that is connected to the slave componentrequest information

input port to determine the timing relationship between the reference events of co

nents.
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6.9.1.1 Extracting the Timing Constraints

To assure setup and hold time parameters of T3 are satisfied, timing constrain

extracted using the derived timing TX. Figure 6-26(c) shows the input setup time ofA0 as

(-~ -10) relative to theCEsignal while the setup time of theA1’ as (-~ -25)+d1-d3 rela-

tive to theCE’ signal (which is connected directly to theCEsignal). To assure that theA1’

output signal does generate a signal that meets theA0 input specification, the Interface

Designer must assure that the timing parameter interval (-~ -25)+d1-d3 of theA1’ signal

falls within the timing parameter (-~ -10) of theA0 signal.

Thecontains-intervaloperator was developed to provide the Interface Designer w

a method to express a constraint that must be satisfied to assure that one interva

within another interval. The expression

((A B) contains-interval (C D)) (EQ 6-11)

represents a constraint that states that interval (C D) falls within the interval (A B).

constraint is satisfied (true) iff A≤ C and B≥ D as illustrated in Figure 6-27. The uppe

and lowermarginsindicated by how much interval (C D) falls within interval (A B). Pos

tive margins indicate that the constraint is satisfied, while any negative margin indic

that a constraint fails.

Using the contains-interval operator, a constraint for the setup time of theA0 and

A1’  signals can be written as:

{(-~ -10) contains-interval ((-~ -25)+d1-d3)} (EQ 6-12

.

FIGURE 6-27.   Contains Interval Operator

Interval (A B)

time
A B

Interval (C D)

C D

Lower Margin = C-A Upper Margin = B-D

{(A B) contains-interval (C D)} iff A≤ C and B≥ D
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Figure 6-28 illustrates this constraint graphically. It shows how the timing param

Tsout of the output specification of theA1’ signal falls within the input timing parameter

Tsin of theA0 signal input specification.

For the hold time of theA0 signal the constraint is:

{(0 +~) contains-interval ((10 +~) + d1-d3)} (EQ 6-13

When the interface is implemented in a given technology, the delay paramete

and d3 will be found. The timing constraint shown in Equation 6-13 can then be evalu

to verify that the input timing specification ofA0 is satisfied.

6.9.1.2 Constraint Extraction Rules

For every IB output to component input connection, a set of connection timing c

straints must be found. The timing constraints extracted depend on the signals’ ti

templates. A set of constraint extraction rules was developed to extract the timing

.

FIGURE 6-28.   Constraint Output and Input Specification

CE’

A1’

Tsout=(-~ -25)+d1-d3 Thout=(10 +~)+d1-d3

Timing Output Specification TX (relative to CE’)
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Tsin=(-~ -10) Thin=(0 +~)

Timing Input Specification T3 (relative to CE == CE’)

100-10-20 20
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Tsin=(-~ -10)

Output

Input

The output specification must fall within the input specification
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straints for each possible combination of IB output timing templates and component

templates as outlined in Figure 6-29. The steps for timing constraint extraction are

marized in Table 6-12: extracting a constraint for the setup time and hold time of the i

timing or in some cases extracting a constraint for the initiate to terminate time interv

discussed in Section 6.9.3.

6.9.2  Choosing an Implementation Technology

The ISBP parameters are represented as unknown variables within the const

An implementation technology is now chosen which assigns a fixed range of valu

every ISBP parameter found within the IB. The choice of implementation technology i

.

FIGURE 6-29.   IB Constraint Extraction Rules

Interface Block

Output Timing

Component

Input Timing

Steps for

Timing Extraction

Strobe, Logic Pulse Extract initiate-terminate constraint

Strobe, Logic Strobe Extract setup & hold constraints (Eq. 6-11 )

Latch Latch Extract setup & hold constraints (Eq. 6-11 ), include
ALE delay

Follows, Strobe, Logic Follows-Latch Extract hold (Eq. 6-11 ) & initiate-terminate constrain

Follows, Strobe, Logic Follows-Pulse Extract hold (Eq. 6-11 ) & initiate-terminate constrain

Handshake Handshake Extract hold constraint (Eq. 6-11 )

Wait Wait Extract setup constraint (Eq. 6-11 )

TABLE 6-12.   Steps for Timing Constraint Extraction

Combinatorial
State
Converter ISB

Production
System

Timing Verification
Design Rule

IB

Component2
TsetupC2 contains-interval TsetupIB

ExtractTpd
Timing Constraint

TholdC2contains-interval TholdIBTemplateY

Template X

Input

Output

Template X to Template Y
THEN

Extract Constraints

IF
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to the user of the Interface Designer, and often is important for a successful design.

ous factors will affect the choice of implementation technology, such as cost, speed p

consumption and availability. Careful consideration must be given to the proper spe

the implementation technology. If the implementation technology is too slow for the c

ponents being connected, it may be impossible for the Interface Designer to gener

interface where all timing constraints are satisfied.

6.9.3  Calculating the Initiate-Terminate Delay

Up to this point, the Interface Designer has completed the design of the interfac

has extracted timing constraints, that if satisfied will assure correct operation. Onc

implementation technology had been chosen, the Interface Designer could assign

directly to all ISBP parameters with one exception: the adjustable propagation delay

example dvar in Figure 6-17) in Leading and Trailing Edge ISBPs. This delay is used

adjust the initiate to terminate delay of the reference events on the master, and can n

determined. If the timing template of thedelay information is a Pulse timing, the initiate

to terminate delay provided by the master is fixed and can not be changed.

The timing constraints extracted include several that place a lower limit on the

tiate to terminate delay. For example, the a memory device usually places a restricti

the initiate to terminate delay: it must be at least as long as the access time. The Int

Designer systematically searches through all timing constraints involving the initiate

terminate delay to check for restrictions, and from the restrictions calculates a lower

This lower limit is then used to calculate and set the dvar ISBP parameter of the Leading

and Trailing edge ISBPs. For example, the dvar ISBP parameter of a Leading Edge Dela

ISBP shown in Figure 6-30 is calculated as follows. An IB Handshake delay output tim

.

FIGURE 6-30.   Example Handshake Delay Timing of a Microprocessor

Acknowledge (DTACK)

Reference (DS)

Delay Timing (Handshake)

TsO ThO

Initiate to Terminate Delay TIT

Tter
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is connected to the Handshake delay input timing of the microprocessor. For the micr

cessor we know that the initiate to terminate delay TIT is the sum of TsO and Tter:

TIT = TsO + Tter

which allows TsO to be written as

TsO = TIT - Tter (EQ 6-14)

For the IB Handshake output timing from Figure 6-18 we know that

TsO = TsI+dvar+dprop

where TsI is the setup time of the input signal of the Leading Edge Delay ISBP. T

allows us to solve for dvar by substituting TsO

dvar = TIT - Tter - (TsI+dprop) (EQ 6-15)

All parameters on the RHS of Equation 6-15 are known: TIT is the initiate to termi-

nate delay determined from the constraints, Tter is the terminate delay from the handshak

signal timing of the component, dprop is the propagation delay of the AND gate used

build the Leading Edge Delay ISBP and TsI is the setup time of the signal entering th

Leading Edge Delay ISBP.

6.9.4  Timing Constraint Evaluation and Verification

A timing constraint is a relationship between ISBP parameters and timing para

ters. Both the ISBP parameters and the timing parameters are expressed astime intervals

representing a range of time values. Two types of timing constraints were relevant in

work: inequality timing constraints such as (A≤ B) and (A≥ B), involving single value

setup and hold times A and B, and the contains-interval connection timing constr

involving time intervals X and Y (X contains-interval Y). The inequality constraints c

be written using a contains-interval constraint:

(A ≤ B) can be written as ((-~ B) contains-interval (-~ A))

(A ≥ B) can be written as ((B +~) contains-interval (A +~))

The Interface Designer therefore only has to be able to evaluate constraints involvin

contains-interval operator.

To evaluate the contains-interval constraint (X contains-interval Y), the end po

of the time intervals X and Y are calculated, and a check is performed to see if the

points of interval X enclose the endpoints of interval Y (see Figure 6-27). Calculating
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end points of an interval requires evaluation of arithmetic expressions using addition

subtraction of time intervals. Evaluation of arithmetic expressions using intervals is c

interval arithmetic. For example, if an event of a signal that has a given timing param

to a reference passes through an ISBP such as a buffer, a timing parameter for the d

signal relative to the same reference can be obtained by adding the ISBP parameter

propagation delay as shown in Figure 6-31. The addition of two intervals is represe

using the symbol . Conversely if the reference is passed through an ISBP such

buffer, a timing parameter for the signal relative to the delayed reference can be obt

by subtracting the interface delay parameter from the timing parameter as show

Figure 6-32. The subtraction of two intervals is represented using the symbol .

When two time intervals (A B) and (C D) are added or subtracted, the range o

resulting sum or difference is determined. The range will specify the earliest possible

to the latest possible time.

For addition,

Earliest possible time of ((A B)  (C D)) =

[Earliest possible time of (A B)] + [Earliest possible time of (C D)] = A+C (EQ 6-1

and

.

FIGURE 6-31.   Delay of a Signal Relative to a Reference

.

FIGURE 6-32.   Delay of a Reference Relative to a Signal

Thold=(A B)

Input
Reference

SignalIN

Thold’= Thold+Tpd=

Output
Reference

SignalOUT

Delay Tpd=(C D) (A B) (C D)+

+

_

Thold=(A B)

Input
ReferenceIN

Signal

Thold’= Thold-Tpd=

Output
ReferenceOUT

Signal

Delay Tpd=(C D) (A B) (C D)_

+
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Latest possible time of((A B)  (C D)) =

[Latest possible time of (A B)] + [Latest possible time of (C D)] = B+D (EQ 6-1

The Interval for the time of occurrence of the sum (A B)  (C D) is the interval:

(A B)  (C D) = (A+C B+D) (EQ 6-18)

This is illustrated in Figure 6-33 by showing what happens when a timing param

interval of (-30 -10) is delayed by an interval of (20 30).

For subtraction,

Earliest possible time of ((A B)  (C D)) =

[Earliest possible time of (A B)] - [Latest possible time of (C D)] = A-D

and

Latest possible time of((A B) (C D)) =

[Latest possible time of (A B)] - [Earliest possible time of (C D)] = B-C

The Interval for the time of occurrence of the difference (A B)  (C D) is the interva

(A B) - (C D) = (A-D B-C) (EQ 6-19)

This is illustrated in Figure 6-34 by showing what happens when a timing param

interval of (-30 -10) occurs earlier by an interval of (20 30).

Both the interval addition and subtraction operators are associative. This mean

.

FIGURE 6-33.   Example of Addition of a Timing Parameter and a Propagation Delay

+

+

+

Timing Parameter Interval: (-30 -10) Delay interval:(20 30)

100-10-20 20
-~ +~

-30

+

Timing Parameter Interval (-30 -10)

Timing Parameter -30 delayed by (20 30)

Timing Parameter -20 delayed by (20 30)

Timing Parameter -10 delayed by (20 30)

Resulting Timing Parameter (-10 20)

Find result of adding the two intervals: (-30 -10) (20 30)

_

_

_
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(A B)  (C D)  (E F) = ((A B)  (C D))  (E F) =

(A B)  ((C D)  (E F)) = (A+C-F B+D-E)

The interval arithmetic expressions given in Equation 6-18 and Equation 6-19

be used to evaluate the timing constraints extracted. The interface example in Figure

has the two timing constraints extracted as given in Equation 6-12 and Equation 6-

the circuit is implemented using a technology such as LS TTL, then delay d1 will b

12) ns, while delay d3 will be (6 15) ns (worst case range of values for one impleme

tion) [62] and the Equation 6-12 constraint becomes:

{(-~ -10) contains-interval ((-~ -25) (4 12)  ((0) (6 15)))} (EQ 6-20

{(-~ -10) contains-interval ((-~ -25)  (4 12)  (6 15))} (EQ 6-21

{(-~ -10) contains-interval ((-~ -25) (-11 6))} (EQ 6-22)

{(-~ -10) contains-interval (-~ -19)} (EQ 6-23)

The interval (-~ -10) does contain the interval (-~ -19), which means t

Equation 6-23 is always true and the constraint is satisfied for this implementation.

upper margin for this constraint is 9ns. The margin can be used as an indication of

tolerant the design will be to fluctuations in the timing parameters. The timing param

are usually influenced by the type of implementation technology, operating temper

range, power supply fluctuations or semiconductor processing consistency. A large

tive margin indicates that the design is robust and will still operate correctly even if

timing parameters fluctuate from the values assigned during the interface design pro

.

FIGURE 6-34.   Example of Subtraction of a Timing Parameter and a Propagation Delay

Timing Parameter Interval: (-30 -10) earlier by interval:(20 30)

100-10-20 20
-~

-30

Timing Parameter Interval (-30 -10)

Timing Parameter -10 earlier by (20 30)

Timing Parameter -20 earlier by (20 30)

Timing Parameter -30 earlier by (20 30)

Resulting Timing Parameter (-60 -30)

Find result of subtracting the two intervals: (-30 -10) (20 30)
_

-40-50-60

+ _ + _

+ _

+ _ +

+ _

+
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Continuing with the interface example in Figure 6-26, the Equation 6-13 constr

becomes:

{(0 +~) contains-interval ((10 +~) (4 12)  ((0)+(6 15)))} (EQ 6-24

{(0 +~) contains-interval ((10 +~)  (4 12)  (6 15))} (EQ 6-25

{(0 +~) contains-interval ((10 +~)  (-11 6))} (EQ 6-26)

{(0 +~) contains-interval (-1 +~)} (EQ 6-27)

Equation 6-27 fails since the interval (-1 +~) is not contained within the interva

+~), by a lower margin of -1ns. The failed constraint means that for this implementa

the hold time of theA0 signal relative to theCEsignal is not satisfied under all operatin

conditions, thus resulting in an invalid design. This failed constraint shown is hypothe

for illustration purposes and would normally indicate that the selected component

incompatible with each other. Chapter 7 discusses how a failed constraint is handl

the Interface Designer.

6.10  Generating the VHDL Code

Once the design is completed and the timing constraints are verified, VHDL co

generated for the interface. This work uses the premise that at the most detailed lev

interface blocks are built up from known ISBPs (defined in Chapter 5). A VHDL primit

circuit library was created that contains architectures of these ISBPs. This means th

ISBPs that are used to build up the IB can be ‘instantiated’ as ‘components’ within

‘architecture’ of each interface block ‘entity’1. Since the primitive circuit library contains

an architecture for each of the VHDL primitive circuits, it will be possible to simulate

synthesize the IB by simply compiling the completed design and including the VH

primitive circuit library. There are two important advantages to using a VHDL primit

circuit library. First, the Interface Designer is able to generate a completely structura

resentation of the interface using the VHDL primitive circuits and second, the arch

tures of the VHDL primitive circuits can be verified and optimized separately.

The Interface Designer will generate an IB for each data transfer connection req

For a microprocessor system there usually will be more than one connection reques

example a microprocessor system may consist of one or more banks of RAM memor

or more banks of ROM memory and different IO devices. Such a system would

1.  Quoted words are terminology used in the VHDL language and have different meaning than the s
terms used previously within this work.

+ _

+ _

+
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designed using several connection requests, one for each bank of RAM, one for each

of ROM and one for each IO device. To aid in the simulation and synthesis of the com

microprocessor system, the Interface Designer will generate a system VHDL entity w

contains all the data transfer IB VHDL entities.

Finally, a VHDL system test bench is produced for the system VHDL entity. Atest

benchis a VHDL entity that instantiates the system VHDL entity and applies simulat

excitation signals (calledtest vectors) to the inputs of the IBs within the system VHDL

entity. By simulating the test bench using a VHDL simulator the operation of the inter

can be analyzed and verified. More importantly, the capability to simulate the resu

interface makes it possible to validate the Interface Designer. By studying and anal

the output from the simulator, a design engineer can validate that the interface gen

by the Interface Designer allows all components to operate as specified by the man

turer. The simulation test vectors are generated automatically by the Interface Des

The state and timing of the test vectors are extracted from the state specification and

timings in the component library. The Interface Designer will provide test vectors

simulate a basic read cycle followed by a write cycle.

6.11  Controlling the Design Process

The design knowledge of the Interface Designer consists of a set of rules to ac

plish the different tasks of the design process. The orderly execution of the tasks is

trolled using context limiting and specificity ordering strategies.

.

FIGURE 6-35.   Design Phases used for Contexts Limiting

ISB
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The Interface Designer system steps through the phases shown in Figure 6-35.

face design starts with the IB Creation phase. Once the initial IB is created, the ISB

ation phase commences. After completion of the ISBs, unused and redundant ISB

deleted during the IB Cleanup phase. An example of a redundant ISB is a Timing ISB

consists of a Wire ISBP. The deletion of a Wire ISBP in no way changes the behavi

the IB, it only reduces the complexity by reducing the number of ISBs. This step

added since it was found that Wire ISBPs were cluttering up the user display of the IB

structure and the large number of Wire ISBPs slowed the generation and compilation

of the VHDL code. An example of an unused ISB is an Info ISB that is used to genera

internaldecoded read information signal, the output of which is not used anywhere

the IB. Such an ISB can be removed without affecting the operation of the interface.

Next the timing constraints will be verified during the Verify Constraints pha

Timing constraint verification is followed by generation of the VHDL code for the IB th

has just been designed, during the VHDL Generation phase. If more IBs mus

designed, another IB is created and the ISB Creation phase once more commence

required IBs have been designed, VHDL code for the system test bench incorporati

IBs is generated during the VHDL System Generation phase.

6.12  Summary of the Interface Design Process and Representation

This chapter developed the interface design process and its representation

Interface Designer. The interface design process is divided into seven steps which c

follow the abstraction hierarchy developed for the component and interface models.

The first step creates an IB for each capability of a component that must be

nected. The IB is sub-divided into Info ISBs which in turn are sub-divided into State

Timing ISBs. The State and Timing ISBs are next designed using ISBPs and the tim

on the input of the ISBs are propagated to the output of the ISB. Once the IB is desi

the timing constraints are verified to see if all input timing specifications are satis

Finally a VHDL representation of the IBs is produced. A simulation test bench for the

is also generated and allows the operation of the interface to be validated using V

simulation tools.

typoooo
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Chapter 7

Data Transfer Interface Design Implementation and Results

Chapters 4 to 6 developed the knowledge representation framework and the

ence process used in the Interface Designer. This chapter presents the results o

from the Interface Designer implemented in Knowledge Craft expert system shell

The Knowledge Craft shell version 4.1 runs on a Sun Microsystem SPARCstation 2

48MB of RAM under UNIX SunOS release 4.1.3.

Data structures in Knowledge Craft are implemented using the CRL (Carnegie

resentation Language [16]), a frame based knowledge representation language whic

vides object-oriented programming that describes inheritance as relations between o

that are called frames. A directed graph that uses frames as nodes and the re

between frames for the links between nodes is called aframe network. In Knowledge

Craft, the frame network can be displayed and modified using the Palm Network E

tool. Rules are represented in CRL-OPS, a forward chaining rule based system lan

[16].

This chapter first presents the components entered into the Interface Designer

ponent library. This is followed by the detailed analysis of a design example using

68000 microprocessor and the 6116 RAM. Other design examples are provided in A

dix F to illustrate different features of the Interface Designer. The chapter concludes w

summary of the different microprocessor systems designed with the Interface Desig

7.1  Component Library

Various components were entered into the component library using the knowl

representation techniques developed in Chapter 4. The component library is used to

all component information relevant to interface design. The development of the com

nent library was accomplished in two phases. First prototype frames were created

represent the classes of building blocks from which components can be constructed

ond, the appropriate prototype frames were instantiated to produce the device frame

represent an actual, specific component. (For an overview of the component frame

B.1).
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7.1.1  Prototype Frames

Prototype frames represent the building blocks from which component and inte

block frames can be created through instantiation. Prototype frames are organize

networks of related classes using the^is-a relation. For example, Figure 7-1 shows th

prototype frames that were created for all the signal timings developed in Chapter 4

played using the Knowledge Craft Palm Network Editor. The root classTIMING has sub-

classesPULSE_TIMING, PULSE_LATCH_TIMING, etc., which in turn may have

further sub-classes.

7.1.2  Device Frames

Once the prototype frames were designed and completed, device frames wer

ated for different components based on the prototype frames: every device frame in a

ponent is the instantiation of a prototype frame. For example, the Motorola 68

microprocessor device frame was created by instantiating the microprocessor prot

frame. Figure 7-2 shows a partial network of device and prototype frames that make u

68000 microprocessor. Both device frames and prototype frames are shown to giv

reader an understanding of the^is-a class relations between the prototype frames a

device frames, and an understanding of the relations between device frames. A

enclosed in a box indicates it occurs more than once in the displayed frame network

In Figure 7-2, the arrow between nodes in the frame network represents the rela

between nodes. A key for the relations between nodes is given at the bottom of the

to allow the reader to interpret the frame network. For example, Figure 7-2 indicates

.

FIGURE 7-1.   Class Network of Prototype Frames for Signal Timings
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FIGURE 7-2.   Motorola 68000 Microprocessor Frame Network
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the M68000 (device frame)̂ is-a MICROPROCESSOR(prototype frame) which in turn

^is-a COMPONENT(prototype frame). A complete listing of the device frames for t

Motorola 68000 microprocessor (8Mhz) is given in D.1.

7.1.3  Components Represented

To illustrate the design capabilities of the Interface Designer, a cross section of

ponents from different families and manufacturers and for different operating speed

selected and entered into the component library. These components are listed in Tab

The type column specifies if a component is a microprocessor (CPU), RAM mem

ROM memory or IO device. The name column lists the generic name for the compo

while the part number column gives the name from the manufacturer for a specific s

The speed is listed as either a frequency (in Mhz), for those components that requ

external clock signal to operate, or as a period for those component whose speed

given as an access time. The address and data columns give the size of the address

the data bus respectively.

7.1.4  Component Entry Guidelines

Data entry into the component library requires a detailed analysis of the compo

specification. From the experience gained by entering the components shown in Tab

into the component library, the following guidelines were established:

1. Review a component’s data transfer capability.

2. Review all signals and decide which signals are involved in data transfer. Extract 
signals used for each of the information transfers:request, data, address,
type, direction, word, size  anddelay .

3. For signals determined in step 2, determine the signal states that occur during da
transfer. This is the state information for information transfer.

4. Since the current design system can only handle standard TTL logic levels, chec
DC logic level compatibility.

5. From the AC timing diagrams for the read and write cycle, find the initiate and ter
nate events. Extract the signals involved and develop their event expressions.

6. From the AC timing diagrams, determine the timing for each of the signals extracte
Step 2 for each information transfer. At this point only determine the timing templa
not the specific timing parameters.

7. From the AC timing parameter tables, determine the specific timing parameter for
event relation found for the timings from Step 6.
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Type Name Part No. Ref. Family Manu-
facturer

Address

(bits)

Data

(bits)

Speed

CPU 6809 mc6809 [58] 6800 Motorola 16 8 1Mhz

6809 mc68A09 [58] 6800 Motorola 16 8 1.5Mhz

6809e mc6809e [58] 6800 Motorola 16 8 1Mhz

68000 mc68000-8 [55] 68000 Motorola 23 16 8Mhz

68000 mc68000-12.5 [55] 68000 Motorola 23 16 12.5Mhz

68020 mc68020-12.5 [56] 68000 Motorola 32 32 12.5Mhz

68020 mc68020-16.7 [56] 68000 Motorola 32 32 16.7Mhz

z80 z80 [88] Z80 Zilog 16 8 2.5Mhz

z80 z80h [88] Z80 Zilog 16 8 8Mhz

8085 i8085a [43] 8080 Intel 16 8 3Mhz

8085 i8085a-2 [43] 8080 Intel 16 8 5Mhz

8086 i8086a-2 [41] 8086 Intel 20 16 8Mhz

32020 tms32020 [80] 32020 TI 16 16 20Mhz

Memory 6116 cmd6116-3 [67] SRAM RCA 11 8 150ns

(RAM) 6116 cmd6116-9 [67] SRAM RCA 11 8 250ns

6164 mcm6164-45 [59] SRAM Motorola 13 8 45ns

6810 mcm6810 [58] SRAM Motorola 7 8 450ns

6810 mcm68b10 [58] SRAM Motorola 7 8 250ns

Memory 2716 etc2716-1 [82] EPROM Mostek 11 8 350ns

(ROM) 2732 2732a [44] EPROM Intel 12 8 250ns

2732 2732a-2 [44] EPROM Intel 12 8 200ns

2732 2732a-4 [44] EPROM Intel 12 8 450ns

2764 2764a-1 [44] EPROM Intel 13 8 180ns

27128 27128a-2 [44] EPROM Intel 14 8 200ns

27256 27256a-1 [44] EPROM Intel 15 8 170ns

27512 27512a-1 [44] EPROM Intel 16 8 170ns

IO (PIO) 6821 mc68b21 [58] 6800 Motorola 2 8 210ns

8255 i8255a [42] 8080 Intel 2 8 400ns

8255 i82c55a-2 [42] 8080 Intel 2 8 150ns

IO (CRT) 6845 mc68a45 [58] 6800 Motorola 1 8 280ns

6845 mc68b45 [58] 6800 Motorola 1 8 210ns

IO(UART) 6850 mc6850 [58] 6800 Motorola 1 8 450ns

6850 mc68a50 [58] 6800 Motorola 1 8 280ns

6850 mc68b50 [58] 6800 Motorola 1 8 210ns

TABLE 7-1.   List of Components in Component Library
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8. Create the device frame network of a component using the CRL language, by ins
ating the appropriate prototype frames.

7.2  Design Rules

The Interface Designer is comprised of 93 design rules. Table 7-2 shows the

grouped according to the interface design function they perform. An example CRL-

rule is shown in Table 7-3. This rule has been simplified for presentation purpose.

modify-latch-to-strobe-block rule will fire when a Timing ISB with a Latch

input timing and a Strobe output timing must designed. This rule is only active during

data_xfer_interface_creation phase of the design. The consequents of t

rule have been organized into several modular LISP routines that will fill in the appro

Rule Function Number of
Rules

IB Creation 1

Information Connection ISB creation and State
ISB creation / design

36

Timing ISB creation / design 24

Timing constraint extraction 11

Implementation & timing constraint verification 1

Generation of VHDL code, Test Bench and Netlist 2

Housekeeping: context limiting, deletion of unused
ISBs

18

TABLE 7-2.   Rule Design Function Summary

;rule to fill in a Timing ISB with the appropriate logic
;if the input is latch timing and output timing is a strobe timing
;i.e. demultiplex the signal
(p modify-latch-to-strobe-block

(interface_sub_block ^schema-name <int-block> ^instance ‘interface_sub_block
                       ^modified-by+inv <superblock>
                       ^function (member single_signal_converter <>)
                       ^status ‘new
                       ^input-timing <itim> ^output-timing <otim>
                       ^input-signal <isig> ^output-signal <osig>)
  (latch_timing ^schema-name <itim>)
  (strobe_timing ^schema-name <otim>)

  (step ^phase data_xfer_interface_creation)
-->
   (create-nonmux-signal <int-block>)
   (modify-strobe-from-latch-output-timing <int-block> <superblock>)
   (adjust-timing (get-value <int-block> ‘output-timing) <otim>
                  (get-value <int-block> ‘output-signal))
   (mark-timing-completed <itim> <otim> <isig> <int-block> ‘latch_to_stb))))

TABLE 7-3.   Example Rule for Timing Constr10int Extraction
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ate slots in the appropriate frames. Thecreate-nonmux-signal routine will insert

the D-Latch primitive circuit into the Timing ISB. Themodify-strobe-from-

latch-output-timing routine will determine the output signal timing parameters

the Timing ISB from its input. Theadjust-timing routine will determine signal tim-

ing parameters of the output of the State ISB. Finally themark-timing-completed

routine will mark the Timing ISB as being completed.

7.3  Interface Designer Output

The Interface Designer produces a variety of outputs as shown in Figure 7-3

execution logfiletracks every step of the Interface Designer. Any errors encountered

ing the design are recorded in the execution logfile. This helps the Interface Designe

to track down any problems encountered during the design process. After completi

the design, the Interface Designer saves all the IBs and ISBs generated in theIB and ISB

Frame File. This file allows the user to inspect and verify any frames generated, if des

TheConnection Netlistfile provides a listing of all the component signals being connec

and their pin numbers.

.

FIGURE 7-3.   Interface Designer Output
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The primary output of the Interface Designer are several VHDL files of the in

face:

• An IB and ISB VHDL Code file is generated for each IB designed.

• A System VHDL Test Bench file is generated which instantiates VHDL entities of all
IBs generated and can be used to simulate the operation of the completed data tr
interface.

• A VHDL Compile Batch File is produced to assist the user in the compilation of the
VHDL code. Compilation of the VHDL code is required before simulation and syn
sis of the VHDL code.

• A VHDL Simulation Plot Batch File is produced to assist the user in the display of ti
ing waveforms from the VHDL simulator.

Both the VHDL compile batch file and the VHDL simulation plot batch file we

included for the convenience of the user and they do not contain any design informa

The complete design is contained within the IB, ISB and System test bench VHDL fi

7.4  Interface Design Example: 68000 to 6116

This section illustrates a complete design using the Interface Designer. The as

of the design process discussed include the problem specification, IB and ISB de

frame representation, timing verification, VHDL code generation and the VHDL sim

tor output.

7.4.1  Problem Specification: 68000 to 6116

The Interface Designer was given the following microprocessor data transfer i

face design problem:

• Microprocessor: Motorola 68000 (8 Mhz clock frequency)

• Memory: Four RCA 6116 (150ns access time) 2Kx8 CMOS static RAM devices

• 16-bit datapath interface between microprocessor and memory

• The memory is organized into two banks of 16-bit datapath width, mapped at add
0x000000 and 0x008000 in 24-bit address space (hex address)

• The memory is accessible from the User and Supervisor, Program and Data spac

An overview of the 68000 to 6116 design example specification is given in Figur

4. Some of the features illustrated by this design example are: address decoding,

data bus connection allowing both 16-bit and 8-bit data transfer, data bus buffering,

transfer internaldecoded type information utilization, data transfer acknowledge ge

eration and connection of non-multiplexed address signals.
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The Interface Designer is provided with instances of the components being

nected and a connection request. Table 7-4 shows the frames (using pseudo code f

plicity) that are passed to the Interface Designer. The complete CRL frames fo

component instances and the connection request are given in D.2.

7.4.2  Execution: 68000 to 6116

To illustrate the operation of the interface design rules, the design process was

rupted after the creation and design of theRequest  information ISB. The rules that fired

are shown in Table 7-5. The resulting IB frame network is shown in Figure 7-5.

IB_1_RW_CONNECTframe represents the interface block.ISB_4_REQUEST_INT is

.

FIGURE 7-4.   68000 to 6116 Design Example Specification

COMPONENT INSTANCES:
u1: instance-of: m68000
u2: instance-of: m6116
u3: instance-of: m6116
u4: instance-of: m6116
u5: instance-of: m6116

CONNECTION REQUEST:
connection-request-1

purpose: data-transfer
connect: U1 to U2, U3, U4, U5
memory-map: U2, U3 at address 0x000000

U4, U5 at address 0x008000
type-map: U2, U3, U4, U5 at

user & supervisor, program & data
data-bus-map: U2 to U1 lower-data

U3 to U1 upper-data
U4 to U1 lower-data
U5 to U1 upper-data

address-bus-map: U2, U3, U4, U5 (A0-A10) to U1 (A1-A11)

TABLE 7-4.   Component Instances and Connection Request for Design Example

d68000
Microprocessor

8 Mhz

cmd6116-3

U1

Memory, U2

cmd6116-3
Memory,U3

Lower Data

Upper Data

cmd6116-3
Memory, U4

cmd6116-3
Memory,U5

Lower Data

Upper Data

Address: 0x000000Address: 0x008000

150ns 150ns

150ns150ns

Bank of 4, 6116 RAM devices

Interface:

16-bit
Data Path

User
Supervisor
Program
Data

type:
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the ISB that generates the internal request signal,ISB_4_REQUEST_INT_SIGNAL,

with a timing ISB_4_REUQEST_INT_TIMING, from the 68000request informa-

tion. ISB_9_REQUEST_INT_OUT represents the Info ISB used to generate t

request information connected to the 6116 memory.ISB_5_REQUEST_IN is an ISB

that is used to keep track of the completion ofISB_4_REQUEST_INT. The rule that fires

to create theISB_4_REQUEST_IN ISB is also used to finalize the State ISB state equ

tion. For convenience, the state equation for the State ISB is stored in the internal re

information frame as seen in Table 7-6. A Timing ISB is provided for every signal go

Rule Fired Function of rule

create-rw-control-connect Create IB for 68000 to 6116

create-request-int Create the internal request generate ISB
(ISB_4_REQUEST_INT)

create-request-in Create an ISB with instructions to finish the inter-
nal request generate ISB (ISB_5_REQUEST_IN)
and design State ISB

extract-conversion-blocks Create a Timing ISB for each input into the inter-
nal request generate ISB

modify-strobe-to-logic-block Design Timing ISB (ISB_6_CONV_SS)

modify-logic-to-logic-block Design Timing ISB (ISB_7_CONV_SS)

modify-logic-to-logic-block Design Timing ISB (ISB_8_CONV_SS)

modify-block-to-finished Indicate that the internal request generate ISB is
finished

TABLE 7-5.   Rules fired for Request Information ISB design

.

FIGURE 7-5.   The Example Interface After 8 Rules Have Fired
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into the ISB_4_REQUEST_INT (theISB_nn_CONV_SSISBs). A schematic represen

tation of therequest information circuit is shown in Figure 7-6 to give the reader

clearer picture of the signals involved. Figure 7-6 shows the circuit inside

ISB_4_REQUEST_INT ISB and how the ISB signals are related to signals on the 68

and 6116. The three Timing ISBs in Figure 7-6 are wires since no timing conversio

required. It should be noted that at this point in the design,

ISB_4_REQUEST_INT_SIGNAL is not connected to the

ISB_9_REQUEST_INT_OUT ISB.

.

TABLE 7-6.   Internal Request Generation Frame for Design Example

.

FIGURE 7-6.   Request Interface Information Schematic

UDS

LDS
CE

68000
6116

ISB_4_REQUEST_INT_SIGNAL

Request Information Flow
IB_1_RW_CONNECT

ISB_6_CONV_SS(wire)

ISB_8_CONV_SS(wire)

ISB_4_REQUEST_INT ISB_9_REQUEST_INT_OUT

AS

ISB_7_CONV_SS(wire)
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If the inference engine is allowed to continue the design process until comple

(627 rule firings) the IB frame network in Figure 7-7 is obtained. It should be noted

some of the IB frames were removed for display clarity (for example, only some of

data signal and address signal ISB frames are shown).

Internal signals and their timings are shown at the top of Figure

(ISB_nn_xxxx_INT_SIGNAL ). ISB_249_ADD represents the interface between th

68000 and 6116 address signals.ISB_88_DATA represents the interface between th

68000 and 6116 data signals. The ISBs called ISB_nn_CONV_CC represent the inte

.

FIGURE 7-7.   Completed Interface Design Example Frame Network
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blocks that connect the output of the IB to the input of a component. It should be no

that for this example design, only one Timing ISB is required:ISB_69_CONV_SS,

which is a Leading Edge Delay primitive circuit.

7.4.3  System Schematic: 68000 to 6116

To provide a visual representation of the interface design example, the output o

Interface Designer was drawn manually as a schematic shown in Figure 7-8 from th

frame network. The IB schematic is given in terms of its Info ISBs to emphasize the

eral interface methodology and how the methodology relates to the final design ou

Different information port signals from the microprocessor are decoded within ISB

generate internal signals. There are two internaldecoded address information sig-

nals for the two different address banks.S0 selects address 0 andS1 selects address

0x8000. There are two internaldecoded word information signals for the upper and

lower data bytes. For this design, the internaldecoded word information signals corre-

spond directly to theUDSandLDSsignals from the 68000. The internaldecoded type

information signal gets activated whenever the User, Supervisor, Program or Data sp

selected. The internaldecoded request information signal is activated when any dat

transfer is in progress.

The information from the internaldecoded address , type , word and

request information ISBs are combined using a four input AND combinatorial circ

and applied to theCEsignal on the 6116. Thedirection information from the master is

connected to theOEandWRsignal on the 6116 in the form of internaldecoded read

andwrite information signals. The internaldecoded read information signal is also

connected to the direction signal input (DIR) on the bidirectional buffers (shown a

) connecting the data signals. The internalaccess information signal is

generated so that it is active whenever the memory devices are activated and is con

to the enable input (EN) on the bidirectional buffers connecting the data signals. The in

nal access information signal is also connected to a Leading Edge Delay input wh

output connects to theDTACKacknowledge signal. The Leading Edge Delay takes the fi

edge of the internalaccess information signal (the edge that is related to the initia

transition from the reference), and delays it by an amount calculated from the timing

straints extracted during interface design, which is 76 ns for this example. The buf

address signals (A1-A11) from the 68000 are connected to the (A0-A10) address signal

inputs on the 6116 memory. As shown in the schematic the lower data bus (D0-D7) from

EN DIR
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FIGURE 7-8.   Schematic for Interface Design Example
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the 68000 is connected to the data signals on U2 and U4, while the upper data busD8-

D15) from the 68000 is connected to the data signals on U3 and U5.

7.4.4  Timing Constraint Verification: 68000 to 6116

For this work, the default target implementation technology was the XILIN

XC4000 programmable logic device family [89]. This logic family was chosen due to

flexible architecture, and large range of gate counts from 3,000 (standard 2-input gate

the XC4003 device to 25,000 for the XC4025 device. The Interface Designer allow

ISBP parameters to be specified as a triplet of values: (minimum maximum typical)

the XC4000 series the ISBP combinatorial delay parameter was specified as (3ns 7n

the clock to output delay was specified as (2ns 4ns 3ns) and the tristate enable dela

specified as (7ns 15ns 10ns). These ranges of values were chosen since they enc

the -4, -5 and -6 speed grades of the XC4000 series devices. A triplet of values was c

for the ISBP parameters since it allows the Interface Designer to perform worst case

ing analysis during the timing constraint verification phase by using the minimum

maximum values, while also providing a typical value that can be used to investigate

the interface will perform under typical conditions in a VHDL simulation.

All timing constraints for the 68000 to 6116 interface design example were foun

be satisfactory. This indicates that the Interface Designer produced a valid design f

signal timing perspective.

7.4.5  VHDL Code Output: 68000 to 6116

The Interface Designer automatically translates the IB frame network into VHD

87 code. The VHDL-87 code was adopted by the Institute of Electrical and Electr

Engineers (IEEE) in 1987 in the form of IEEE standard 1076. The VHDL-87 standard

updated and extended in 1993 to version VHDL-93 by adding several new features

work uses VHDL-87 since none of the VHDL-93 extensions of the language w

required and because VHDL-87 has easily available compile and simulation tools.

VHDL language proved to be ideal, since it allows representation of a hierarchial

structures similar to the frame network developed for the interface. For example, the

nal request generation frame from Figure 7-6 is translated into the VHDL code sho

in Table 7-7.

A complete design example of VHDL code for the IBIB_1_RW_CONNECT, is

given in E.2. The VHDL code for the ISBs used to build upIB_1_RW_CONNECTis given
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in E.1, while the VHDL test bench that can be used to simulate theIB_1_RW_CONNECT

interface is given in E.3.

7.4.6  VHDL Simulation: 68000 to 6116

Once the VHDL code is generated, the Interface Designer has completed a

assigned tasks and execution is terminated. The user can now take the VHDL cod

pass it onto a VHDL simulation tool to verify the validity of the design by comparing

simulation output to the component specification from the manufacturer’s data boo

should be noted that simulation is not a required step in the design process and the V

code can be used directly to synthesize the interface using a VHDL synthesis tool.

ever, for this work, verification of the correct operation of the Interface Designer nec

tated the VHDL simulation of all designs generated.

It should be noted that in the VHDL simulation ISBP parameters are single val

representing typical values. If a method is developed that allows more accurate valu

be found for the ISBP parameters (such as back annotation through the use of a XI

VHDL synthesis tool), then those values can be used for the VHDL simulation instea

The 68000 to 6116 interface design was compiled using the Mentor Graphics

com VHDL compiler. The VHDL code was simulated using the Qhsim VHDL simula

in Mentor Graphics. The resulting simulation waveforms can be seen in Figure 7-9.

excitation waveforms simulate a write cycle at address 0x008012 followed by a read

library  IEEE;
use  IEEE.STD_LOGIC_1164.ALL;
library  DAMELIB;

entity  ISB_4_REQUEST_INT is
generic  (

             TPD : time );
port  (

             M68000_AS_U1 : IN std_logic;
             M68000_UDS_U1 : IN std_logic;
             M68000_LDS_U1 : IN std_logic;
             ISB_4_REQUEST_INT_SIGNAL : OUT std_logic );
end  ISB_4_REQUEST_INT;

architecture  ONLY of  ISB_4_REQUEST_INT is
begin
     ISB_4_REQUEST_INT_SIGNAL <=
                (( not  M68000_AS_U1 ) and

(( not M68000_UDS_U1 ) or ( not M68000_LDS_U1 ))
                ) after  TPD;
end  ONLY;

TABLE 7-7.   VHDL Request Generation Entity for Design Example
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at address 0x00011a. These addresses were chosen by the Interface Designer

unique bit patterns, to fall within the memory banks starting at 0x000000 and 0x008

Unique bit patterns are used to allow a design engineer to quickly verify the correct

nection of the address signals in the timing diagram. The write cycle is a 16-bit data t

fer, while the read cycle is an 8-bit data transfer. The simulation plot displays all

transfer signals on both the microprocessor and the memory. The events in the timin

gram were labelled by hand with their relative time of occurrence for analysis and dis

sion purposes. The interpretation of the signal states in the timing diagram is give

Figure 7-10.

The signal naming convention in the simulation plots is as follows. If a signa

named ‘/aaa_bbb_ccc’, then aaa is the component name, bbb is the signal name and

the device instance name. For the signal name ‘a’ is used for the address bus, while ‘d’ is

used for the data bus, if the data bus is 8-bit wide. If the data bus is 16-bit wide, the u

.

FIGURE 7-10.   Simulation Timing Diagram States

.

FIGURE 7-11.   IB Signal Naming for Simulation
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8 bits are named ‘ud ’ and the lower 8 bits are called ‘ld ’. For example in Figure 7-11, the

upper 8 data bus signals of deviceU1, a 68000 microprocessor, is calle

/m68000_ud_u1 .

The simulation plot in Figure 7-9 shows the activation of theCEsignal ofU4 andU5

during the write cycle starting at t=200ns at address 0x8012. For the write cycle, the

OEsignal is negated, whileWRis asserted. The data signals from the 68000 microproc

sor pass through the IB to the appropriate data signals of each 6116 RAM. For exa

the /m68000_ud_u1 data signals (=0x20) pass to the/m6116_d_u35 signals.

/m68000 _DTAK_U1becomes asserted at t=344ns, while the write cycle terminate

t=470ns with the negation of the/m68000 _UDS_U1and /m68000 _LDS_U1 signals.

Once theUDS andLDS signals are negated,DTAK becomes negated as expected.

The next cycle in Figure 7-9, a read cycle, starts at time t=870ns at address 0x

Only the/m68000 _UDS_U1 is activated during this read cycle indicating an 8-bit da

transfer. The IB correctly activates the/m6116 _CE_U3 signal. The data supplied by U3

gets driven onto the 68000 upper data bus (/m68000_ud_u1 ) as expected. The lower

data bus of the 68000 is not used during this data transfer.

7.4.7  Validation of the Interface: 68000 to 6116

To validate the data transfer interface generated by the Interface Designe

VHDL simulation output timing diagram given in Figure 7-9 was manually compared

the Motorola 68000 data sheet[55] and the RCA 6116 data sheet[67]. The compariso

accomplished in two stages: First the state of each signal in the VHDL timing diag

was verified by checking the required state from the data sheets. For example the C

nal on the 6116 is at a low voltage level during a data transfer and high otherwise.

individual data sheet timing parameters were compared to the timing parameters fro

VHDL simulation. Some important timing parameters that were compared are show

Table 7-8. The time provided by the IB from the timing simulation is calculated from

relative time of occurrence of event in the timing diagram. For example, the 6116 ad

valid event occurs at t=75ns, while the↓CE event occurs at t=208ns. Thus the time fro

address valid to↓CE is 208ns-75ns = 133ns. Themarginrepresents the difference betwee

the timing parameter provided by the IB VHDL simulation and the timing parame

required by the input of a component. A positive margin indicates that the timing para

ter provided by the output of the IB meets the timing parameter requirement of the inp

the component. All timing margins were found to be positive, showing that the tim

specifications given by the component manufacturers were met and therefore indica
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valid design from a signal timing perspective. As well, the logic levels and the sequen

the signal events are as expected.

7.5  Timing Verification Failures

Once the Interface Designer completes the interface, it uses a chosen implem

tion technology with given propagation delays, setup and hold times for the ISBP par

ters. The Interface Designer then evaluates the timing constraints. If no timing const

are violated, the Interface Designer then generates the VHDL code for the interface.

no constraints failed the designed interface is assumed to be correct and the user c

ceed directly to the synthesis of the VHDL interface code without performing a VH

simulation.

If a timing constraint fails, the Interface Designer will pause and present the

with a list of the failed constraints in theEXECUTION_LOGFILEfile. The user is respon-

sible for investigating the reason for the failed timing constraint and has several optio

proceed. The choice of which option to use depends primarily on the severity of the

ure.

1. After analyzing the failed timing constraint the user decides the components being
nected are incompatible and selects a different component.

2. If the failed constraint is within approximately two implementation technology pro
gation delays (e.g. 20ns for LS TTL logic), the user may choose a faster impleme
tion technology and have the Interface Designer re-evaluate the timing constraint

Timing Parameter Required

(from data sheet)

Provided by IB

(from simulation)

Margin

Write Cycle:

6116 Address Valid to↓CE >0ns 208-75 = 133ns +133ns

6116↑CE to Address Invalid >0ns 505-478 = 27ns +27ns

6116 Data-in Valid to↑CE >50ns 478-225 = 253ns +203ns

6116↑CE to Data-in Invalid >5ns 495-478= 17ns +12ns

Read Cycle:

6116 Address Valid to↓CE >0ns 880-845 = 35ns +35ns

6116↑CE to Address Invalid >0ns 1175-1150= 25ns +25ns

68000 Data-In Valid to↓DTACK >-90ns 1044-1020= 24ns +114ns

68000↑UDS to Data-In Invalid >0ns 1160-1140=20ns +20ns

68000↑UDS to↑DTACK <245ns 1163-1140= 23ns +222ns

TABLE 7-8.   68000 Interface Timing Margins
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3. If the failed constraint is within approximately half an implementation technology
propagation delay (e.g. 5ns for LS TTL logic), the user may proceed to the VHDL s
ulation stage to manually check if the failure also exists in the simulated interface.
constraint evaluation process used by the Interface Designer is conservative sinc
uses a worst case range of values for the ISBP parameters. The VHDL simulator o
other hand uses a single ISBP parameter value to simulate the hardware implem
tion of the interface circuit and thus produces a more accurate and realistic estim
the interface signal timings. If the VHDL simulation indicates that all timing param
ters are satisfied, then the design can be used without modification.

Several components in Table 7-1 were found to be incompatible with each othe

will always generate timing constraints that fail. The 6809 microprocessor was found

incompatible with the Intel 2732, 2764, 27128, 27256 and 27512 EPROMs due to a

hold-time violation: the 6809 requires a 10ns hold time for the data from the EPR

while the EPROMs only provide a hold time of zero relative to the address and

enable. The Intel i8255 is another device that has compatibility problems with var

microprocessors due to its data hold time requirement for a write cycle. The i8255

i82c55a-2 both require a 30ns hold time, while most microprocessors in the list pro

less than 30ns. The incompatibilities between components found are not unique

Interface Designer, but also would have been discovered by a human design eng

Once discovered, the design engineer has two choices: Re-design using different c

nents or generate an exceptional, complex interface. The Interface Designer will a

re-design using different components.

If two components are found to be incompatible, one of the components mu

replaced with a component of similar functionality and the Interface Designer mus

invoked again with the new set of components. A case data base for the incompatible

ponents could be constructed to avoid failures due to incompatibility in any future de

7.6  Summary of Designs

Table 7-9 presents a summary of the designs used to test the DAME data tra

Interface Designer. The 68000 design was presented in this chapter while others ar

sented in Appendix F. The designs were selected to use a cross section of devices w

ferent complexity and speed.

The last table column lists the wall clock execution times to design complet

including the generation of the VHDL code representation. The execution times show

only approximate and will vary according to the CPU use by other users. Due to the

memory footprint and high CPU utilization of Knowledge Craft, it is better to have a d
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icated system to run the Interface Designer. Approximately 30% of the execution time

required to generate the IB and ISB frames, 30% of the time was required for the ti

constraint verification, while 40% of the time was required to convert the frame repre

tation for the IBs and ISBs to VHDL representation. As can be seen from Table 7-9

design time is approximately proportional to the total number of devices in the sys

(about 4.5 minutes/device).

The simulation results for the microprocessor systems shown in Table 7-9 we

verified with the component manufacturer’s data sheets and found to be correct. The

lation results were also analyzed from a system architecture perspective and found

correct: Each device was activated only when required, the data from each device wa

over the correct data bus signals and the address signals of a device were connecte

correct sequence. The goal of this proof of concept Interface Designer was the dev

ment of an automated interface design expert system that could produce data tr

interface that assures that the components operate correctly according to the specific

provided in the component manufacturers’ data sheets. The interface design exa

show that this goal has been achieved.

The designs produced by the Interface Designer are similar to that produced

human designer. This is primarily due to the fact that the design process developed fo

work attempts to mimic a human designer. For example, the human interface design

Master Slave Address Data Path

Width

Total Time
min:sec

mc68000-8 4 * cmd6116-3 0x000000, 0x008000 16 bits 18:20

i8086a-2 4 * cmd6116-3

2 * etc2716-1

1 * i8255a

0x00000, 0x08000

0x0c000

0x0e400

16 bits

16 bits

8 bits

31:09

mc68020-12.5 4 * mcm6164-45

2 * m27128

1 * m6810

0x00008000

0x00000000

0x0001f000

32 bits

16 bits

8 bits

29:07

mc6809 1 * m68b50

1 * m68b45

1 * m68b21

0xe000

0xe800

0xec00

8 bits

8 bits

8 bits

14:11

tms32020 2 * mcm6164-45

2 * m2764a-1

0x00008000

0x00000000

16 bits

16 bits

17:19

i8085a 1 *cmd6116-9

1 * m27256a-1

1 * m68b21

0x8000

0x0000

0x4000

8 bits

8 bits

8 bits

13:39

TABLE 7-9.   Summary of Designs
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ple for a 68000 to 6116 interface given in Figure 3-1 in Chapter 3, is similar in m

respects to the design generated by the Interface Designer shown in Figure 7-7: Bot

tems use a separate address decoder, bank select decoder,DTACKdelay generator and they

‘combine’ the decoded address signals using an AND gate with theUDSandLDS data

strobes to generate theCEsignals on the 6116. Some minor differences exist in the use

the AS signal and the lack of utilization of thetype information signals in Figure 3-1.

These differences, however, will not change the basic operation of the interface a

would be difficult to decide which design is more optimal.

The completion times for the Interface Designer shown in Table 7-9 indicate th

complete interface for a simple system can be designed in 15 to 30 minutes. From e

ence this should be faster than an expert human designer solving the same probl

addition, it includes the generation of machine readable VHDL code and a complete

fication of component timing parameters. An expert designer may be able to draw u

interface in 15 minutes, but he may not be able to perform a thorough check of the ti

parameters. Furthermore, a manual process is more prone to human errors. With

faster computer workstations becoming available every day, the Interface Designer w

able to complete a design within minutes, giving the user the ability to experiment an

out many different configurations in a short time.

wordwithtypo
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Chapter 8

Conclusions and Future Work

This chapter presents the conclusions of this work and provides an overview o

contributions of this research in the fields of microprocessor system design, exper

tems and knowledge representation techniques. Further research areas of interest a

discussed.

8.1  Conclusions

This work develops an expert system that is capable of designing the data tra

interface of a customized microprocessor system. One of the most difficult aspec

automating the interface design is the existence of the many subtle variations of the

face protocols. Based on the central premise that interface design could be automa

developing a limited number of representative timing patterns to represent the signa

tocols and making design decisions based on the recognition these patterns, an aut

interface designer is built to design microprocessor system interfaces using comm

available components.

The overall approach of this work is to perform design based on the recognition

standard set of timing patterns. Any signal on the component or the interface must fo

one of the standard timing patterns. To perform interface design, the Interface Des

must be able to make certain assumptions about the behavior of signals through c

elements such as wires: a human designer simply assumes that a wire delay is so

that the timing pattern will not change from one end of a wire to the other. To give

Interface Designer the capability to use this assumption requires the developmen

property of the timing patterns called small delay invariance: the type of timing pat

that a signal follows will not be changed by a small delay. All timing patterns develo

for this work are small delay invariant.

There are several advantages of using this pattern matching approach for inte

design and using a limited number of timing patterns for making design decisions:

• Rules can be used to capture human designer’s expertise for interconnecting sign
with different timing patterns using primitive circuits. In addition the Interface
Designer does not require a sub-system capable of generating the primitive circu
themselves, since the required primitive circuits can be pre-designed.
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• There is a reduction in the level of detail, and hence the complexity, of the design
cess and the information that must be modeled and represented by the Interface
Designer: The level of detail needs only be sufficient to allow the pattern matching
rules to select one of the pre-designed primitive circuits.

• The timing patterns provide a powerful tool for simplifying the representation of th
timing behavior of a component. Essentially, the timing patterns model only those
aspects of a signal’s timing that are required for interface design.

• Any component whose data transfer interface protocol can be represented by the t
patterns developed can be added to the component library database. Once in the c
nent library database, the component can be used immediately in designs, withou
changes to the design rule base.

• The number of different rules required to perform the interface design is limited by
small number of different timing patterns. Using a human designer’s expertise, the
number of rules can be further reduced by eliminating the impossible or improbab
cases.

• The system can be extended to use new timing pattern with relatively little effort. 
only addition to the design rule base will normally be rules to manipulate the new
ing pattern. Once the new rules are added to the Interface Designer, it will be able
generate designs with component using the new timing pattern.

The approach to interface design used in this work is shown to be valid by gen

ing a number of microprocessor systems using a variety of different components and

fying the design using simulation tools. The designs produced are of similar compl

and speed as that of a human designer. However, there are some potential problems

ated with the timing pattern based approach:

• Interface design may fail with a given set of components: the interface will be funct
ally correct, but some timing parameters may be violated. The timing violation is
caused by the Interface Designer choosing interface primitive circuits based on the
ing patterns without knowing the actual timing parameters of the finished interface.
Interface Designer will detect such problems, but currently can not redesign the in
face when a timing parameter violation is found. Similar to what a human designer
do, another design is to be generated using more compatible components, instea
producing an overly complex design.

• A component may have a complex interface that uses signal timings which can n
modelled using the developed timing patterns. In such a case it may not be feasib
develop a new timing pattern due to the complexity of the protocol. This may occu
with new microprocessors such as the Pentium II microprocessor, where the desig
expected to use third party interface components between any peripherals and th
microprocessor. The signals between these interface chips and the microprocess
be considered tightly coupled and will usually be connected directly. In these case
automated interface designer that connects the required signals directly will be su
cient to accomplish the interface design.
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The Interface Designer is given the design expertise to manage the represen

timing patterns in the form of rules. In essence, the system is provided with the knowl

of how to connect signals that follow certain timing patterns using a set of pre-defi

primitive circuits. However, the design of a data transfer interface can not be accompl

with just these rules since they effectively only address the issue of when signals ch

state (i.e. their timing behavior), but not what the different state of the signals repre

Furthermore, to accomplish interface design, the Interface Designer must know the

pose and the source or destination of the information represented in the states of th

nals. To address this issue, a novel representation of the signal behavior is develope

represents the data transfer protocol of a component as a series of information tran

Each information transfer has a specific purpose in the protocol of a capability and

sists of two parts: the state information indicating what the information encoded in

state of signals represents, and timing information representing when the state inform

is valid. Once this approach is taken, it is relatively simple to analyze the protocol of c

ponents to isolate the different types of information transferred: data, address, dire

type, size, width, request and delay information.

The advantages provided by the technique of representing the data transfer pr

as a series of information transfers proves to be quite far reaching:

• It provides a simple method to represent the purpose and function of an informati
transfer by assigning it a unique type. A design expert’s knowledge on how to con
signals with a specific type could then be represented as rules that recognize and
nect specific information transfer types.

• Furthermore, once the Interface Designer has indicated that signals involved in an
information transfer must be connected, the connection process can be accompli
without consideration of the type of information using the timing pattern matching
rules and state information management rules.

• It provides a method for abstraction and information hiding. It allows the componen
be represented as a hierarchial network of frames where each lower level of the h
chy reveals more detail about a component. At a given abstraction level, correspon
rules at that specific level perform design without having to know specific details f
the lower levels.

The primary disadvantage of this method is encountered when developing

design rules that must handle the state and timing information separately. When a

enters an interface block, it is relatively simple to determine how the state mus

changed and how the timing behavior must be changed, but it is difficult to develop a

eral method to design an interface block that can accomplish both changes. To ove

this problem, different microprocessor system designs were analyzed to see if a com
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method could be determined. It was found that the timing information of a signal ca

changed using primitive circuits such as a Flip-Flop, followed by a change of the

information using a combinatorial circuit. This work uses the same approach, since

in very well with the state and timing information based information transfers.

Once the design is completed, an interface implementation technology is chose

each of the interface primitive circuit parameters is assigned a range of values specifi

an upper limit, lower limit and typical value. Each input timing parameter that must be

isfied by an interface output timing parameter is represented as a timing constraint.

timing constraint is verified at the maximum and minimum values of the interface para

ters. The approach taken for the analysis of the timing constraints was conservativ

approach based on probabilistic evaluation of timing constraints as proposed by Esc

[26] may provide a more accurate estimation of the actual behavior and performan

the interface.

The primary goal of this work is to produce real-world designs: an automated

tem that actually generates a data transfer interface between components. In pro

such a design it was found that a method had to be developed that allows testin

implementation of the data transfer interface. The method developed generates a V

representation of the interface which can be simulated and synthesized using sta

VHDL tools.

The organization of the component and interface models as hierarchial networ

frames and design rules that utilize information from the frame networks allows desig

proceed in a top down, divide and conquer fashion, starting with the high levels, wor

towards the more detailed lower levels. The hierarchial interface generated using

method greatly facilitates the generation of VHDL code for the interface, since there

direct mapping from the hierarchial interface frames to a VHDL representation.

To summarize, the major contributions of this work are:

• The development of a set of standard timing patterns to represent the timing behav
signals involved in data transfer.

• The development of a representation of the data transfer protocols in terms of info
tion transfers, where each information transfer is based on one of the timing patte

• The development of a simple and complete hierarchial frame based representatio
the components.

• The development of a hierarchial frame based representation of the interface.
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• The development of a set of forward chaining rules that build up the data transfer
face.

• The development of a set of primitive circuits used by the interface design rules a
basic building blocks of the components.

• The development of parallel abstraction levels for the component model, interface
model and the interface design process so that independent interface design rule
carry out the design at each abstraction level.

• The development of a method to verify that the timing behavior of the interface satis
the timing behavior of the components being connected.

• The development of a method to translate the interface frames into VHDL code to
allow implementation and testing of the interface in real-world applications.

• The development of a method to automatically generate a VHDL test bench that al
simple verification of the operation of the interface.

• The implementation and testing of the Interface Designer using real-world interfac
design examples.

8.2  Future Work

Based on the success of the simple automated Interface Designer developed f

work we believe it is worthwhile to further develop and extend the DAME microproces

design system. This section elaborates on how the Interface Designer's capabilities

be extended and discusses some areas of interest for future research.

One area of focus for the DAME system should be the development of an intelli

component editor. The intelligent component editor would assist the design engineer

entry of new components. An extension of the work by Li [49] using model frames as

lined in Appendix G would allow an intelligent component editor that guides the kno

edge engineer during component entry. This would remove many of the problems

errors introduced during manual component entry and it would allow the component

structures to be verified before they are entered into the component library.

The DAME system should be extended to include design optimization informa

in the knowledge base. This would allow microprocessor systems to be produced th

optimized according to a requirement such as lowest cost, highest speed or lowest

consumption. The knowledge representation techniques developed for this work

themselves readily to the inclusion of such information. For example, for memory dev

information could be included that indicates lowest power consumption is achieved w

chip select is negated. This information could then be utilized when trying to minim

power consumption.
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The primary focus of the DAME system to this point has been the generation o

interface between components. The higher levels of the DAME system should be d

oped to allow a complete microprocessor system to be generated using only original

ifications. When developing the higher design levels, a case history knowledge base

be integrated into the DAME system that avoids the use of incompatible compon

Designs using components that have been previously found to be incompatible and r

ing time consuming redesign of the interface could thus be avoided.

The integration of VHDL simulation tools directly into the DAME system to allo

direct simulation of the designed interface would enhance the utility of the system. Ide

a VHDL representation of each of the components in the component library shou

developed which would allow full functional simulation of the designed interface. Furth

more, the development of a method for cross annotation of primitive circuit param

between the Interface Designer and the VHDL (or other) synthesis tools would allow

ing constraints to be re-checked after implementation using actual timing parameter

Further research should be directed to the development of techniques for redes

a design fails for some reason. The current system simply requires complete red

using different components. An investigation into the feasibility of backtracking would

required. This would allow some of the already generated design to be reused, avo

complete redesign.

Another useful area of research would be the development of a more theoretica

formalized representation of the timing templates. This may allow automatic generati

the primitive circuits used for interconnecting signals with given timing patterns. For

work, the connection of signals following given timing pattern was accomplished by

cific rules. Rules were provided for all timing patterns. By adding a representation o

timing patterns as signal transition graphs as used by Escalante [27][28], it may be p

ble to replace these rules using a design system that will generate primitive circuits

matically. This would avoid the tedious and error prone task of manually designing

writing the rules that generate the primitive circuits.

Research should address the development of a method for representing timing

between timing templates, and/or timing links between the timing templates and a

mon clock, to allow representation of more complex timing relationships found on s

of the newest microprocessors. This research could be further extended to the de

ment of timing templates for other component capabilities such as interrupt and bus

tration. The new capabilities will require completely new timing templates to
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developed that allow the protocol of these capabilities to be represented using inform

transfers.

Further research efforts should also be directed at methods for finding an optim

of primitive circuit propagation delays. These propagation delays could then be pass

the synthesis/layout tools for the interface as guidelines. The current system uses

intervals for the primitive circuit propagation delays that are dependant on the imple

tation technology chosen. By telling the layout/synthesis tool what the propagation d

should be, it will be more likely that the resulting interface will not violate any timing co

straints, resulting in less requirement for redesign.

An extension of the DAME design system could be an useful interactive tool

educational institutions as a teaching aid for microprocessor system design. Su

expert system could systematically guide the student towards designing a complete m

processor system. It could present the student with the components being connected

light the different signals that must be connected and present the student with explan

of why certain design decisions are made as the design proceeds. The system could

produce the design automatically, illustrating the different steps taken, or it could le

student make the design decisions, pointing out errors or suggesting alternative des

A commercial product based on the DAME interface designer should be fea

and will require further development of the current system. A commercial autom

design system will most likely be only used for microprocessor systems based on sim

microprocessor and memory components. Designs involving more complex design i

such as caches or synchronous DRAM using burst data transfer will still require ma

design. However, even with such restrictions, there would be a large market for an

mated design system since more and more commercial products include custom mic

cessor systems.

typosrus
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Appendix A
Timing Templates for Modeling Data Transfer

This appendix presents a description of the different timing templates develop

model the data transfer protocol. The timing templates are divided into two types:

interactive timings that have timing relations from the reference to the information sig

and interactive timings that have timing relations from the information signal to the re

ence signal in addition to timing relations from the reference to the information signa

All signals shown in a signal timing template are marked with an O for output o

I for input, indicating the allowed direction of the signals with respect to the compone

The signal timings described in this section are illustrated by showing the tim

links between events other than those shown in Figure 4-19. The range of the allowe

ues for the timing parameter of the timing links are shown using the symbol

or with respect to the reference event, as explained in Section 4.7.2, i

timing parameter is bounded by infinity on one side and an omp delay on the other.

causal timing link, where the timing parameter value is bounded by 0 one side and +

ity on the other, the symbol  is used.

For discussion purposes, all timing links in the signal timings presented are g

names such as ‘setup time link’, ‘hold time link’, ‘response time link’, ‘acknowledge ti

link’ or ‘access time link’. The timing link names have slightly different meanings for t

different timing templates, and must be discussed in the context of the timing templa

which they are used.

A.1  Non-Interactive Timings

A.1.1  Strobe Timing

The Strobe Timing shown in Figure A-1 is used to give the timing of a signal t

has what is often called non-multiplexed timing behavior (for example the address s

on a MC68000 microprocessor relative to theAS* signal, or the address signal on an 611

relative to the CE* signal). For a Strobe Timing, the transition to a valid state of the in

mation signal typically occurs before the initiate event (called the setup time of the in

mation signal), while the valid state remains present until after the terminate event (c

the hold time of the information signal). The information signal and the reference sig

are either both outputs or both inputs. There are always-accompanied-by links betwe

reference events and the signal events as shown in Figure A-1.
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This signal timing provides information about when the information signal is va

and stable. The first event of the information signal is an event such as a transition fr

tristate/open or invalid to a valid state, while the second event is the complementary

of the first event. The setup timing parameter range is (-~ +omp), while the hold tim

parameter range is (-omp +~).

A.1.2  Latch Timing

The Latch Timing is typically used to give the timing of a signal that is shared

different functions, and is commonly called a multiplexed signal timing behavior.

example, in a 8088 microprocessor, the address of a data transfer and the data its

transferred by time multiplexing the address information and the data information ont

same signals. Time multiplexing onto the same signal means that at some point in t

signal will contain the address, while at another time the signal will contain the data.

In a Latch Timing, the information signal has a timing link to a clock signal (cal

ALE or Address Latch Enable signal) using the setup time and hold time always-acco

nied-by timing links as shown in Figure A-2. TheALE signal is related to the referenc

events through the clock setup time and clock hold time always-accompanied-by ti

.

FIGURE A-1.   Strobe Timing

.

FIGURE A-2.   Latch Timing

VALID STATEinformation signal (O, I)

reference signal (O, I) hold time link
setup time link

always-accompanied-by

setup range hold range
(-omp +~)(-~ +omp)

information signal (O, I)

reference signal (O, I)

ALE signal (O, I)

VALID

hold time linksetup time link

clock hold time link
clock setup time link

hold range (-omp +~)
(-~ +omp) setup range

always-accompanied-by

clock hold rangeclock Setup range

ale-ale+

ref+ ref-

(-omp +~)(-~ +omp)
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links. The information signal, the reference and theALE signal are either all inputs or all

outputs.

For a Latch Timing, the transition to a valid state of the information signal typica

occurs before theALE asserted event (setup time link), while the valid state rema

present until after theALE negated event (hold time link). TheALE asserted event typi-

cally occurs before the initiate event (clock setup time link), while theALE negated event

typically occurs after the terminate event (clock hold time link). The information sig

and the reference signals are either both outputs or both inputs.

It should be noted that the ref+ event has an indirect always-accompanied-by ti

relation to the information signal events through the ale+ event. The relationship is

rect since no direct timing links between the ref+ and the information signal events

given.

This signal timing provides information about when the information signal is va

and stable. The first event of the information signal is an event such as a transition fr

tristate/open or invalid to a valid state, while the second event is the complementary

of the first event. The setup and clock setup timing parameter ranges are (-~ +omp),

the hold and clock hold timing parameter ranges are (-omp +~).

A.1.3  Follows Timing

The Follows Timing is used to give the timing of signal that is the response to a

erence initiate event (for example the data signals on a 6116 memory device dur

read). The information signal is always an output signal and the reference is alwa

input signal. There is a responds-with timing link between the reference events an

information signal events.

This signal timing provides information about when an information signal outpu

valid and stable in response to an input reference signal, implying causality. The first

of the information signal is an event such as a transition from a tristate/open or invalid

.

FIGURE A-3.   Follows Timing

information signal (O)

reference signal (I)

VALID

hold time linksetup time link

responds-with

(0 +~) setup range hold range (0 +~)
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valid state, while the second event is the complementary event of the first event. The

and hold timing parameter ranges are (0 +~).

A.1.4  Pulse-Latch Timing

The Pulse-Latch Timing is used to give the timing of input signals that must be v

during the terminate reference event of a device relative to an input terminate refe

event (for example a data signal on a 6116 memory during a read relative to the eve

the CE* signal). In a Pulse-Latch Timing, a valid state of an information signal is pres

before the terminate event (setup time link), and the valid state stays until after the t

nate event (hold time link). The reference signals and the information signal are both

signals. In a Pulse-Latch Timing, the information signal has timing links to a refere

using the setup time and hold time always-accompanied-by timing links as show

Figure A-4.

This signal timing provides information about when an input information signal

to be valid relative to the input reference ref- event. The first event of the information

nal is an event such as a transition from an open or invalid to a valid state, while the

ond event is the complementary event of the first event. The setup timing parameter

is (-~ +omp), while the hold timing parameter range is (-omp +~).

A.1.5  Follows-Latch Timing

The Follows-Latch Timing is used to give the timing of input signals that must

valid during the output terminate reference event of a device (for example a data sign

a MC68000 microprocessor relative to the UDS signal during a read). In a Follows-L

Timing, a valid state of an information input signal is present before the terminate e

(setup time link), and the valid state stays until after the terminate event (hold time l

The reference signal must be an output signal, while the information signal must b

.

FIGURE A-4.   Pulse-Latch Timing

information signal (I)

reference signa (I)

VALID

hold time link

setup time link

hold range (-omp +~)
setup range (-~ +omp)

always-accompanied-by
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input signal. In a Follows-Latch Timing, the reference signal has expects time links to

information signal using the setup and hold time links shown in Figure A-5.

One of the distinguishing feature of the Follows-Latch Timing is the setup time

the expects timing link that is negative. The expects time link between the ref- and

events is allowed to go negative for this timing since it is assumed there is a causa

tionship between the ref+ event and the sig+ event (access time link).

This signal timing provides information about when an input information signa

valid and stable relative to an output reference ref- event. The first event of the inform

signal is an event such as a transition from an open or invalid to a valid state, whil

second event is the complementary event of the first event. The access timing para

range is (0 +~), the setup timing parameter range is (-~ +omp), while the hold tim

parameter range is (0 +~).

A.1.6  Logic Timing

The Logic Timing is used to give the timing of information signals that have a t

ing similar to the reference. For example on a Z80 microprocessor, the MREQ* signa

a similar timing as the RD* signal. Figure A-6 illustrates the Logic Timing. The refere

.

FIGURE A-5.   Follows-Latch Timing

.

FIGURE A-6.   Logic Timing

information signal (I)

reference signal (O)

VALID

hold time link

setup time link

expects

(-~ +omp) setup range
hold range (0 +~)

access time link

(0 +~) access range

information signal (O)

reference signal (O)

ASSONEGO NEGO
hold time link

setup time link

(-omp +omp) setup range hold range (-omp +omp)

accompanied-by

complementary-precedes
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and the information signal both are outputs for a Logic Timing. The information sig

events for a Logic Timing are detectable and are therefore restricted to state ch

between ASSO and NEGO. The reference event to information signal event links are

accompanied-by timing links. Another notable aspect of this timing is the complemen

precedes timing link between the sig+ and sig- events. This link assures that the info

tion signal event sequence will be glitch free. No events are allowed on the informa

signals other than those linked to the reference. The setup and hold timing param

have a range of (-omp +omp).

The Logic Timing allows the description of any glitch free signal that behaves s

lar to the reference. By definition, a reference signal behaves similar to the refer

Therefore the Logic Timing makes it possible to give the signal timing of the refere

signal itself by specifying the setup and hold timing parameters as (0).

The importance of being able to specify the timing of the reference signals is

ized later in this work when every information transfer between components is give

timing information and state information. The use of the Logic Timing allows the re

ence information to be given in the same way as any other information, such as ad

information. Any techniques and heuristics developed for connecting information tran

between components can then also be applied to the reference information.

Figure A-7 shows a typical application of the Logic Timing. A MC68020 micropr

cessor has theDS* data strobe signal, which is used as the reference signal. The s

timing for theDS* signal is given as a Logic Timing with a setup and hold timing para

eters of zero.

A.2  Interactive Timings

A.2.1  Handshake Timing

The Handshake Timing shown in Figure A-8 and Figure A-9 is an interactive tim

that is used to give the timing of an information that interacts with the reference.

.

FIGURE A-7.   Logic Timing Example

Reference

DS*

Signal timing of the
DS* signal of a
MC68020

(0) (0)
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events on the information signals are detectable. The timing links are either responds

or expects timing links as shown in Figure A-8 and Figure A-9. If the information signa

an output, the reference signal is an output, while if the information signal is an outpu

reference signal will be an input. A typical example of the Handshake Timing is the si

relationship between theUDS*/LDS* signals and theDTACK* signal in a MC68000

microprocessor.

The acknowledge, response and hold timing parameter range is (0 +~). The H

shake Timing presents the timing of an information signal that can be used to adju

time from the reference initiate to terminate event by changing the acknowledge tim

parameter.

A.2.2  Wait Timing

The Wait Timing shown in Figure A-10 and Figure A-11 is another interactive ti

ing that is used to give the signal timing of an information signal that interacts with

reference. There are responds-with and expects timing links as shown in Figure A-1

Figure A-11. There is an complementary-precedes link between the sig+ and sig- e

.

FIGURE A-8.   Handshake Timing (Information Signal is Output)

.

FIGURE A-9.   Handshake Timing (Information Signal is Input)

reference signal (O)

information signal (I)

hold time linkacknowledge time link

response time link

response range (0 +~)
acknowledge range (0 +~)

hold range (0 +~)

responds-with

expects

reference signal (I)

information signal (O)

hold time linkacknowledge time link

response time link

response range (0 +~)
acknowledge range (0 +~)

hold range (0 +~)

responds-with

expects
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(acknowledge time link). There is also a complementary-precedes link between the

and ref- events. (minimum time link). The events on the information signals are de

able. If the reference signal is an input, the information signal is an output, while if the

erence is an output, the information signal will be an input.

A typical example of the Wait Timing is the relationship between the MREQ* sig

and the WAIT* signal on a Z80 microprocessor. The minimum, setup, response an

acknowledge timing parameter range is (0 +~). The acknowledge timing parameter c

used to adjust the time interval between the reference initiate to terminate events.

The Wait Timing from Figure A-10 has an interesting property: if the informati

signal does not have an event after the reference initiate event (i.e. the information s

stays negated), then the initiate to terminate time interval will be given by the tim

parameter of the minimum time link.

.

FIGURE A-10.   Wait Timing (Information Signal is Output)

.

FIGURE A-11.   Wait Timing (Information Signal is Input)

reference signal (O)

information signal (I)

response time link
setup time link

acknowledge time link

acknowledge range (0, +~)

minimum range (0, +~)

response range (0, +~)

responds-with

complementary-precedes

minimum time

expects

setup range (0, +~)

reference signal (I)

information signal (O)

response time link
setup time link

acknowledge time link

acknowledge range (0, +~)

minimum range (0, +~)

response range (0, +~)

responds-with

complementary-precedes

minimum time

expects

setup range (0, +~)
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A.2.3  Pulse Timing

The Pulse Timing shown in Figure A-12 is an interactive timing that is used to g

the signal timing of the terminate reference event relative to the initiate reference e

The Pulse Timing is used in components where the time from the initiate to the term

event is fixed. For example the E signal on a 68HC11 microprocessor provides a

time interval from the initiate to terminate reference event. The Pulse Timing has a

plemetary-precedes link between the ref+ and ref- events (access time link). The a

timing parameter range is (0 +~). The reference signal and the information signal ar

same for this timing. The reference / information signal can be an input or an output

.

FIGURE A-12.   Pulse Timing

Information Signal / Reference (O, I)

access range

Complementary-precedes

access time link



206

com-

arac-

umber

ce can

.

,

ith a

for-

e the
Appendix B
The Component and Interface Frame Hierarchy

B.1  The Component Frames

A microprocessor system component, such as a MC68000, is represented by a

ponent device frame. The component device frame will specify the component’s ch

teristics, behavior and attributes. These characteristics include items such as the n

and names of signals pins, power consumption, voltage requirements, tasks the devi

perform and how the device will perform those tasks.

Figure B-1 shows the organization of aMC68000 microprocessor device frame

The MC68000 inherits all the properties of a microprocessor (such as^type ‘Master’)

from theMICROPROCESSORprototype frame. TheMC68000device has bus arbitration

data transfer and interrupt capabilities which are represented in the device frame w

^has-capabilitylink to the BUS-ARBITRATION-CAPABILITY1, DATA-TRANS-

FER-CAPABILITY1 andINTERRUPT-CAPABILITY1 device frames.MC68000sig-

nals are represented by frames linked theMC68000 frame through thê has-signal

relation.

B.1.1  The Capability Device Frame

The protocol of a capability consists of a series of information transfers. Each in

mation transfer is represented using a state timing specification device frame insid

.

FIGURE B-1.   The MC68000 Component Device Frame

MC68000

A1, A2,
VCC, GND

BUS-ARBITRARTION
-CAPABILITY1

DATA-TRANSFER
-CAPABILITY1

INTERRUPT-
CAPABILITY1

has-capabilityhas-capabilityhas-capability

has-signal

is-a

Master

type

5V
uses-voltage

MICROPROCESSOR Device Frame

Prototype Frame



207

e is

e

ans-

For

pabil-

mon
capability device frame as shown in Figure B-2. The state timing specification fram

related to the capability frame using a ^has-xxx-specrelation, where xxx represents th

class of information. For example, theaddress information is given using theĥas-

address-specrelation and therequest information is given using aĥas-req-specrela-

tion as shown for the data transfer capability in Figure B-2. Each of the information tr

fer device frames, such as theSTATE-TIMING-SPEC5 frame for theaddress

information, is based on aSTATE-TIMING-SPEC prototype frame as shown in

Figure B-2.

A capability can often be classified further into sub-categories of the capability.

example, data transfer capability can be classified into read and write data transfer ca

ities. Some information transfer protocols for the data transfer capability will be com

.

FIGURE B-2.   The MC68000 Capability Device Frame

DATA TRANSFER
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SUB-CAP1

DT-WRITE-
SUB-CAP1

STATE-
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STATE-
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STATE-
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STATE-
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STATE-
TIMING-
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STATE-
TIMING-
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spec
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del-
spec
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is-a
is-a is-a

DATA TRANSFER
CAPABILITY

is-a

DT-READ-
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is-a

is-a
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to both read and write sub-capabilities, while others will be specific to the read and

sub-capabilities. The device frames developed for the capability model allow repres

tion of sub-capabilities through the use of sub-capability frames such asDT-READ-SUB-

CAP1 andDT-WRITE-SUB-CAP1 device frames shown in Figure B-2.

Any information transfers that are common to all the sub-capabilities are give

the capability frame, while any information transfer specific to a sub-capability is give

the sub-capability frame in the ^uses-sub-capabilityslot. For example in Figure B-2, the

address information specification is common to both the read and write sub-capabil

and therefore is given in the data transfer capability, while thedata information specifi-

cation changes for the read and write sub-capabilities and therefore is given in the rea

write sub-capabilities.

Table B-1 summarizes the relations used to give the state-timing device frame

each information class within a data transfer capability.

B.1.2  A Note About Choosing the Name of a Frame

The names for the device and prototype frames used to build up a componen

chosen to assist the human user in identification of the function of a frame. For exa

DT-READ-SUB-CAP1 frame is the Data Transfer Read Sub-Capability frame

Figure B-1. Instantiation of prototype frames are usually given the name of the proto

frame with a unique number attached to the end of the name. For example in Figur

the STATE-TIMING-SPEC5 frame is used to represent an instance of the state tim

specification prototype frameSTATE-TIMING-SPEC . Component device frames which

represent actual components (such as theMC68000 frame in Figure B-1) are given a

name indicating the component’s name from the manufacturer, instead of the name

prototype frame extended by a number.

Information Class

Request

Address

Type

Word

Direction

Width

Delay

Data

Relation

^has-req-spec

^has-address-spec

^has-type-spec

^has-word-select-spec

^uses-sub-capability / has-identification-spec

^has-word-width-spec

^has-del-spec

^has-data-spec

TABLE B-1.   Relations Used to give the State-Timing Frames for Data Transfer Capability
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B.1.3  The State-Timing Specification Device Frame

Each information transfer is represented using a state-timing specification fr

which consists of a frame representing the timing information and a frame represe

the state information of the information transfer. The example shown in Figure B-3 g

the address information specificationSTATE-TIMING-SPEC5 device frame which is

linked to a capability frame using a ^has-address-specrelation. TheSTATE-TIMING-

SPEC5 frame is broken into the timing information transfer and the state informat

transfer in the form of theTIMING3 device frame and theSTATE3device frame, which

are related to the state-timing frame using^uses-timingrelation and̂ uses-staterelations

respectively.

B.1.4  The State Specification Device Frame

The purpose of a state specification device frame is to associate a set of state

some kind of abstract meaning or interpretation. If a state specification includes n b

signals, then the set of possible states will consist of 2n states. Two different methods ar

used to associate a set of states to an interpretation of the set of states.

The first method applies when the set of states that must be represented by th

information is complete and regular: for n binary signals, 2n states have meaning

Address state information falls into this category: 10 address signals can be used to

.

FIGURE B-3.   State Timing Specification

STATE-
TIMING-
SPEC5

STATE3TIMING3

has-address-spec

uses-stateuses-timing

STROBE-
TIMING

TIMING

is-a

STATE

STATE-
TIMING-
SPEC

is-a

is-a

is-a

Device Frame

Prototype Frame
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resent 1024 states, each state indicating the address of a single memory location. A

hand notation is used to represent this type of state information because of the

number of states: the binary weight of each signal is given in a magnitude state info

tion device frameSTATE-MAG-TABLE1, as shown in Figure B-4.

The second method for representing state information is used when there is

than one state associated with an information transfer, but the set of states is eith

complete (i.e. not all binary states must be represented) or is irregular (i.e. each state

set of states has a different meaning unrelated to the other states). An example of th

of state information is shown in Figure B-5 for thetype information of the MC68000

microprocessor: the binaryFC0, FC1 andFC2 signals used to generate the states for t

type information can represent eight unique states, but only five of which are used

five that are used represent the supervisor and user program space, the supervisor a

data space, and the interrupt acknowledge data space. They are given in the state in

tion device frameSTATE-TABLE1 as shown in Figure B-5.

B.1.5  The Timing Specification Device Frame

The purpose of the timing specification device frame is to provide the timing be

ior of the signals used in the state specification device frame. A timing specification de

frame represents the timings of signals as discussed in Section 4.7.4. The prototyp

.

FIGURE B-4.   State Information for Address Information Transfer

STATE-MAG-TABLE1

WeightSignal

A0 0

STATE-TIMING-SPEC5
 (Address Information)

A1 1

A2 2

. . . . . .

A10 10

uses-stateuses-timing

is-a

STATE-MAG-TABLE

Device Frame

Prototype Frame
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timing device frame corresponds to the timing template on which the timing device fr

is based. For example in Figure B-6, theTIMING1 device frame is based on the

STROBE-TIMING prototype.

The events and timing parameters found in the timing device frame are given in

slot and filler format as shown in Figure B-6. The slot name is the name of the eve

timing parameter, while the filler gives the value assigned to the event or timing param

In this timing, event1 and event3 represent the reference events while event2 and e

represent information signal events as shown in Figure B-7.

B.1.6  The Signal Device Frame

A component has electrical signal wires over which information is transferred

which supply power and ground reference voltages. The electrical connection poin

called signals and the information about these signals is stored in a signal device f

which is linked to the component device frame using a ^has-signalrelation. Each individ-

ual signal will have electrical characteristics such as voltage levels and drive capabi

device pin number and a polarity associated with it. This information will be given in s

containing the appropriate information as shown in Figure B-8.

.

FIGURE B-5.   State Information for MC68000 Type Information Transfer

STATE-TABLE1

StateKeyword (Meaning)

’User Data’ ((ASSO FC0)(NEGO FC1)(NEGO FC2))

STATE-TIMING-SPEC2
(Type Information)

’User Program’ ((NEGO FC0)(ASSO FC1)(NEGO FC2))

’Supervisor Data’ ((ASSO FC0)(NEGO FC1)(ASSO FC2))
’Supervisor Program’ ((NEGO FC0)(ASSO FC1)(ASSO FC2))

’Interrupt Acknowledge’ ((ASSO FC0)(ASSO FC1)(ASSO FC2))

uses-state

uses-timing

is-a

STATE-TABLE

Device Frame

Prototype Frame
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B.1.7  Overview of the Component Organization

A component is assembled by building up a hierarchical set of device frames w

are created by instantiating prototype frames. Figure B-9 gives an overview of how

component model is organized by presenting some prototype, device and instance f

for a MC68000 microprocessor. TheMC68000 frame inherits the type ‘Master’ from the

MICROPROCESSORprototype frame. The data transfer capability is represented by

DT-CAP-MICRO11 device frame which is based on theDT-CAP-MICRO prototype

frame. The data transfer capability in turn has a read sub-capability calledDT-RD-

CAP33. The sub-capability has delay specificationSTATE-TIMING5 which consists of

.

FIGURE B-6.   Example Strobe Timing Information Frame

.

FIGURE B-7.   Event Names for Strobe Timing

TIMING1

FillerSlot

is-a Strobe-Timing
event1 (! ASSO DS*)
event2 (! VALIDO A1)
event3 (! NEGO DS*)
event4 (! INVALIDO A1)

STROBE-TIMING

time2 (-20 -10)
time4 (10 20)

STATE-TIMING-SPEC5
 (Address Information)

uses-timing

(Timing Information Frame)

is-a

Device Frame

Prototype Frame

Valid STATEinformation signal

reference signal
time4time2

event1 event3

event2 event4
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signal timingTIMING14 . TIMING14 is based on theHANDSHAKE-TIMINGprototype

frame.

The instance of a component such asU1, are created during the system desig

phase. As the system is designed, decisions are made about what components shou

the system, and the appropriate instances are created. Device frames such

MC68000 frame are created when components are entered into the component li

data base, which is independent of the system design phase. Prototype frames are

when the rules are written that will accomplish the interface design. The prototype fra

must be flexible and universal enough to be used as building blocks for any compo

that will be created and entered into the component library. The developer of the prot

frames must assure that any frames instantiated from the prototype contain all the re

information required for interface design.

B.1.8  Examples of Component Frame Hierarchy

This section presents a more detailed overview of the frame hierarchy for

MC68000 microprocessor (Figure B-10) and the MK6116 static RAM (Figure B-11)

should be noted that these diagrams only show a partial set of the device frames as t

set is too complicated to show in a single figure. This is the hierarchy that was use

implementing the frames to represent components in Knowledge Craft.

B.1.9  Examples of Component Frames

This section presents some examples device and prototype frames as they

implemented in Knowledge Craft in the DAME Interface Designer.

.

FIGURE B-8.   Example Signal Frame

MC68000-A1

FillerSlot

is-a SIGNAL

pin number 30

drive-capability 10ma

Polarity (ASSO 0V)

. . . . . .

has-signal

Device Frame

Prototype Frame

MC68000

SIGNAL

is-a
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B.1.9.1 Example of a Timing Information Frame

Table B-2 gives the frame representing the timing of the address signals fo

MC68000 microprocessor. The address signal timing are based on a Strobe Timing

reference signals, which consists of theMC68000-LDS andMC68000-UDS signals,

.

FIGURE B-9.   Prototype, Device and Instance Hierarchy
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FIGURE B-10.   Component Hierarchy for MC68000
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FIGURE B-11.   Component Hierarchy for MK6116
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are given in the^signal1 slot. The information signals consist of the MC6800

ADDRESS-BUSare given in thê signal2 slot. The reference events are given in th

^event1and^event3slots, while the information signal events are given in the^event2and

^event4slots. The timing parameters for the setup and hold times are given in the^time2

and t̂ime4slots. Thê time2timing parameter is associated with the^event1-> ^event2

relation, while thê time4timing parameter is associated with the ^event3-> ^event4rela-

tion. The events and timing parameters are represented using <event expressions> and

<time> notation as developed in the Section 4.3 and Section 4.5. Figure B-12 giv

graphical representation of the timing shown in Table B-2.

The MC68000-ADDRESS-TIMING device frame is based on the Strobe Timin

prototype frame shown in Table B-3. The timing links between events and their allo

     (defschema MC68000-ADDRESS-TIMING

         (is-a STROBE-TIMING)

         (signal1 MC68000-UDS MC68000-LDS)

         (signal2 MC68000-ADDRESS-BUS)

         (event1 (! (OR ( ASSO MC68000-UDS) ( ASSO MC68000-LDS)))

         (event3 (! (NOT ((OR( ASSO MC68000-UDS) ( ASSO MC68000-LDS))))

         (event2 (! VALIDO MC68000-ADDRESS-BUS))

         (event4 (! INVALIDO MC68000-ADDRESS-BUS))

         (time2 (-~ -10))

         (time4 (10 +~)))

TABLE B-2.   Example Frame for MC68000 Address Timing Information Frame

.

FIGURE B-12.   Strobe Timing for MC68000 Address Signals

Valid STATEADDRESS-BUS

reference

event1 event3

event2 event4

UDS
LDS

hold time linksetup time link
time4 = (10 +~)time2 = (-~ -10)
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timing parameter range are stored in the ^has-timing-relationsslot of the timing template.

For the Strobe Timing the allowed range for the setup timing parameter ^time2is given as

(-~ +OMP) which means a range from negative infinity to a positive omp delay, while

hold timing parameter̂time4is given as (-OMP +~) which means a range from negat

omp delay to positive infinity.

B.1.9.2 Example of a State Information Frame

A state information frame associates a set of states with a meaning or interpret

For this work, the meaning of a state will be given as a key word, while the state itself

be given using the signal-state notation developed in Section 4.3. If the state invol

binary signals, a maximum of 2n possible states exist.

To illustrate the concept of a state and its meaning, this section gives the type

information frame of the MC68000 microprocessor (Table B-4). There are three sig

associated with the type information:FC0, FC1 andFC2. These are binary signals tha

can only be asserted and negated. The three signals can be used to indicate acces

different type spaces: the user data space, the supervisor data space, the user p

(defschema STROBE-TIMING

  (is-a TIMING)

  (has-model STROBE-TIMING-MODEL)

  (has-timing-relations

(event1 COMPLEMENTARY-PRECEDES event3 @ (0 +~))

(event3 COMPLEMENTARY-PRECEDES event1 @ (0 +~))

(event2 COMPLEMENTARY-PRECEDES event4 @ (0 +~))

(event4 EVENTUALLY-PRECEDES event2 @ (0 +~))

(event1 ALWAYS-ACCOMPANIED-BY event2 @ time2 (-~ +OMP))

(event3 ALWAYS-ACCOMPANIED-BY event4 @ time4 (-OMP +~)))

  (signal1)

  (signal2)

  (event1)

  (event3)

  (event2)

  (event4)

  (time2)

  (time4))

TABLE B-3.   Frame for Strobe Timing



219

the dif-

,

tes a

ce

xam-

e, the

-1)

at can

space.

. The

ects

rchy

h in

ail is

. The
space, the supervisor program space and the interrupt acknowledge space. Each of

ferent type spaces is assigned a key word:USER-DATA, SUP-DATA, USER-PROGRAM

SUP-PROGRAMand INT-ACK which are listed in thê selectsslot. Each key word in

Table B-4 has the appropriate state of theFC0, FC1 andFC2 signals associated with it in

the ^access-tableslot. The access-table can be viewed as a dictionary that associa

keyword with a signal state. The signal states are given using the notation for the <state

expression> as given in Section 4.3.

A state information frame as shown in Table B-4 will be utilized during interfa

design for determining the appropriate states of signals for specific conditions. For e

ple, if a system is being designed with a memory bank in the supervisor data spac

SUP-DATA key yields the state expression:

(AND (ASSO MC68000-FC2) (NEGO MC68000-FC1) (ASSO MC68000-FC0)) (EQ 8

This state expression can then be used to design a combinatorial decoder th

generate a signal that is active whenever the MC68000 accesses the supervisor data

B.2  The Interface Frames

This section gives some simple example frames for the interface and their ISBs

frames shown are simplified for illustration purposes, and only important overall asp

are discussed.

The organization of the frames used to build the interface follows the hiera

developed in Chapter 5. An IB frame is made up of more detailed ISB frames, whic

turn are made up of ISBP frames. At each level of the frame hierarchy more det

revealed about the interface. Each ISB will have a specific purpose attached to it

organization for the IB frames can be seen in Figure B-13. A single IB frame,IB-1, rep-

(defschema MC68000-TYPE-STATE

 (is-a STATE-TABLE)

 (condition-signals   MC68000-FC0 MC68000-FC1 MC68000-FC2)

 (selects USER-DATA USER-PROGRAM SUP-DATA SUP-PROGRAM INT-ACK)

 (access-table

(USER-DATA (AND (NEGO MC68000-FC2) (NEGO MC68000-FC1) (ASSO MC68000-FC0)))

(USER-PROGRAM(AND (NEGO MC68000-FC2) (ASSO MC68000-FC1) (NEGO MC68000-FC0)))

(SUP-DATA    (AND (ASSO MC68000-FC2) (NEGO MC68000-FC1) (ASSO MC68000-FC0)))

(SUP-PROGRAM (AND (ASSO MC68000-FC2) (ASSO MC68000-FC1) (NEGO MC68000-FC0)))

(INT-ACK     (AND (ASSO MC68000-FC2) (ASSO MC68000-FC1) (ASSO MC68000-FC0)))))

TABLE B-4.   Example Frame for the MC68000 Type State Information
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resents the interface designed for a specific connection requestConnection-

Request-1 . A connection requestis a simple frame that instructs the Interface Design

to initiate the interface design process. The IB frame can contain any number of

frames linked to the parent frame with a ^has-sub-block relation.

The frames that are used to build up the interface are called the interface d

frames. IB and ISB device frames are created during the interface design proce

instantiating the prototype IB and ISB frames. An interface device frame is related

prototype frame through the ^is-a relation. For example, theIB-1 device frame in

Figure B-13 is created by instantiating theIB prototype frame. Similarly the connection

request device frames are created during the interface design process by instantiat

Connection-Request  prototype frame.

B.2.1  Frame Representation of the Interface Block

A typical frame representing an IB is given in Table B-5. This frame is presente

show the general organization of the IB frames. The ^has-sub-blockslot will normally

contain the frames making up the next more detailed level of the interface (ISB_5 and

.

FIGURE B-13.   Interface Block Organization
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ISB_17 in Table B-5). Thê has-internal-signalslot is used to store any signal internal t

the IB after they are created during the design process (INT_SIG_1 in Table B-5). The

^function / ^needs-functionslots are used to control the design of different aspects of

interface. For example, theADD_CONNkeyword in the n̂eeds-functionslot indicates that

the address must still be connected for this interface, while theDATA_CONNkeyword in

the f̂unctionslot indicates that the data signals have been connected. Once the ad

signals are connected, theADD_CONNkey word will be moved from thêneeds-function

to ^functionslot. The d̂eviceXslots indicate the components being connected (such

MK6116 andMC68000), while the ĉomponentXslots indicate the instances of the com

ponents being connected (such asU1, U2, U3 etc.). A link to the connection reques

that was used to create the IB is provided in the^connection-reqslot.

A VHDL representation of the frame from Table B-5 is shown in Table B-6. T

VHDL representation will be generated by the Interface Designer once the IB and its

have been designed completely. The Interface Designer will produce a structural arc

ture of the IB frame in terms of its ISBs. For example, the architecture of

IB_1_RW_CONNECTVHDL entity is given by instantiating theISB_17 entity as

(defschema IB_1_RW_CONNECT
(has-sub-block ISB_5 ISB_17)
(has-internal-signal INT_SIG_1)
(purpose DATA_TRANSFER CONNECT)
(function DATA_CONN)
(needs-function ADD_CONN)
(component1 U1)
(component2 U2 U3 U4 U5)
(device1 MC68000)
(device2 MK6116)
(connection-req CONNECTION_REQUEST_1))

TABLE B-5.   Interface Block Frame

entity IB_1_RW_CONNECT is
        port ( MC68000_UDS : IN std_logic, etc....);
end IB_1_RW_CONNECT;

architecture ONLY of IB_1_RW_CONNECT is
   signal INT_SIG_1 : std_logic;
begin
   PART_1 : ISB_17
      port map (
             INT_SIG_1 => INT_SIG_1,
             MC68000_UDS => MC68000_UDS );
   PART_2 : etc...
end ONLY;

TABLE B-6.   VHDL Representation of Example Interface Block Frame
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PART_1. It should be noted that the VHDL frame above is highly simplified for illustr

tion purpose.

B.2.2  Frame Representation of an ISBP

A typical frame representing a Combinatorial ISBP is shown in Table B-7. T

^purposeslot is provided to indicate the purpose of this specific ISB. This slot is curre

used primarily for debugging purposes. A ^hardware-functionslot indicates that this is a

Combinatorial ISBP, with the propagation delay parameter given in the ^parametersslot.

For this Combinatorial ISBP the propagation delay(6 12 9) indicates a minimum

delay of 6 ns, a maximum delay of 12 ns and a typical delay of 9 ns. The ^input slot con-

tains the input state expression which is the combinatorial equation that maps the inp

the ISB to the outputs. Slots are provided for the ISB input and output signals and tim

The ôutput-stateslot is provided to indicate the required output state when the input s

expression is true. The required information for filling in the combinatorial ISBs is fou

either by analyzing the different information state specification of the components b

connected, and/or by analyzing the overall architecture of the complete design.

The example in Table B-7 gives an ISBP that generates the internal request s

REQ_INT_SIGNAL. This Combinatorial ISBP has two inputs,MC68000_LDS and

MC68000_UDS, and implements the state expressions: (OR (ASSOMC68000_UDS)

(ASSOMC68000_LDS)). The output state slot indicates that theREQ_INT_SIGNAL is

asserted whenever the state expression is true. A schematic representation of the

frame of Table B-7 is shown in Figure B-14. A VHDL representation of the frame fr

Table B-7 is shown in Table B-8. The VHDL representation will be generated by the In

face Designer, once the ISBP frame has been completed, by systematically mappi

contents of frame slots to the VHDL entity and architecture. For example, the^input-sig-

(defschema ISB_4_REQ_INT
(instance INTERFACE_SUB_BLOCK
(has-sub-block ISB_8 ISB_9)
(purpose INTERNAL REQUEST GENERATE)
(function REQUEST_IN)
(needs-function))
(hardware-function COMBINATORIAL)
(parameters (pdelay (8 12 9)))
(input-signals MC68000_LDS MC68000_UDS)
(input-timings MC68000_UDS/LDS_TIMING)
(input (OR (ASSO MC68000_UDS)(ASSO MC68000_LDS)))
(output-timing REQ_INT_TIMING_1)
(output-state (ASSO REQ_INT_SIGNAL))
(output-signals REQ_INT_SIGNAL))

TABLE B-7.   Combinatorial ISBP
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FIGURE B-14.   Schematic Representation of Example ISBP Frame

entity ISB_4_REQ_INT is
        generic (TPD : time := 9 ns);
        port (MC68000_UDS_U1 : IN std_logic;
              MC68000_LDS_U1 : IN std_logic;
              REQ_INT_SIGNAL : OUT std_logic);
end ISB_4_REQ_INT;

architecture ONLY of ISB_4_REQ_INT is
begin
     REQ_INT_SIGNAL <=
         (not MC68000_UDS)or (not MC68000_LDS)after TPD;
end ONLY;

TABLE B-8.   VHDL Representation of Example ISBP Frame

ISB_4_REQ_INT
MC68000_UDS(L)

MC68000_LDS(L)

REQ_INT_SIGNAL(H)

From MC68000,
(asserted low)

Internal Request Signal
(asserted High)



224
Appendix C
VHDL Code for ISBPs

C.1  Package Declaration for ISBPs
 LIBRARY damelib;
 USE ieee.std_logic_1164.all;
 PACKAGE primitive IS
     CONSTANT time_prop_delay : TIME := 3 ns;
     CONSTANT time_en_delay : TIME := 2 ns;
     CONSTANT time_clock_delay : TIME := 2 ns;
     CONSTANT time_pure_delay : TIME := 55 ns;
     COMPONENT and2p
         GENERIC (tpd : TIME := time_prop_delay);
         PORT (in1, in2 : IN std_logic;
               out1 : OUT std_logic);
     END COMPONENT;
     COMPONENT or2p
         GENERIC (tpd : TIME := time_prop_delay);
         PORT (in1, in2 : IN std_logic;
               out1 : OUT std_logic);
     END COMPONENT;
     COMPONENT xor2p
         GENERIC (tpd : TIME := time_prop_delay);
         PORT (in1, in2 : IN std_logic;
               out1 : OUT std_logic);
     END COMPONENT;
     COMPONENT invp
         GENERIC (tpd : TIME := time_prop_delay);
         PORT (in1 : IN std_logic;
               out1 : OUT std_logic);
     END COMPONENT;
     COMPONENT dlatchp
         GENERIC (tpd : TIME := time_prop_delay;
                  tpd_en : TIME := time_en_delay);
         PORT (in1, latch_en : IN std_logic;
               out1 : OUT std_logic);
     END COMPONENT;
     COMPONENT edge_dffp
         GENERIC (tpd_clock, tpd_res : TIME := time_prop_delay);
         PORT (in1, clk, clr : IN std_logic;
               out1 : OUT std_logic);
     END COMPONENT;
     COMPONENT pure_delayp
         GENERIC (tpd : TIME := time_pure_delay);
         PORT (in1 : IN std_logic;
               sys_reset : IN std_logic;
               sys_clock : IN std_logic;
               out1 : OUT std_logic);
     END COMPONENT;
     COMPONENT leading_edge_delayp
         GENERIC (tpd_edge : TIME := time_pure_delay;
                  tpd : TIME := time_prop_delay);
         PORT (in1 : IN std_logic;
               sys_reset : IN std_logic := ‘0’;
               sys_clock : IN std_logic := ‘0’;
               out1 : OUT std_logic);
     END COMPONENT;
     COMPONENT trailing_edge_delayp
         GENERIC (tpd_edge : TIME := time_pure_delay;
                  tpd : TIME := time_prop_delay);
         PORT (in1 : IN std_logic;
               sys_reset : IN std_logic := ‘0’;
               sys_clock : IN std_logic := ‘0’;
               out1 : OUT std_logic);
     END COMPONENT;
     COMPONENT tri_state_bufferp
         GENERIC (tpd : TIME := time_prop_delay;
                  tpd_tri : TIME := time_en_delay);
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         PORT (in1, tri_out : IN std_logic;
               out1 : OUT std_logic);
     END COMPONENT;
     COMPONENT oc_bufferp
         GENERIC (tpd : TIME := time_prop_delay);
         PORT (in1 : IN std_logic;
               out1 : OUT std_logic);
     END COMPONENT;
 END primitive;

C.2  Entity and Architecture Declaration for ISBPs

C.2.1  2 Input AND Entity
 USE ieee.std_logic_1164.all;
 ENTITY and2p IS
         GENERIC (tpd : TIME );
         PORT (in1, in2 : IN std_logic;
               out1 : OUT std_logic);
 END and2p;

 ARCHITECTURE pcircuit OF and2p IS
 BEGIN
         out1 <= in1 AND in2 AFTER tpd;
 END pcircuit;

C.2.2  2 Input OR Entity
 USE ieee.std_logic_1164.all;
 ENTITY or2p IS
         GENERIC (tpd : TIME );
         PORT (in1, in2 : IN std_logic;
               out1 : OUT std_logic);
 END or2p;

 ARCHITECTURE pcircuit OF or2p IS
 BEGIN
         out1 <= in1 OR in2 AFTER tpd;
 END pcircuit;

C.2.3  2 Input XOR Entity
 USE ieee.std_logic_1164.all;
 ENTITY xor2p IS
         GENERIC (tpd : TIME );
         PORT (in1, in2 : IN std_logic;
               out1 : OUT std_logic);
 END xor2p;

 ARCHITECTURE pcircuit OF xor2p IS
 BEGIN
         out1 <= in1 XOR in2 AFTER tpd;
 END pcircuit;

C.2.4  Inverter Entity
 USE ieee.std_logic_1164.all;
 ENTITY invp IS
         GENERIC (tpd : TIME );
         PORT (in1 : IN std_logic;
               out1 : OUT std_logic);
 END invp;

 ARCHITECTURE pcircuit OF invp IS
 BEGIN
         out1 <= NOT in1 AFTER tpd;
 END pcircuit;
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C.2.5  D-Latch Entity
 USE ieee.std_logic_1164.all;
 ENTITY dlatchp IS
         GENERIC (tpd, tpd_en : TIME );
         PORT (in1, latch_en : IN std_logic;
               out1 : OUT std_logic);
 END dlatchp;

 ARCHITECTURE pcircuit OF dlatchp IS
         SIGNAL del_sig : std_logic;
         SIGNAL en_sig : std_logic;
 BEGIN
         en_sig <= latch_en after tpd_en;

         state_change0 : PROCESS (in1)
         BEGIN
           IF (in1 = ‘0’ OR in1 = ‘1’) THEN
             del_sig <= in1 after tpd;
           ELSE
             del_sig <= ‘X’ after tpd;
           END IF;
         END PROCESS;

         state_change1 : PROCESS (en_sig, del_sig)
         BEGIN
           IF ( To_bit(en_sig) = ‘1’) THEN
             out1 <= del_sig after 0 ns;
           END IF;
         END PROCESS;
 END pcircuit;

C.2.6  D-Flip-Flop Entity
 USE ieee.std_logic_1164.all;
 ENTITY edge_dffp IS
         GENERIC (tpd_clock, tpd_res : TIME );
         PORT (in1, clk, clr : IN std_logic;
               out1 : OUT std_logic);
 END edge_dffp;

 ARCHITECTURE pcircuit OF edge_dffp IS
 BEGIN
         state_change : PROCESS (clk,clr)
         BEGIN
            IF ( To_bit(clr) = ‘1’ ) THEN
              out1 <= ‘0’ AFTER tpd_res;
            ELSIF ( clk’event AND clk = ‘1’ ) THEN
             IF (in1 = ‘0’ OR in1 = ‘1’) THEN
                out1 <= in1 after tpd_clock;
             ELSE
                out1 <= ‘X’ after tpd_clock;
             END IF;
            END IF;
         END PROCESS;
 END pcircuit;

C.2.7  Pure Delay Entity
 LIBRARY ieee;
 USE ieee.std_logic_1164.all;
 LIBRARY damelib;
 USE damelib.primitive.edge_dffp;
 ENTITY pure_delayp IS
         GENERIC (tpd : TIME );
         PORT (in1 : IN std_logic;
               sys_reset : IN std_logic;
               sys_clock : IN std_logic;
               out1 : OUT std_logic);
 END pure_delayp;
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 ARCHITECTURE pcircuit OF pure_delayp IS
 BEGIN
         out1 <= in1 after tpd;
 END pcircuit;

C.2.7.1 D-Flip-Flop Implemenation of 50 ns Pure delay
 ARCHITECTURE del50ns OF pure_delayp IS
    FOR ALL : edge_dffp
           USE entity damelib.edge_dffp(pcircuit);
    SIGNAL sig1 : std_logic;
 BEGIN
    part1 : edge_dffp
         PORT MAP (in1, sys_clock, sys_reset, sig1);
    part2 : edge_dffp
         PORT MAP (sig1, sys_clock, sys_reset, out1);
 END del50ns;

C.2.8  Leading Edge Delay Entity
 USE ieee.std_logic_1164.all;
 LIBRARY damelib;
 USE damelib.primitive.and2p;
 USE damelib.primitive.pure_delayp;
 ENTITY leading_edge_delayp IS
         GENERIC (tpd_edge, tpd : TIME );
         PORT (in1 : IN std_logic;
               sys_reset : IN std_logic;
               sys_clock : IN std_logic;
               out1 : OUT std_logic);
 END leading_edge_delayp;

 ARCHITECTURE pcircuit OF leading_edge_delayp IS
         FOR all : and2p
            use entity damelib.and2p(pcircuit);
         FOR all : pure_delayp
            use entity damelib.pure_delayp(pcircuit);
         SIGNAL idel : std_logic;
 BEGIN
         n1 : and2p
            GENERIC MAP (tpd => tpd)
            PORT MAP (in1 => idel, in2 => in1, out1 => out1);
         n2 : pure_delayp
            GENERIC MAP (tpd => tpd_edge)
            PORT MAP (in1 => in1,
                      sys_reset => sys_reset,
                      sys_clock => sys_clock,
                      out1 => idel);
 END pcircuit;

 ARCHITECTURE del50ns OF leading_edge_delayp IS
         FOR all : and2p
            use entity damelib.and2p(pcircuit);
         FOR all : pure_delayp
            use entity damelib.pure_delayp(del50ns);
         SIGNAL idel : std_logic;
 BEGIN
         n1 : and2p
            GENERIC MAP (tpd => tpd)
            PORT MAP (in1 => idel, in2 => in1, out1 => out1);
         n2 : pure_delayp
            GENERIC MAP (tpd => tpd_edge)
            PORT MAP (in1 => in1,
                      sys_reset => sys_reset,
                      sys_clock => sys_clock,
                      out1 => idel);
 END del50ns;
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C.2.9  Trailing Edge Delay Entity
 USE ieee.std_logic_1164.all;
 LIBRARY damelib;
 USE damelib.primitive.and2p;
 USE damelib.primitive.invp;
 USE damelib.primitive.pure_delayp;
 ENTITY trailing_edge_delayp IS
         GENERIC (tpd_edge, tpd : TIME );
         PORT (in1 : IN std_logic;
               sys_reset : IN std_logic;
               sys_clock : IN std_logic;
               out1 : OUT std_logic);
 END trailing_edge_delayp;

 ARCHITECTURE pcircuit OF trailing_edge_delayp IS
         FOR all : and2p
            use entity damelib.and2p(pcircuit);
         FOR all : invp
            use entity damelib.invp(pcircuit);
         FOR all : pure_delayp
            use entity damelib.pure_delayp(pcircuit);
         SIGNAL idel, inv_idel : std_logic;
 BEGIN
         n1 : and2p
            GENERIC MAP (tpd => tpd)
            PORT MAP (in1 => inv_idel, in2 => in1, out1 => out1);
         n2 : pure_delayp
            GENERIC MAP (tpd => tpd_edge)
            PORT MAP (in1 => in1,
                      sys_reset => sys_reset,
                      sys_clock => sys_clock,
                      out1 => idel);
         n3 : invp
            GENERIC MAP (tpd => tpd)
            PORT MAP (in1 => idel,  out1 => inv_idel);
 END pcircuit;

 ARCHITECTURE del50ns OF trailing_edge_delayp IS
         FOR all : and2p
            use entity damelib.and2p(pcircuit);
         FOR all : invp
            use entity damelib.invp(pcircuit);
         FOR all : pure_delayp
            use entity damelib.pure_delayp(del50ns);
         SIGNAL idel, inv_idel : std_logic;
 BEGIN
         n1 : and2p
            GENERIC MAP (tpd => tpd)
            PORT MAP (in1 => inv_idel, in2 => in1, out1 => out1);
         n2 : pure_delayp
            GENERIC MAP (tpd => tpd_edge)
            PORT MAP (in1 => in1,
                      sys_reset => sys_reset,
                      sys_clock => sys_clock,
                      out1 => idel);
         n3 : invp
            GENERIC MAP (tpd => tpd)
            PORT MAP (in1 => idel,  out1 => inv_idel);
 END del50ns;

C.2.10  Tri-Sate Buffer Entity
 USE ieee.std_logic_1164.all;
 ENTITY tri_state_bufferp IS
         GENERIC (tpd : TIME; tpd_tri : TIME);
         PORT (in1, tri_out : IN std_logic;
               out1 : OUT std_logic);
 END tri_state_bufferp;

 ARCHITECTURE pcircuit OF tri_state_bufferp IS
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         SIGNAL del_sig : std_logic;
         SIGNAL tri_sig : std_logic;
 BEGIN
         tri_sig <= tri_out after tpd_tri;

         state_change0 : PROCESS (in1)
         BEGIN
           IF (in1 = ‘0’ OR in1 = ‘1’) THEN
             del_sig <= in1 after tpd;
           ELSE
             del_sig <= ‘X’ after tpd;
           END IF;
         END PROCESS;

         state_change1 : PROCESS (tri_sig, del_sig)
         BEGIN
           IF ( To_bit(tri_sig) = ‘1’) THEN
             out1 <= del_sig after 0 ns;
           ELSE
             out1 <= ‘Z’ after 0 ns;
           END IF;
         END PROCESS;
 END pcircuit;

C.2.11  Open Collector Buffer Entity
 USE ieee.std_logic_1164.all;
 ENTITY oc_bufferp IS
         GENERIC (tpd : TIME );
         PORT (in1 : IN std_logic;
               out1 : OUT std_logic);
 END oc_bufferp;

 ARCHITECTURE pcircuit OF oc_bufferp IS
 BEGIN
         state_change : PROCESS (in1)
         BEGIN
           IF ( To_bit(in1) = ‘0’ ) THEN
             out1 <= ‘0’ after tpd;
           ELSE
             out1 <= ‘Z’ after tpd;
           END IF;
         END PROCESS;
 END pcircuit;Abstraction Levels for Information Transfers
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Appendix D
CRL Frames for Design Example from Section 7.4

D.1  CRL Frames for the Motorola MC68000 Microprocessor

The component frames are divided into two parts. First, the body frames only

tain the timing independent frames. The body frames are the same for all speed versi

a component. Second the timing frames contain the frames that are specific to a c

speed component.

D.1.1  CRL Frames MC68000 Body

Note: some address and data signals have been deleted for brevity.

 (defschema m68000
          :parallel
          (is-a microprocessor)
          (has-capability
                         m68000_data_transfer_cap m68000_bus_arb
                         m68000_interrupt)
          (has-signal
                         m68000_as m68000_uds m68000_lds
                         m68000_dtak m68000_rd
                         m68000_fc0 m68000_fc1 m68000_fc2
                         m68000_br m68000_bg m68000_bgack
                         m68000_d0 m68000_d1 m68000_d2 m68000_d3
                         m68000_d4 m68000_d5 m68000_d6 m68000_d7
                         m68000_d8 m68000_d9 m68000_d10 m68000_d11
                         m68000_d12 m68000_d13 m68000_d14 m68000_d15
                         m68000_a1 m68000_a2 m68000_a3
                         m68000_a4 m68000_a5 m68000_a6 m68000_a7
                         m68000_a8 m68000_a9 m68000_a10 m68000_a11
                         m68000_a12 m68000_a13 m68000_a14 m68000_a15
                         m68000_a16 m68000_a17 m68000_a18 m68000_a19
                         m68000_a20 m68000_a21 m68000_a22 m68000_a23)
          (has-bus
                         m68000_data_bus m68000_address_bus
                         m68000_control_bus m68000_data_transfer_bus))
 (defschema m68000_as
          :parallel
          (is-a signal)
          (pin-number 6)
          (polarity (ass 0))
          (sim-name )
          (sim-timing m68000_ds_as_timing)
          (sim-function s)
          (i-o  output))
 (defschema m68000_dtak
          :parallel
          (is-a signal)
          (pin-number 10)
          (polarity (ass 0))
          (driver-type open_collector)
          (sim-name )
          (sim-timing m68000_control_timing)
          (sim-function k)
          (i-o  input))
 (defschema m68000_uds
          :parallel
          (is-a signal)
          (pin-number 7)
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          (polarity (ass 0))
          (sim-name )
          (sim-timing m68000_uds_lds_timing)
          (sim-function s)
          (i-o output))
 (defschema m68000_lds
          :parallel
          (is-a signal)
          (pin-number 8)
          (polarity (ass 0))
          (sim-name )
          (sim-timing m68000_uds_lds_timing)
          (sim-function s)
          (i-o  output))
 (defschema m68000_rw
          :parallel
          (is-a signal)
          (pin-number 9)
          (polarity (ass 0))
          (sim-name )
          (sim-timing m68000_ds_rw_timing)
          (sim-function w)
          (i-o  output))
 (defschema m68000_fc0
          :parallel
          (is-a signal)
          (pin-number 28)
          (polarity (ass 1))
          (sim-name )
          (sim-timing m68000_ds_fc_timing)
          (sim-function 0a)
          (i-o  output))
 (defschema m68000_fc1
          :parallel
          (is-a signal)
          (pin-number 27)
          (polarity (ass 1))
          (sim-name )
          (sim-timing m68000_ds_fc_timing)
          (sim-function 1a)
          (i-o  output))
 (defschema m68000_fc2
          :parallel
          (is-a signal)
          (pin-number 26)
          (polarity (ass 1))
          (sim-name )
          (sim-timing m68000_ds_fc_timing)
          (sim-function 0a)
          (i-o  output))
 (defschema m68000_a1
          :parallel
          (is-a signal)
          (pin-number 29)
          (polarity (ass 1))
          (sim-name (m68000_a 1))
          (sim-timing m68000_address_timing)
          (sim-function a1)
          (i-o  output))
 ......
 (defschema m68000_a2 to m68000_a22 ....
 ......
 (defschema m68000_a23
          :parallel
          (is-a signal)
          (pin-number 52)
          (polarity (ass 1))
          (sim-name (m68000_a 23))
          (sim-timing m68000_address_timing)
          (sim-function a23)
          (i-o  output))
 (defschema m68000_d0
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          :parallel
          (is-a signal)
          (pin-number 5)
          (polarity (ass 1))
          (sim-name (m68000_ld 0))
          (sim-timing m68000_write_data_timing)
          (sim-function d0)
          (i-o  input output))
 ......
 (defschema m68000_d1 to m68000_d15
 ......
 (defschema m68000_data_transfer_bus
                  :parallel
                  (is-a signal_bus)
                  (has-signal
                   m68000_d0 m68000_d1 m68000_d2 m68000_d3
                   m68000_d4 m68000_d5 m68000_d6 m68000_d7
                   m68000_d8 m68000_d9 m68000_d10 m68000_d11
                   m68000_d12 m68000_d13 m68000_d14 m68000_d15
                   m68000_a1 m68000_a2 m68000_a3
                   m68000_a4 m68000_a5 m68000_a6 m68000_a7
                   m68000_a8 m68000_a9 m68000_a10 m68000_a11
                   m68000_a12 m68000_a13 m68000_a14 m68000_a15
                   m68000_a16 m68000_a17 m68000_a18 m68000_a19
                   m68000_a20 m68000_a21 m68000_a22 m68000_a23
                   m68000_rw m68000_as m68000_dtak m68000_uds m68000_lds
                   ))
 (defschema m68000_data_bus
          :parallel
          (is-a signal_bus)
          (sim-timing m68000_write_data_timing m68000_read_data_timing)
          (has-signal
                   m68000_d0 m68000_d1 m68000_d2 m68000_d3
                   m68000_d4 m68000_d5 m68000_d6 m68000_d7
                   m68000_d8 m68000_d9 m68000_d10 m68000_d11
                   m68000_d12 m68000_d13 m68000_d14 m68000_d15))
 (defschema m68000_address_bus
          :parallel
          (is-a signal_bus)
          (sim-timing m68000_address_timing)
          (has-signal
                   m68000_a1 m68000_a2 m68000_a3
                   m68000_a4 m68000_a5 m68000_a6 m68000_a7
                   m68000_a8 m68000_a9 m68000_a10 m68000_a11
                   m68000_a12 m68000_a13 m68000_a14 m68000_a15
                   m68000_a16 m68000_a17 m68000_a18 m68000_a19
                   m68000_a20 m68000_a21 m68000_a22 m68000_a23))
 (defschema m68000_control_bus
          :parallel
          (is-a signal_bus)
          (has-signal m68000_rw m68000_lds m68000_uds m68000_dtak m68000_as
                                          m68000_br m68000_bg m68000_bgack))
 (defschema m68000_data_transfer_cap
          :parallel
          (is-a data_transfer_cap_micro)
          (has-dt-type-spec m68000_dt_type_spec)
          (has-dt-req-spec m68000_dt_req_spec)
          (has-word-select-spec m68000_word_select_spec)
          (has-word-width-spec none)
          (has-address-spec m68000_address_spec)
          (uses-protocol m68000_dt_write_protocol m68000_dt_read_protocol)
          (uses-timing m68000_ds_as_timing))
 (defschema m68000_dt_read_protocol
          :parallel
          (is-a   read_protocol)
          (has-identification-spec     m68000_read_spec)
          (has-del-spec                m68000_del_spec)
          (has-data-spec               m68000_read_data_spec))
 (defschema m68000_dt_write_protocol
          :parallel
          (is-a   write_protocol)
          (has-identification-spec     m68000_write_spec)
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          (has-del-spec            m68000_del_spec)
          (has-data-spec               m68000_write_data_spec))
 (defschema m68000_read_spec
          :parallel
          (is-a                  state_timing_spec)
          (uses-state            m68000_read_state)
          (uses-timing           m68000_ds_rw_timing))
 (defschema m68000_read_state
          :parallel
          (is-a                  state_spec)
          (state-signals         m68000_rw)
          (state                 (nego m68000_rw)))
 (defschema m68000_write_spec
          :parallel
          (is-a                  state_timing_spec)
          (uses-state            m68000_write_state)
          (uses-timing           m68000_ds_rw_timing))
 (defschema m68000_write_state
          :parallel
          (is-a                  state_spec)
          (state-signals         m68000_rw)
          (state                 (asso m68000_rw)))
 (defschema m68000_data_magnitude
          :parallel
          (is-a lookup_table)
          (selects 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)
          (access-table   (0 m68000_d0) (1 m68000_d1) (2 m68000_d2)
                          (3 m68000_d3) (4 m68000_d4) (5 m68000_d5)
                          (6 m68000_d6) (7 m68000_d7) (8 m68000_d8)
                          (9 m68000_d9) (10 m68000_d10) (11 m68000_d11)
                          (12 m68000_d12) (13 m68000_d13) (14 m68000_d14)
                          (15 m68000_d15)))
 (defschema m68000_read_data_spec
          :parallel
          (is-a           state_timing_spec)
          (uses-state     m68000_data_magnitude)
          (uses-timing    m68000_read_data_timing))
 (defschema m68000_write_data_spec
          :parallel
          (is-a                  state_timing_spec)
          (uses-state            m68000_data_magnitude)
          (uses-timing           m68000_write_data_timing))
 (defschema m68000_address_magnitude
          :parallel
          (is-a lookup_table)
          (selects 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23)
          (access-table  (1 m68000_a1)
                         (2 m68000_a2) (3 m68000_a3) (4 m68000_a4)
                         (5 m68000_a5) (6 m68000_a6) (7 m68000_a7)
                         (8 m68000_a8) (9 m68000_a9) (10 m68000_a10)
                         (11 m68000_a11) (12 m68000_a12) (13 m68000_a13)
                         (14 m68000_a14) (15 m68000_a15) (16 m68000_a16)
                         (17 m68000_a17) (18 m68000_a18) (19 m68000_a19)
                         (20 m68000_a20) (21 m68000_a21) (22 m68000_a22)
                         (23 m68000_a23)))
 (defschema m68000_address_spec
          :parallel
          (is-a          state_timing_spec)
          (uses-state    m68000_address_magnitude)
          (uses-timing   m68000_address_timing))
 (defschema m68000_dt_type_spec
          :parallel
          (is-a                    state_timing_spec)
          (uses-state              m68000_type_state)
          (uses-timing             m68000_ds_fc_timing))
 (defschema m68000_type_state
          :parallel
          (is-a lookup_table)
          (condition-signals       m68000_fc0 m68000_fc1 m68000_fc2)
          (selects                 user_data user_program sup_data
                                   sup_program int_ack)
          (access-table  (user_data   (and (nego m68000_fc2) (nego m68000_fc1)
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                                                            (asso m68000_fc0)))
                         (user_program(and (nego m68000_fc2) (asso m68000_fc1)
                                                          (nego m68000_fc0)))
                         (sup_data    (and (asso m68000_fc2) (nego m68000_fc1)
                                                          (asso m68000_fc0)))
                         (sup_program (and (asso m68000_fc2) (asso m68000_fc1)
                                                          (nego m68000_fc0)))
                         (int_ack     (and (asso m68000_fc2) (asso m68000_fc1)
                                                          (asso m68000_fc0)))))
 (defschema m68000_dt_req_spec
          :parallel
          (is-a                    state_timing_spec)
          (uses-state              m68000_dt_req_state)
          (uses-timing             m68000_uds_lds_timing m68000_ds_as_timing))
 (defschema m68000_dt_req_state
          :parallel
          (is-a                    state_spec)
          (state-signals           m68000_uds m68000_lds)
          (state                 (and (asso m68000_as)
                                 (or (asso m68000_uds) (asso m68000_lds)))))
 (defschema m68000_word_select_spec
          :parallel
          (is-a                    state_timing_spec)
          (uses-state              m68000_word_select_state)
          (uses-timing             m68000_uds_lds_timing))
 (defschema m68000_word_select_state
          :parallel
          (is-a                    double_lookup_table)
          (condition-signals       m68000_uds m68000_lds)
          (select1                 (0 7) (0 15))
          (select2                 (0 7) (8 15))
          (access-table            ((0 15) (((0 7) (asso m68000_lds))
                                            ((8 15) (asso m68000_uds))))
                                   ((0 7) (((0 7) (asso m68000_lds))
                                           ((8 15) (asso m68000_uds))))))
 (defschema m68000_del_spec
          :parallel
          (is-a                    state_timing_spec)
          (uses-state              m68000_del_state)
          (uses-timing             m68000_control_timing))
 (defschema m68000_del_state
          :parallel
          (is-a                    state_spec)
          (state-signals           m68000_dtak)
          (state                   (assi m68000_dtak)))

D.1.2  CRL Frames MC68000 Timing (8Mhz)
 (defschema m68000_ds_rw_timing
          :parallel
          (is-a                    strobe_timing)
          (signal1                 m68000_uds m68000_lds)
          (signal2                 m68000_rw)
          (event1                 (! (or (asso m68000_uds) (asso m68000_lds))))
          (event3                 (! (not (or (asso m68000_uds)
                                              (asso m68000_lds)))))
          (event2                  (valo ! valo m68000_rw))
          (event4                  (valo ! valo m68000_rw))
          (time2                   (-~ -60))
          (time4                   (40 +~)))
 (defschema m68000_control_timing
          :parallel
          (is-a                    handshake_timing)
          (signal1                 m68000_uds m68000_lds)
          (signal2                 m68000_dtak)
          (event1                 (! (or (asso m68000_uds) (asso m68000_lds))))
          (event3                 (! (not (or (asso m68000_uds)
                                              (asso m68000_lds)))))
          (event2                  (! assi m68000_dtak))
          (event4                  (! negi m68000_dtak))
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          (time2                   (variable))
          (time3                   (125 320))
          (time4                   (0 245)))
 (defschema m68000_read_data_timing
          :parallel
          (is-a                    pulse_latch_timing)
          (signal1                 m68000_uds m68000_lds)
          (signal2                 m68000_data_bus)
          (event1                 (! (or (asso m68000_uds) (asso m68000_lds))))
          (event3                 (! (not (or (asso m68000_uds)
                                              (asso m68000_lds)))))
          (event2                  (float ! vali m68000_data_bus))
          (event4                  (vali ! float m68000_data_bus))
          (time2                   (-~ -35))
          (time4                   (0 +~)))
 (defschema m68000_write_data_timing
          :parallel
          (is-a                    strobe_timing)
          (signal1                 m68000_uds m68000_lds)
          (signal2                 m68000_data_bus)
          (event1                 (! (or (asso m68000_uds) (asso m68000_lds))))
          (event3                 (! (not (or (asso m68000_uds)
                                              (asso m68000_lds)))))
          (event2                  (open ! valo m68000_data_bus))
          (event4                  (valo ! open m68000_data_bus))
          (time2                   (-~ -30))
          (time4                   (30 +~)))
 (defschema m68000_address_timing
          :parallel
          (is-a                    strobe_timing)
          (signal1                 m68000_uds m68000_lds)
          (signal2                 m68000_address_bus)
          (event1                 (! (or (asso m68000_uds) (asso m68000_lds))))
          (event3                 (! (not (or (asso m68000_uds)
                                              (asso m68000_lds)))))
          (event2                  (! valo m68000_address_bus))
          (event4                  (! ivalo m68000_address_bus))
          (time2                   (-~ -30))
          (time4                   (30 +~)))
 (defschema m68000_ds_as_timing
          :parallel
          (is-a                    strobe_timing)
          (signal1                 m68000_uds m68000_lds)
          (signal2                 m68000_as)
          (event1                 (! (or (asso m68000_uds) (asso m68000_lds))))
          (event3                 (! (not (or (asso m68000_uds)
                                              (asso m68000_lds)))))
          (event2                  (valo ! asso m68000_as))
          (event4                  (asso ! valo m68000_as))
          (time2                   (-~ 0))
          (time4                   (0 +~)))
 (defschema m68000_ds_fc_timing
          :parallel
          (is-a                    strobe_timing)
          (signal1                 m68000_uds m68000_lds)
          (signal2                 m68000_fc0 m68000_fc1 m68000_fc2)
          (event1                 (! (or (asso m68000_uds) (asso m68000_lds))))
          (event3                 (! (not (or (asso m68000_uds)
                                              (asso m68000_lds)))))
          (event2                  (! valo sig2))
          (event4                  (! ivalo sig2))
          (time2                   (-~ -60))
          (time4                   (40 +~)))
 (defschema m68000_uds_lds_timing
          :parallel
          (is-a                    logic_timing)
          (signal1                 m68000_lds m68000_uds)
          (signal2                 m68000_lds m68000_uds)
          (event1                 (! (or (asso m68000_uds) (asso m68000_lds))))
          (event3                 (! (not (or (asso m68000_uds)
                                              (asso m68000_lds)))))
          (event2                  (! asso sig2))
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t

          (event4                  (! nego sig2))
          (time2                   (0))
          (time4                   (0)))

D.2  CRL Frames for Component Instances and the Connection Reques
 (DEFSCHEMA U1
   :PARALLEL
   (INSTANCE M68000)
   (PACKAGE DIP))
 (DEFSCHEMA U2
   :PARALLEL
   (INSTANCE M6116)
   (PACKAGE DIP))
 (DEFSCHEMA U3
   :PARALLEL
   (INSTANCE M6116)
   (PACKAGE DIP))
 (DEFSCHEMA U4
   :PARALLEL
   (INSTANCE M6116)
   (PACKAGE DIP))
 (DEFSCHEMA U5
   :PARALLEL
   (INSTANCE M6116)
   (PACKAGE DIP))
 (defschema connection_request_1
   :parallel
   (is-a connection_request)
   (has-sub-request connection_sub_request_1 connection_sub_request_2
                    connection_sub_request_3 connection_sub_request_4)
   (purpose data_transfer)
   (status new)
   (component1 u1)
   (component2 u2 u3 u4 u5)
   (direction bidir)
   (usage1 (user_data sup_data user_program sup_program))
   (usage2 (T))
   (add-decode1
      (0000 (and (negi 23) (negi 22) (negi 21) (negi 20) (negi 19) (negi 18)
                (negi 17) (negi 16) (negi 15) (negi 14)
                (negi 13) (negi 12)))
      (8000 (and (negi 23) (negi 22) (negi 21) (negi 20) (negi 19) (negi 18)
                (negi 17) (negi 16) (assi 15) (negi 14)
                (negi 13) (negi 12))))
   (data-decode1 (0 7) (8 15))
   (data-decode2 (0 7))
   (add1 (1 11))
   (add2 (0 10))
   (interface-width (0 15)))
 (defschema connection_sub_request_1
   :parallel
   (is-a connection_sub_request)
   (sub-request-of )
   (component1 u1)
   (component2 u2)
   (add-decode1 0000)
   (data-decode1 (0 7))
   (data-decode2 (0 7)))
 (defschema connection_sub_request_2
   :parallel
   (is-a connection_sub_request)
   (sub-request-of )
   (component1 u1)
   (component2 u3)
   (add-decode1 0000)
   (data-decode1 (8 15))
   (data-decode2 (0 7)))
 (defschema connection_sub_request_3
   :parallel
   (is-a connection_sub_request)
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   (sub-request-of )
   (component1 u1)
   (component2 u4)
   (add-decode1 8000)
   (data-decode1 (0 7))
   (data-decode2 (0 7)))

 (defschema connection_sub_request_4
   :parallel
   (is-a connection_sub_request)
   (sub-request-of )
   (component1 u1)
   (component2 u5)
   (add-decode1 8000)
   (data-decode1 (8 15))
   (data-decode2 (0 7)))
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IB
Appendix E
VHDL Code for Design Example from Section 7.4

The VHDL code is broken into three modules: the VHDL code for the ISBs, the

and the test bench.

E.1  VHDL ISBs for Design Example

Note: some address and data signals have been deleted for brevity.
 -- START of vhdl code for IB_1_RW_CONNECT
 -- Device 1 : IB_1_RW_CONNECT
 -- Generated on: 15:00:20 8-2-1997      Version 1.0
 library IEEE;
 use IEEE.STD_LOGIC_1164.ALL;
 library DAMELIB;

 entity ISB_270_M68000_A11_INT is
         generic (
              TPD : time;
              TPD_EN : time;
              TPD_EDGE : time );
         port (
              M68000_A11_U1 : IN std_logic;
              M6116_A10_U2345 : OUT std_logic );
 end ISB_270_M68000_A11_INT;

 architecture ONLY of ISB_270_M68000_A11_INT is
    use DAMELIB.PRIMITIVE.ALL;
    for all : TRI_STATE_BUFFERP
        use entity DAMELIB.TRI_STATE_BUFFERP(pcircuit);
    signal SIG_ENAB : std_logic;
    signal SIG_ISIG : std_logic;
 begin
    PART1 : TRI_STATE_BUFFERP
       generic map (
              TPD => TPD,
              TPD_TRI => TPD_EN )
       port map (
              IN1 => SIG_ISIG,
              TRI_OUT => SIG_ENAB,
              OUT1 => M6116_A10_U2345 );
      SIG_ISIG <=
                 (
                      M68000_A11_U1
                 ) after 0 ns;
 --   Complexity was =  1
      SIG_ENAB <=
                 (
                 ‘1’
                 ) after 0 ns;
 --   Complexity was =  0
 end ONLY;
 entity ISB_250_M68000_A1_INT is
         generic (
              TPD : time;
              TPD_EN : time;
              TPD_EDGE : time );
         port (
              M68000_A1_U1 : IN std_logic;
              M6116_A0_U2345 : OUT std_logic );
 end ISB_250_M68000_A1_INT;

 architecture ONLY of ISB_250_M68000_A1_INT is
    use DAMELIB.PRIMITIVE.ALL;
    for all : TRI_STATE_BUFFERP
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        use entity DAMELIB.TRI_STATE_BUFFERP(pcircuit);
    signal SIG_ENAB : std_logic;
    signal SIG_ISIG : std_logic;
 begin
    PART1 : TRI_STATE_BUFFERP
       generic map (
              TPD => TPD,
              TPD_TRI => TPD_EN )
       port map (
              IN1 => SIG_ISIG,
              TRI_OUT => SIG_ENAB,
              OUT1 => M6116_A0_U2345 );
      SIG_ISIG <=
                 (
                      M68000_A1_U1
                 ) after 0 ns;
 --   Complexity was =  1
      SIG_ENAB <=
                 (
                 ‘1’
                 ) after 0 ns;
 --   Complexity was =  0
 end ONLY;

 entity ISB_137_M6116_D0_INT is
         generic (
              TPD : time;
              TPD_EN : time;
              TPD_EDGE : time );
         port (
              M6116_D0_U35 : IN std_logic;
              ISB_55_DATA_ACC_EN_INT_SIGNAL : IN std_logic;
              ISB_38_READ_INT_SIGNAL : IN std_logic;
              M68000_D8_U1 : OUT std_logic );
 end ISB_137_M6116_D0_INT;

 architecture ONLY of ISB_137_M6116_D0_INT is
    use DAMELIB.PRIMITIVE.ALL;
    for all : TRI_STATE_BUFFERP
        use entity DAMELIB.TRI_STATE_BUFFERP(pcircuit);
    signal SIG_ENAB : std_logic;
    signal SIG_ISIG : std_logic;
 begin
    PART1 : TRI_STATE_BUFFERP
       generic map (
              TPD => TPD,
              TPD_TRI => TPD_EN )
       port map (
              IN1 => SIG_ISIG,
              TRI_OUT => SIG_ENAB,
              OUT1 => M68000_D8_U1 );
      SIG_ISIG <=
                 (
                      M6116_D0_U35
                 ) after 0 ns;
 --   Complexity was =  1
      SIG_ENAB <=
                 (
                     (
                      ISB_55_DATA_ACC_EN_INT_SIGNAL
                     )
                 and (
                      ISB_38_READ_INT_SIGNAL
                     )
                 ) after TPD;
 --   Complexity was =  3
 end ONLY;

 entity ISB_121_M68000_D8_INT is
         generic (
              TPD : time;
              TPD_EN : time;
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              TPD_EDGE : time );
         port (
              M68000_D8_U1 : IN std_logic;
              ISB_55_DATA_ACC_EN_INT_SIGNAL : IN std_logic;
              ISB_35_WRITE_INT_SIGNAL : IN std_logic;
              M6116_D0_U35 : OUT std_logic );
 end ISB_121_M68000_D8_INT;

 architecture ONLY of ISB_121_M68000_D8_INT is
    use DAMELIB.PRIMITIVE.ALL;
    for all : TRI_STATE_BUFFERP
        use entity DAMELIB.TRI_STATE_BUFFERP(pcircuit);
    signal SIG_ENAB : std_logic;
    signal SIG_ISIG : std_logic;
 begin
    PART1 : TRI_STATE_BUFFERP
       generic map (
              TPD => TPD,
              TPD_TRI => TPD_EN )
       port map (
              IN1 => SIG_ISIG,
              TRI_OUT => SIG_ENAB,
              OUT1 => M6116_D0_U35 );
      SIG_ISIG <=
                 (
                      M68000_D8_U1
                 ) after 0 ns;
 --   Complexity was =  1
      SIG_ENAB <=
                 (
                     (
                      ISB_55_DATA_ACC_EN_INT_SIGNAL
                     )
                 and (
                      ISB_35_WRITE_INT_SIGNAL
                     )
                 ) after TPD;
 --   Complexity was =  3
 end ONLY;

 entity ISB_105_M6116_D0_INT is
         generic (
              TPD : time;
              TPD_EN : time;
              TPD_EDGE : time );
         port (
              M6116_D0_U24 : IN std_logic;
              ISB_55_DATA_ACC_EN_INT_SIGNAL : IN std_logic;
              ISB_38_READ_INT_SIGNAL : IN std_logic;
              M68000_D0_U1 : OUT std_logic );
 end ISB_105_M6116_D0_INT;

 architecture ONLY of ISB_105_M6116_D0_INT is
    use DAMELIB.PRIMITIVE.ALL;
    for all : TRI_STATE_BUFFERP
        use entity DAMELIB.TRI_STATE_BUFFERP(pcircuit);
    signal SIG_ENAB : std_logic;
    signal SIG_ISIG : std_logic;
 begin
    PART1 : TRI_STATE_BUFFERP
       generic map (
              TPD => TPD,
              TPD_TRI => TPD_EN )
       port map (
              IN1 => SIG_ISIG,
              TRI_OUT => SIG_ENAB,
              OUT1 => M68000_D0_U1 );
      SIG_ISIG <=
                 (
                      M6116_D0_U24
                 ) after 0 ns;
 --   Complexity was =  1
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      SIG_ENAB <=
                 (
                     (
                      ISB_55_DATA_ACC_EN_INT_SIGNAL
                     )
                 and (
                      ISB_38_READ_INT_SIGNAL
                     )
                 ) after TPD;
 --   Complexity was =  3
 end ONLY;

 entity ISB_89_M68000_D0_INT is
         generic (
              TPD : time;
              TPD_EN : time;
              TPD_EDGE : time );
         port (
              M68000_D0_U1 : IN std_logic;
              ISB_55_DATA_ACC_EN_INT_SIGNAL : IN std_logic;
              ISB_35_WRITE_INT_SIGNAL : IN std_logic;
              M6116_D0_U24 : OUT std_logic );
 end ISB_89_M68000_D0_INT;

 architecture ONLY of ISB_89_M68000_D0_INT is
    use DAMELIB.PRIMITIVE.ALL;
    for all : TRI_STATE_BUFFERP
        use entity DAMELIB.TRI_STATE_BUFFERP(pcircuit);
    signal SIG_ENAB : std_logic;
    signal SIG_ISIG : std_logic;
 begin
    PART1 : TRI_STATE_BUFFERP
       generic map (
              TPD => TPD,
              TPD_TRI => TPD_EN )
       port map (
              IN1 => SIG_ISIG,
              TRI_OUT => SIG_ENAB,
              OUT1 => M6116_D0_U24 );
      SIG_ISIG <=
                 (
                      M68000_D0_U1
                 ) after 0 ns;
 --   Complexity was =  1
      SIG_ENAB <=
                 (
                     (
                      ISB_55_DATA_ACC_EN_INT_SIGNAL
                     )
                 and (
                      ISB_35_WRITE_INT_SIGNAL
                     )
                 ) after TPD;
 --   Complexity was =  3
 end ONLY;

 entity ISB_71_M6116_WR_INT is
         generic (
              TPD : time;
              TPD_EN : time;
              TPD_EDGE : time );
         port (
              ISB_35_WRITE_INT_SIGNAL : IN std_logic;
              M6116_WR_U2345 : OUT std_logic );
 end ISB_71_M6116_WR_INT;

 architecture ONLY of ISB_71_M6116_WR_INT is
 begin
      M6116_WR_U2345 <=
             not (
                      ISB_35_WRITE_INT_SIGNAL
                 ) after TPD;
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 --   Complexity was =  2
 end ONLY;

 entity ISB_69_M6116_CE_INT_0_0_7 is
         generic (
              TPD : time;
              TPD_EN : time;
              TPD_EDGE : time );
         port (
              ISB_44_TYPE_INT_SIGNAL : IN std_logic;
              ISB_16_ADD_INT_SIGNAL_0 : IN std_logic;
              ISB_10_WORD_INT_SIGNAL_0_7 : IN std_logic;
              ISB_4_REQUEST_INT_SIGNAL : IN std_logic;
              M6116_CE_U2 : OUT std_logic );
 end ISB_69_M6116_CE_INT_0_0_7;

 architecture ONLY of ISB_69_M6116_CE_INT_0_0_7 is
 begin
      M6116_CE_U2 <=
             not (
                     (
                      ISB_44_TYPE_INT_SIGNAL
                     )
                 and (
                      ISB_16_ADD_INT_SIGNAL_0
                     )
                 and (
                      ISB_10_WORD_INT_SIGNAL_0_7
                     )
                 and (
                      ISB_4_REQUEST_INT_SIGNAL
                     )
                 ) after TPD;
 --   Complexity was =  6
 end ONLY;

 entity ISB_69_M6116_CE_INT_0_8_15 is
         generic (
              TPD : time;
              TPD_EN : time;
              TPD_EDGE : time );
         port (
              ISB_44_TYPE_INT_SIGNAL : IN std_logic;
              ISB_16_ADD_INT_SIGNAL_0 : IN std_logic;
              ISB_10_WORD_INT_SIGNAL_8_15 : IN std_logic;
              ISB_4_REQUEST_INT_SIGNAL : IN std_logic;
              M6116_CE_U3 : OUT std_logic );
 end ISB_69_M6116_CE_INT_0_8_15;

 architecture ONLY of ISB_69_M6116_CE_INT_0_8_15 is
 begin
      M6116_CE_U3 <=
             not (
                     (
                      ISB_44_TYPE_INT_SIGNAL
                     )
                 and (
                      ISB_16_ADD_INT_SIGNAL_0
                     )
                 and (
                      ISB_10_WORD_INT_SIGNAL_8_15
                     )
                 and (
                      ISB_4_REQUEST_INT_SIGNAL
                     )
                 ) after TPD;
 --   Complexity was =  6
 end ONLY;

 entity ISB_69_M6116_CE_INT_8000_0_7 is
         generic (
              TPD : time;
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              TPD_EN : time;
              TPD_EDGE : time );
         port (
              ISB_44_TYPE_INT_SIGNAL : IN std_logic;
              ISB_16_ADD_INT_SIGNAL_8000 : IN std_logic;
              ISB_10_WORD_INT_SIGNAL_0_7 : IN std_logic;
              ISB_4_REQUEST_INT_SIGNAL : IN std_logic;
              M6116_CE_U4 : OUT std_logic );
 end ISB_69_M6116_CE_INT_8000_0_7;

 architecture ONLY of ISB_69_M6116_CE_INT_8000_0_7 is
 begin
      M6116_CE_U4 <=
             not (
                     (
                      ISB_44_TYPE_INT_SIGNAL
                     )
                 and (
                      ISB_16_ADD_INT_SIGNAL_8000
                     )
                 and (
                      ISB_10_WORD_INT_SIGNAL_0_7
                     )
                 and (
                      ISB_4_REQUEST_INT_SIGNAL
                     )
                 ) after TPD;
 --   Complexity was =  6
 end ONLY;

 library IEEE;
 use IEEE.STD_LOGIC_1164.ALL;
 library DAMELIB;

 entity ISB_69_M6116_CE_INT_8000_8_15 is
         generic (
              TPD : time;
              TPD_EN : time;
              TPD_EDGE : time );
         port (
              ISB_44_TYPE_INT_SIGNAL : IN std_logic;
              ISB_16_ADD_INT_SIGNAL_8000 : IN std_logic;
              ISB_10_WORD_INT_SIGNAL_8_15 : IN std_logic;
              ISB_4_REQUEST_INT_SIGNAL : IN std_logic;
              M6116_CE_U5 : OUT std_logic );
 end ISB_69_M6116_CE_INT_8000_8_15;

 architecture ONLY of ISB_69_M6116_CE_INT_8000_8_15 is
 begin
      M6116_CE_U5 <=
             not (
                     (
                      ISB_44_TYPE_INT_SIGNAL
                     )
                 and (
                      ISB_16_ADD_INT_SIGNAL_8000
                     )
                 and (
                      ISB_10_WORD_INT_SIGNAL_8_15
                     )
                 and (
                      ISB_4_REQUEST_INT_SIGNAL
                     )
                 ) after TPD;
 --   Complexity was =  6
 end ONLY;

 entity ISB_67_M6116_OE_INT is
         generic (
              TPD : time;
              TPD_EN : time;
              TPD_EDGE : time );
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         port (
              ISB_38_READ_INT_SIGNAL : IN std_logic;
              M6116_OE_U2345 : OUT std_logic );
 end ISB_67_M6116_OE_INT;

 architecture ONLY of ISB_67_M6116_OE_INT is
 begin
      M6116_OE_U2345 <=
             not (
                      ISB_38_READ_INT_SIGNAL
                 ) after TPD;
 --   Complexity was =  2
 end ONLY;

 entity ISB_65_M68000_DTAK_INT is
         generic (
              TPD : time;
              TPD_EN : time;
              TPD_EDGE : time );
         port (
              ISB_61_DELAY_INT_SIGNAL : IN std_logic;
              M68000_DTAK_U1 : OUT std_logic );
 end ISB_65_M68000_DTAK_INT;

 architecture ONLY of ISB_65_M68000_DTAK_INT is
    use DAMELIB.PRIMITIVE.ALL;
    for all : OC_BUFFERP
        use entity DAMELIB.OC_BUFFERP(pcircuit);
    signal SIG_OSIG : std_logic;
 begin
      SIG_OSIG <=
             not (
                      ISB_61_DELAY_INT_SIGNAL
                 ) after TPD;
 --   Complexity was =  2
    PART1_OC : OC_BUFFERP
       generic map (
              TPD => TPD )
       port map (
              IN1 => SIG_OSIG,
              OUT1 => M68000_DTAK_U1 );
 end ONLY;

 entity ISB_61_DELAY_INT is
         generic (
              TPD : time;
              TPD_EN : time;
              TPD_EDGE : time );
         port (
              ISB_58_ACC_DEL_INT_SIGNAL_S_1 : IN std_logic;
              ISB_61_DELAY_INT_SIGNAL : OUT std_logic );
 end ISB_61_DELAY_INT;

 architecture ONLY of ISB_61_DELAY_INT is
 begin
      ISB_61_DELAY_INT_SIGNAL <=
                 (
                      ISB_58_ACC_DEL_INT_SIGNAL_S_1
                 ) after 0 ns;
 --   Complexity was =  1
 end ONLY;

 entity ISB_63_CONV_SS is
         generic (
              TPD : time;
              TPD_EN : time;
              TPD_EDGE : time );
         port (
              ISB_58_ACC_DEL_INT_SIGNAL : IN std_logic;
              SYS_RESET : IN std_logic;
              SYS_CLOCK : IN std_logic;
              ISB_58_ACC_DEL_INT_SIGNAL_S_1 : OUT std_logic );
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 end ISB_63_CONV_SS;

 architecture ONLY of ISB_63_CONV_SS is
    use DAMELIB.PRIMITIVE.ALL;
    for all : LEADING_EDGE_DELAYP
        use entity DAMELIB.LEADING_EDGE_DELAYP(DEL100NS);
    signal SIG_ISIG : std_logic;
    signal SIG_OSIG : std_logic;
 begin
    PART1 : LEADING_EDGE_DELAYP
       generic map (
              TPD_EDGE => 76 ns,
              TPD => TPD )
       port map (
              IN1 => SIG_ISIG,
              SYS_RESET => SYS_RESET,
              SYS_CLOCK => SYS_CLOCK,
              OUT1 => SIG_OSIG );
      SIG_ISIG <=
                 (
                      ISB_58_ACC_DEL_INT_SIGNAL
                 ) after 0 ns;
 --   Complexity was =  1
      ISB_58_ACC_DEL_INT_SIGNAL_S_1 <=
                 (
                      SIG_OSIG
                 ) after 0 ns;
 --   Complexity was =  1
 end ONLY;

 entity ISB_58_ACC_DEL_INT is
         generic (
              TPD : time;
              TPD_EN : time;
              TPD_EDGE : time );
         port (
              ISB_49_ACCESS_INT_SIGNAL : IN std_logic;
              ISB_58_ACC_DEL_INT_SIGNAL : OUT std_logic );
 end ISB_58_ACC_DEL_INT;

 architecture ONLY of ISB_58_ACC_DEL_INT is
 begin
      ISB_58_ACC_DEL_INT_SIGNAL <=
                 (
                      ISB_49_ACCESS_INT_SIGNAL
                 ) after 0 ns;
 --   Complexity was =  1
 end ONLY;

 library IEEE;
 use IEEE.STD_LOGIC_1164.ALL;
 library DAMELIB;

 entity ISB_55_DATA_ACC_EN_INT is
         generic (
              TPD : time;
              TPD_EN : time;
              TPD_EDGE : time );
         port (
              ISB_49_ACCESS_INT_SIGNAL : IN std_logic;
              ISB_55_DATA_ACC_EN_INT_SIGNAL : OUT std_logic );
 end ISB_55_DATA_ACC_EN_INT;

 architecture ONLY of ISB_55_DATA_ACC_EN_INT is
 begin
      ISB_55_DATA_ACC_EN_INT_SIGNAL <=
                 (
                      ISB_49_ACCESS_INT_SIGNAL
                 ) after 0 ns;
 --   Complexity was =  1
 end ONLY;
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 entity ISB_49_ACCESS_INT is
         generic (
              TPD : time;
              TPD_EN : time;
              TPD_EDGE : time );
         port (
              ISB_31_BLOCK_ADD_INT_SIGNAL : IN std_logic;
              ISB_4_REQUEST_INT_SIGNAL : IN std_logic;
              ISB_44_TYPE_INT_SIGNAL : IN std_logic;
              ISB_49_ACCESS_INT_SIGNAL : OUT std_logic );
 end ISB_49_ACCESS_INT;

 architecture ONLY of ISB_49_ACCESS_INT is
 begin
      ISB_49_ACCESS_INT_SIGNAL <=
                 (
                     (
                      ISB_31_BLOCK_ADD_INT_SIGNAL
                     )
                 and (
                      ISB_4_REQUEST_INT_SIGNAL
                     )
                 and (
                      ISB_44_TYPE_INT_SIGNAL
                     )
                 ) after TPD;
 --   Complexity was =  4
 end ONLY;

 entity ISB_44_TYPE_INT is
         generic (
              TPD : time;
              TPD_EN : time;
              TPD_EDGE : time );
         port (
              M68000_FC2_U1 : IN std_logic;
              M68000_FC1_U1 : IN std_logic;
              M68000_FC0_U1 : IN std_logic;
              ISB_44_TYPE_INT_SIGNAL : OUT std_logic );
 end ISB_44_TYPE_INT;

 architecture ONLY of ISB_44_TYPE_INT is
 begin
      ISB_44_TYPE_INT_SIGNAL <=
                 (
                     (
                     (
                       not M68000_FC2_U1
                     )
                 and (
                       not M68000_FC1_U1
                     )
                 and (
                      M68000_FC0_U1
                     )
                     )
                 or (
                     (
                      M68000_FC2_U1
                     )
                 and (
                       not M68000_FC1_U1
                     )
                 and (
                      M68000_FC0_U1
                     )
                    )
                 or (
                     (
                       not M68000_FC2_U1
                     )
                 and (
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                      M68000_FC1_U1
                     )
                 and (
                       not M68000_FC0_U1
                     )
                    )
                 or (
                     (
                      M68000_FC2_U1
                     )
                 and (
                      M68000_FC1_U1
                     )
                 and (
                       not M68000_FC0_U1
                     )
                    )
                 ) after 3*TPD;
 --   Complexity was =  17
 end ONLY;

 entity ISB_38_READ_INT is
         generic (
              TPD : time;
              TPD_EN : time;
              TPD_EDGE : time );
         port (
              M68000_RW_U1 : IN std_logic;
              ISB_38_READ_INT_SIGNAL : OUT std_logic );
 end ISB_38_READ_INT;

 architecture ONLY of ISB_38_READ_INT is
 begin
      ISB_38_READ_INT_SIGNAL <=
                 (
                      M68000_RW_U1
                 ) after 0 ns;
 --   Complexity was =  1
 end ONLY;

 entity ISB_35_WRITE_INT is
         generic (
              TPD : time;
              TPD_EN : time;
              TPD_EDGE : time );
         port (
              M68000_RW_U1 : IN std_logic;
              ISB_35_WRITE_INT_SIGNAL : OUT std_logic );
 end ISB_35_WRITE_INT;

 architecture ONLY of ISB_35_WRITE_INT is
 begin
      ISB_35_WRITE_INT_SIGNAL <=
                 (
                       not M68000_RW_U1
                 ) after TPD;
 --   Complexity was =  2
 end ONLY;

 library IEEE;
 use IEEE.STD_LOGIC_1164.ALL;
 library DAMELIB;

 entity ISB_31_BLOCK_ADD_INT is
         generic (
              TPD : time;
              TPD_EN : time;
              TPD_EDGE : time );
         port (
              ISB_16_ADD_INT_SIGNAL_8000 : IN std_logic;
              ISB_16_ADD_INT_SIGNAL_0 : IN std_logic;
              ISB_31_BLOCK_ADD_INT_SIGNAL : OUT std_logic );
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 end ISB_31_BLOCK_ADD_INT;

 architecture ONLY of ISB_31_BLOCK_ADD_INT is
 begin
      ISB_31_BLOCK_ADD_INT_SIGNAL <=
                 (
                     (
                      ISB_16_ADD_INT_SIGNAL_8000
                     )
                 or (
                      ISB_16_ADD_INT_SIGNAL_0
                    )
                 ) after TPD;
 --   Complexity was =  3
 end ONLY;

 entity ISB_16_ADD_INT is
         generic (
              TPD : time;
              TPD_EN : time;
              TPD_EDGE : time );
         port (
              M68000_A23_U1 : IN std_logic;
              M68000_A22_U1 : IN std_logic;
              M68000_A21_U1 : IN std_logic;
              M68000_A20_U1 : IN std_logic;
              M68000_A19_U1 : IN std_logic;
              M68000_A18_U1 : IN std_logic;
              M68000_A17_U1 : IN std_logic;
              M68000_A16_U1 : IN std_logic;
              M68000_A15_U1 : IN std_logic;
              M68000_A14_U1 : IN std_logic;
              M68000_A13_U1 : IN std_logic;
              M68000_A12_U1 : IN std_logic;
              ISB_16_ADD_INT_SIGNAL_8000 : OUT std_logic;
              ISB_16_ADD_INT_SIGNAL_0 : OUT std_logic );
 end ISB_16_ADD_INT;

 architecture ONLY of ISB_16_ADD_INT is
 begin
      ISB_16_ADD_INT_SIGNAL_8000 <=
                 (
                     (
                       not M68000_A23_U1
                     )
                 and (
                       not M68000_A22_U1
                     )
                 and (
                       not M68000_A21_U1
                     )
                 and (
                       not M68000_A20_U1
                     )
                 and (
                       not M68000_A19_U1
                     )
                 and (
                       not M68000_A18_U1
                     )
                 and (
                       not M68000_A17_U1
                     )
                 and (
                       not M68000_A16_U1
                     )
                 and (
                      M68000_A15_U1
                     )
                 and (
                       not M68000_A14_U1
                     )
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                 and (
                       not M68000_A13_U1
                     )
                 and (
                       not M68000_A12_U1
                     )
                 ) after 3*TPD;
 --   Complexity was =  14
      ISB_16_ADD_INT_SIGNAL_0 <=
                 (
                     (
                       not M68000_A23_U1
                     )
                 and (
                       not M68000_A22_U1
                     )
                 and (
                       not M68000_A21_U1
                     )
                 and (
                       not M68000_A20_U1
                     )
                 and (
                       not M68000_A19_U1
                     )
                 and (
                       not M68000_A18_U1
                     )
                 and (
                       not M68000_A17_U1
                     )
                 and (
                       not M68000_A16_U1
                     )
                 and (
                       not M68000_A15_U1
                     )
                 and (
                       not M68000_A14_U1
                     )
                 and (
                       not M68000_A13_U1
                     )
                 and (
                       not M68000_A12_U1
                     )
                 ) after 3*TPD;
 --   Complexity was =  14
 end ONLY;

 entity ISB_10_WORD_INT is
         generic (
              TPD : time;
              TPD_EN : time;
              TPD_EDGE : time );
         port (
              M68000_UDS_U1 : IN std_logic;
              M68000_LDS_U1 : IN std_logic;
              ISB_10_WORD_INT_SIGNAL_8_15 : OUT std_logic;
              ISB_10_WORD_INT_SIGNAL_0_7 : OUT std_logic );
 end ISB_10_WORD_INT;

 architecture ONLY of ISB_10_WORD_INT is
 begin
      ISB_10_WORD_INT_SIGNAL_8_15 <=
                 (
                       not M68000_UDS_U1
                 ) after TPD;
 --   Complexity was =  2
      ISB_10_WORD_INT_SIGNAL_0_7 <=
                 (
                       not M68000_LDS_U1
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                 ) after TPD;
 --   Complexity was =  2
 end ONLY;

 entity ISB_4_REQUEST_INT is
         generic (
              TPD : time;
              TPD_EN : time;
              TPD_EDGE : time );
         port (
              M68000_AS_U1 : IN std_logic;
              M68000_UDS_U1 : IN std_logic;
              M68000_LDS_U1 : IN std_logic;
              ISB_4_REQUEST_INT_SIGNAL : OUT std_logic );
 end ISB_4_REQUEST_INT;

 architecture ONLY of ISB_4_REQUEST_INT is
 begin
      ISB_4_REQUEST_INT_SIGNAL <=
                 (( not M68000_AS_U1 ) and

 (( not M68000_UDS_U1 ) or ( not M68000_LDS_U1 ))
                 ) after TPD;
 --   Complexity was =  6
 end ONLY;

 -- END of vhdl code for IB_1_RW_CONNECT
 -- Generated on: 15:02:57 8-2-1997      Version 1.0

E.2  VHDL IB for Design Example

Note: some address and data signals have been deleted for brevity.
 -- START of vhdl code for IB_1_RW_CONNECT
 -- Device 1 : IB_1_RW_CONNECT
 -- Generated on: 15:00:20 8-2-1997      Version 1.0

 library IEEE;
 use IEEE.STD_LOGIC_1164.ALL;
 library DAMELIB;

 entity IB_1_RW_CONNECT is
         generic (
              TPD : time;
              TPD_EN : time;
              TPD_EDGE : time );
         port (
              M68000_AS_U1 : IN std_logic;
              M68000_LDS_U1 : IN std_logic;
              M68000_UDS_U1 : IN std_logic;
              M68000_A12_U1 : IN std_logic;
              M68000_A23_U1 : IN std_logic;
              M68000_RW_U1 : IN std_logic;
              M68000_FC0_U1 : IN std_logic;
              M68000_FC1_U1 : IN std_logic;
              M68000_FC2_U1 : IN std_logic;
              SYS_CLOCK : IN std_logic;
              SYS_RESET : IN std_logic;
              M68000_A1_U1 : IN std_logic;
              M68000_A11_U1 : IN std_logic;
              M68000_DTAK_U1 : OUT std_logic;
              M6116_OE_U2345 : OUT std_logic;
              M6116_CE_U5 : OUT std_logic;
              M6116_CE_U4 : OUT std_logic;
              M6116_CE_U3 : OUT std_logic;
              M6116_CE_U2 : OUT std_logic;
              M6116_WR_U2345 : OUT std_logic;
              M6116_A0_U2345 : OUT std_logic;
              M6116_A10_U2345 : OUT std_logic;
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              M68000_D0_U1 : INOUT std_logic;
              M6116_D0_U24 : INOUT std_logic;
              M68000_D8_U1 : INOUT std_logic;
              M6116_D0_U35 : INOUT std_logic);
 end IB_1_RW_CONNECT;

 architecture ONLY of IB_1_RW_CONNECT is
    use WORK.IB_IB_1_RW_CONNECT_PACKAGE.ALL;
    signal ISB_4_REQUEST_INT_SIGNAL : std_logic;
    signal ISB_10_WORD_INT_SIGNAL_8_15 : std_logic;
    signal ISB_10_WORD_INT_SIGNAL_0_7 : std_logic;
    signal ISB_16_ADD_INT_SIGNAL_8000 : std_logic;
    signal ISB_16_ADD_INT_SIGNAL_0 : std_logic;
    signal ISB_31_BLOCK_ADD_INT_SIGNAL : std_logic;
    signal ISB_35_WRITE_INT_SIGNAL : std_logic;
    signal ISB_38_READ_INT_SIGNAL : std_logic;
    signal ISB_44_TYPE_INT_SIGNAL : std_logic;
    signal ISB_49_ACCESS_INT_SIGNAL : std_logic;
    signal ISB_55_DATA_ACC_EN_INT_SIGNAL : std_logic;
    signal ISB_58_ACC_DEL_INT_SIGNAL : std_logic;
    signal ISB_58_ACC_DEL_INT_SIGNAL_S_1 : std_logic;
    signal ISB_61_DELAY_INT_SIGNAL : std_logic;
 begin
    PART_1 : ISB_4_REQUEST_INT
       generic map (
              TPD => TPD,
              TPD_EN => TPD_EN,
              TPD_EDGE => TPD_EDGE )
       port map (
              M68000_AS_U1 => M68000_AS_U1,
              M68000_UDS_U1 => M68000_UDS_U1,
              M68000_LDS_U1 => M68000_LDS_U1,
              ISB_4_REQUEST_INT_SIGNAL => ISB_4_REQUEST_INT_SIGNAL );
    PART_2 : ISB_10_WORD_INT
       generic map (
              TPD => TPD,
              TPD_EN => TPD_EN,
              TPD_EDGE => TPD_EDGE )
       port map (
              M68000_UDS_U1 => M68000_UDS_U1,
              M68000_LDS_U1 => M68000_LDS_U1,
              ISB_10_WORD_INT_SIGNAL_8_15 => ISB_10_WORD_INT_SIGNAL_8_15,
              ISB_10_WORD_INT_SIGNAL_0_7 => ISB_10_WORD_INT_SIGNAL_0_7 );
    PART_3 : ISB_16_ADD_INT
       generic map (
              TPD => TPD,
              TPD_EN => TPD_EN,
              TPD_EDGE => TPD_EDGE )
       port map (
              M68000_A23_U1 => M68000_A23_U1,
              M68000_A22_U1 => M68000_A22_U1,
              M68000_A21_U1 => M68000_A21_U1,
              M68000_A20_U1 => M68000_A20_U1,
              M68000_A19_U1 => M68000_A19_U1,
              M68000_A18_U1 => M68000_A18_U1,
              M68000_A17_U1 => M68000_A17_U1,
              M68000_A16_U1 => M68000_A16_U1,
              M68000_A15_U1 => M68000_A15_U1,
              M68000_A14_U1 => M68000_A14_U1,
              M68000_A13_U1 => M68000_A13_U1,
              M68000_A12_U1 => M68000_A12_U1,
              ISB_16_ADD_INT_SIGNAL_8000 => ISB_16_ADD_INT_SIGNAL_8000,
              ISB_16_ADD_INT_SIGNAL_0 => ISB_16_ADD_INT_SIGNAL_0 );
    PART_4 : ISB_31_BLOCK_ADD_INT
       generic map (
              TPD => TPD,
              TPD_EN => TPD_EN,
              TPD_EDGE => TPD_EDGE )
       port map (
              ISB_16_ADD_INT_SIGNAL_8000 => ISB_16_ADD_INT_SIGNAL_8000,
              ISB_16_ADD_INT_SIGNAL_0 => ISB_16_ADD_INT_SIGNAL_0,
              ISB_31_BLOCK_ADD_INT_SIGNAL => ISB_31_BLOCK_ADD_INT_SIGNAL );
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    PART_5 : ISB_35_WRITE_INT
       generic map (
              TPD => TPD,
              TPD_EN => TPD_EN,
              TPD_EDGE => TPD_EDGE )
       port map (
              M68000_RW_U1 => M68000_RW_U1,
              ISB_35_WRITE_INT_SIGNAL => ISB_35_WRITE_INT_SIGNAL );
    PART_6 : ISB_38_READ_INT
       generic map (
              TPD => TPD,
              TPD_EN => TPD_EN,
              TPD_EDGE => TPD_EDGE )
       port map (
              M68000_RW_U1 => M68000_RW_U1,
              ISB_38_READ_INT_SIGNAL => ISB_38_READ_INT_SIGNAL );
    PART_7 : ISB_44_TYPE_INT
       generic map (
              TPD => TPD,
              TPD_EN => TPD_EN,
              TPD_EDGE => TPD_EDGE )
       port map (
              M68000_FC2_U1 => M68000_FC2_U1,
              M68000_FC1_U1 => M68000_FC1_U1,
              M68000_FC0_U1 => M68000_FC0_U1,
              ISB_44_TYPE_INT_SIGNAL => ISB_44_TYPE_INT_SIGNAL );
    PART_8 : ISB_49_ACCESS_INT
       generic map (
              TPD => TPD,
              TPD_EN => TPD_EN,
              TPD_EDGE => TPD_EDGE )
       port map (
              ISB_31_BLOCK_ADD_INT_SIGNAL => ISB_31_BLOCK_ADD_INT_SIGNAL,
              ISB_4_REQUEST_INT_SIGNAL => ISB_4_REQUEST_INT_SIGNAL,
              ISB_44_TYPE_INT_SIGNAL => ISB_44_TYPE_INT_SIGNAL,
              ISB_49_ACCESS_INT_SIGNAL => ISB_49_ACCESS_INT_SIGNAL );
    PART_9 : ISB_55_DATA_ACC_EN_INT
       generic map (
              TPD => TPD,
              TPD_EN => TPD_EN,
              TPD_EDGE => TPD_EDGE )
       port map (
              ISB_49_ACCESS_INT_SIGNAL => ISB_49_ACCESS_INT_SIGNAL,
              ISB_55_DATA_ACC_EN_INT_SIGNAL => ISB_55_DATA_ACC_EN_INT_SIGNAL );
    PART_10 : ISB_58_ACC_DEL_INT
       generic map (
              TPD => TPD,
              TPD_EN => TPD_EN,
              TPD_EDGE => TPD_EDGE )
       port map (
              ISB_49_ACCESS_INT_SIGNAL => ISB_49_ACCESS_INT_SIGNAL,
              ISB_58_ACC_DEL_INT_SIGNAL => ISB_58_ACC_DEL_INT_SIGNAL );
    PART_11 : ISB_63_CONV_SS
       generic map (
              TPD => TPD,
              TPD_EN => TPD_EN,
              TPD_EDGE => TPD_EDGE )
       port map (
              ISB_58_ACC_DEL_INT_SIGNAL => ISB_58_ACC_DEL_INT_SIGNAL,
              SYS_RESET => SYS_RESET,
              SYS_CLOCK => SYS_CLOCK,
              ISB_58_ACC_DEL_INT_SIGNAL_S_1 => ISB_58_ACC_DEL_INT_SIGNAL_S_1 );
    PART_12 : ISB_61_DELAY_INT
       generic map (
              TPD => TPD,
              TPD_EN => TPD_EN,
              TPD_EDGE => TPD_EDGE )
       port map (
              ISB_58_ACC_DEL_INT_SIGNAL_S_1 => ISB_58_ACC_DEL_INT_SIGNAL_S_1,
              ISB_61_DELAY_INT_SIGNAL => ISB_61_DELAY_INT_SIGNAL );
    PART_13 : ISB_65_M68000_DTAK_INT
       generic map (
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              TPD => TPD,
              TPD_EN => TPD_EN,
              TPD_EDGE => TPD_EDGE )
       port map (
              ISB_61_DELAY_INT_SIGNAL => ISB_61_DELAY_INT_SIGNAL,
              M68000_DTAK_U1 => M68000_DTAK_U1 );
    PART_14 : ISB_67_M6116_OE_INT
       generic map (
              TPD => TPD,
              TPD_EN => TPD_EN,
              TPD_EDGE => TPD_EDGE )
       port map (
              ISB_38_READ_INT_SIGNAL => ISB_38_READ_INT_SIGNAL,
              M6116_OE_U2345 => M6116_OE_U2345 );
    PART_15 : ISB_69_M6116_CE_INT_8000_8_15
       generic map (
              TPD => TPD,
              TPD_EN => TPD_EN,
              TPD_EDGE => TPD_EDGE )
       port map (
              ISB_44_TYPE_INT_SIGNAL => ISB_44_TYPE_INT_SIGNAL,
              ISB_16_ADD_INT_SIGNAL_8000 => ISB_16_ADD_INT_SIGNAL_8000,
              ISB_10_WORD_INT_SIGNAL_8_15 => ISB_10_WORD_INT_SIGNAL_8_15,
              ISB_4_REQUEST_INT_SIGNAL => ISB_4_REQUEST_INT_SIGNAL,
              M6116_CE_U5 => M6116_CE_U5 );
    PART_16 : ISB_69_M6116_CE_INT_8000_0_7
       generic map (
              TPD => TPD,
              TPD_EN => TPD_EN,
              TPD_EDGE => TPD_EDGE )
       port map (
              ISB_44_TYPE_INT_SIGNAL => ISB_44_TYPE_INT_SIGNAL,
              ISB_16_ADD_INT_SIGNAL_8000 => ISB_16_ADD_INT_SIGNAL_8000,
              ISB_10_WORD_INT_SIGNAL_0_7 => ISB_10_WORD_INT_SIGNAL_0_7,
              ISB_4_REQUEST_INT_SIGNAL => ISB_4_REQUEST_INT_SIGNAL,
              M6116_CE_U4 => M6116_CE_U4 );
    PART_17 : ISB_69_M6116_CE_INT_0_8_15
       generic map (
              TPD => TPD,
              TPD_EN => TPD_EN,
              TPD_EDGE => TPD_EDGE )
       port map (
              ISB_44_TYPE_INT_SIGNAL => ISB_44_TYPE_INT_SIGNAL,
              ISB_16_ADD_INT_SIGNAL_0 => ISB_16_ADD_INT_SIGNAL_0,
              ISB_10_WORD_INT_SIGNAL_8_15 => ISB_10_WORD_INT_SIGNAL_8_15,
              ISB_4_REQUEST_INT_SIGNAL => ISB_4_REQUEST_INT_SIGNAL,
              M6116_CE_U3 => M6116_CE_U3 );
    PART_18 : ISB_69_M6116_CE_INT_0_0_7
       generic map (
              TPD => TPD,
              TPD_EN => TPD_EN,
              TPD_EDGE => TPD_EDGE )
       port map (
              ISB_44_TYPE_INT_SIGNAL => ISB_44_TYPE_INT_SIGNAL,
              ISB_16_ADD_INT_SIGNAL_0 => ISB_16_ADD_INT_SIGNAL_0,
              ISB_10_WORD_INT_SIGNAL_0_7 => ISB_10_WORD_INT_SIGNAL_0_7,
              ISB_4_REQUEST_INT_SIGNAL => ISB_4_REQUEST_INT_SIGNAL,
              M6116_CE_U2 => M6116_CE_U2 );
    PART_19 : ISB_71_M6116_WR_INT
       generic map (
              TPD => TPD,
              TPD_EN => TPD_EN,
              TPD_EDGE => TPD_EDGE )
       port map (
              ISB_35_WRITE_INT_SIGNAL => ISB_35_WRITE_INT_SIGNAL,
              M6116_WR_U2345 => M6116_WR_U2345 );
    PART_20 : ISB_89_M68000_D0_INT
       generic map (
              TPD => TPD,
              TPD_EN => TPD_EN,
              TPD_EDGE => TPD_EDGE )
       port map (
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              M68000_D0_U1 => M68000_D0_U1,
              ISB_55_DATA_ACC_EN_INT_SIGNAL => ISB_55_DATA_ACC_EN_INT_SIGNAL,
              ISB_35_WRITE_INT_SIGNAL => ISB_35_WRITE_INT_SIGNAL,
              M6116_D0_U24 => M6116_D0_U24 );
    PART_28 : ISB_105_M6116_D0_INT
       generic map (
              TPD => TPD,
              TPD_EN => TPD_EN,
              TPD_EDGE => TPD_EDGE )
       port map (
              M6116_D0_U24 => M6116_D0_U24,
              ISB_55_DATA_ACC_EN_INT_SIGNAL => ISB_55_DATA_ACC_EN_INT_SIGNAL,
              ISB_38_READ_INT_SIGNAL => ISB_38_READ_INT_SIGNAL,
              M68000_D0_U1 => M68000_D0_U1 );
    PART_36 : ISB_121_M68000_D8_INT
       generic map (
              TPD => TPD,
              TPD_EN => TPD_EN,
              TPD_EDGE => TPD_EDGE )
       port map (
              M68000_D8_U1 => M68000_D8_U1,
              ISB_55_DATA_ACC_EN_INT_SIGNAL => ISB_55_DATA_ACC_EN_INT_SIGNAL,
              ISB_35_WRITE_INT_SIGNAL => ISB_35_WRITE_INT_SIGNAL,
              M6116_D0_U35 => M6116_D0_U35 );
    PART_44 : ISB_137_M6116_D0_INT
       generic map (
              TPD => TPD,
              TPD_EN => TPD_EN,
              TPD_EDGE => TPD_EDGE )
       port map (
              M6116_D0_U35 => M6116_D0_U35,
              ISB_55_DATA_ACC_EN_INT_SIGNAL => ISB_55_DATA_ACC_EN_INT_SIGNAL,
              ISB_38_READ_INT_SIGNAL => ISB_38_READ_INT_SIGNAL,
              M68000_D8_U1 => M68000_D8_U1 );
    PART_52 : ISB_250_M68000_A1_INT
       generic map (
              TPD => TPD,
              TPD_EN => TPD_EN,
              TPD_EDGE => TPD_EDGE )
       port map (
              M68000_A1_U1 => M68000_A1_U1,
              M6116_A0_U2345 => M6116_A0_U2345 );
    PART_62 : ISB_270_M68000_A11_INT
       generic map (
              TPD => TPD,
              TPD_EN => TPD_EN,
              TPD_EDGE => TPD_EDGE )
       port map (
              M68000_A11_U1 => M68000_A11_U1,
              M6116_A10_U2345 => M6116_A10_U2345 );
 end ONLY;

 -- END of vhdl code for IB_1_RW_CONNECT
 -- Generated on: 15:02:57 8-2-1997      Version 1.0

E.3  VHDL Test Bench for Design Example

Note: some address and data signals have been deleted for brevity.
 -- START of vhdl code for COMPLETE
 -- Device 1 : COMPLETE
 -- Generated on: 15:02:59 8-2-1997      Version 1.0
 library IEEE;
 use IEEE.STD_LOGIC_1164.ALL;
 library DAMELIB;

 entity TEST_BENCH_SYSTEM is
 end TEST_BENCH_SYSTEM;
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 architecture TEST_BENCH_SYSTEM_COMPLETE of TEST_BENCH_SYSTEM is
    constant SCALE : TIME := 1 ns;
    use WORK.INTERFACE_SYSTEM_BLOCK_PACKAGE.ALL;
    signal M68000_AS_U1 : std_logic;
    signal M68000_LDS_U1 : std_logic;
    signal M68000_UDS_U1 : std_logic;
    signal M68000_RW_U1 : std_logic;
    signal M68000_FC0_U1 : std_logic;
    signal M68000_FC1_U1 : std_logic;
    signal M68000_FC2_U1 : std_logic;
    signal SYS_CLOCK : std_logic;
    signal SYS_RESET : std_logic;
    signal M68000_DTAK_U1 : std_logic;
    signal M6116_OE_U2345 : std_logic;
    signal M6116_CE_U5 : std_logic;
    signal M6116_CE_U4 : std_logic;
    signal M6116_CE_U3 : std_logic;
    signal M6116_CE_U2 : std_logic;
    signal M6116_WR_U2345 : std_logic;
    signal M68000_A_U1 : std_logic_vector(23 downto 1);
    signal M6116_D_U24 : std_logic_vector(7 downto 0);
    signal M68000_LD_U1 : std_logic_vector(7 downto 0);
    signal M6116_D_U35 : std_logic_vector(7 downto 0);
    signal M68000_UD_U1 : std_logic_vector(7 downto 0);
    signal M6116_A_U2345 : std_logic_vector(10 downto 0);
 begin
    DUT : COMPLETE
       generic map (
              TPD => 3 ns,
              TPD_EN => 15 ns,
              TPD_EDGE => 2 ns )
       port map (
              M68000_AS_U1 => M68000_AS_U1,
              M68000_LDS_U1 => M68000_LDS_U1,
              M68000_UDS_U1 => M68000_UDS_U1,
              M68000_A12_U1 => M68000_A_U1(12),
              M68000_A23_U1 => M68000_A_U1(23),
              M68000_RW_U1 => M68000_RW_U1,
              M68000_FC0_U1 => M68000_FC0_U1,
              M68000_FC1_U1 => M68000_FC1_U1,
              M68000_FC2_U1 => M68000_FC2_U1,
              SYS_CLOCK => SYS_CLOCK,
              SYS_RESET => SYS_RESET,
              M68000_D0_U1 => M68000_LD_U1(0),
              M68000_D7_U1 => M68000_LD_U1(7),
              M6116_D0_U24 => M6116_D_U24(0),
              M6116_D7_U24 => M6116_D_U24(7),
              M68000_D8_U1 => M68000_UD_U1(0),
              M68000_D15_U1 => M68000_UD_U1(7),
              M6116_D0_U35 => M6116_D_U35(0),
              M6116_D7_U35 => M6116_D_U35(7),
              M68000_A1_U1 => M68000_A_U1(1),
              M68000_A11_U1 => M68000_A_U1(11),
              M68000_DTAK_U1 => M68000_DTAK_U1,
              M6116_OE_U2345 => M6116_OE_U2345,
              M6116_CE_U5 => M6116_CE_U5,
              M6116_CE_U4 => M6116_CE_U4,
              M6116_CE_U3 => M6116_CE_U3,
              M6116_CE_U2 => M6116_CE_U2,
              M6116_WR_U2345 => M6116_WR_U2345,
              M6116_A0_U2345 => M6116_A_U2345(0),
              M6116_A10_U2345 => M6116_A_U2345(10) );
    STIMULUS_1 : process
     begin
 --      it-delay: 270  address: 0
         M68000_AS_U1 <= ‘1’;  wait for 200 * SCALE;
         M68000_AS_U1 <= ‘0’;  wait for 270 * SCALE;
         M68000_AS_U1 <= ‘1’;  wait for 200 * SCALE;

 --      it-delay: 270  address: 0
         M68000_AS_U1 <= ‘1’;  wait for 200 * SCALE;
         M68000_AS_U1 <= ‘0’;  wait for 270 * SCALE;
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         M68000_AS_U1 <= ‘1’;  wait for 200 * SCALE;
    end process STIMULUS_1;

    STIMULUS_2 : process
     begin
 --      it-delay: 270  address: 0
         M68000_LDS_U1 <= ‘1’;  wait for 250 * SCALE;
         M68000_LDS_U1 <= ‘0’;  wait for 220 * SCALE;
         M68000_LDS_U1 <= ‘1’;  wait for 200 * SCALE;
 --      it-delay: 270  address: 0
         M68000_LDS_U1 <= ‘1’;  wait for 200 * SCALE;
         M68000_LDS_U1 <= ‘1’;  wait for 270 * SCALE;
         M68000_LDS_U1 <= ‘1’;  wait for 200 * SCALE;
    end process STIMULUS_2;

    STIMULUS_3 : process
     begin
 --      it-delay: 270  address: 0
         M68000_UDS_U1 <= ‘1’;  wait for 250 * SCALE;
         M68000_UDS_U1 <= ‘0’;  wait for 220 * SCALE;
         M68000_UDS_U1 <= ‘1’;  wait for 200 * SCALE;
 --      it-delay: 270  address: 0
         M68000_UDS_U1 <= ‘1’;  wait for 200 * SCALE;
         M68000_UDS_U1 <= ‘0’;  wait for 270 * SCALE;
         M68000_UDS_U1 <= ‘1’;  wait for 200 * SCALE;
    end process STIMULUS_3;

    STIMULUS_4 : process
     begin
 --      it-delay: 270  address: 0
         M68000_RW_U1 <= ‘1’;  wait for 140 * SCALE;
         M68000_RW_U1 <= ‘0’;  wait for 370 * SCALE;
         M68000_RW_U1 <= ‘1’;  wait for 160 * SCALE;
 --      it-delay: 270  address: 0
         M68000_RW_U1 <= ‘1’;  wait for 140 * SCALE;
         M68000_RW_U1 <= ‘1’;  wait for 370 * SCALE;
         M68000_RW_U1 <= ‘1’;  wait for 160 * SCALE;
    end process STIMULUS_4;

    STIMULUS_5 : process
     begin
 --      it-delay: 270  address: 0
         M68000_FC0_U1 <= ‘0’;  wait for 140 * SCALE;
         M68000_FC0_U1 <= ‘0’;  wait for 370 * SCALE;
         M68000_FC0_U1 <= ‘0’;  wait for 160 * SCALE;
 --      it-delay: 270  address: 0
         M68000_FC0_U1 <= ‘0’;  wait for 140 * SCALE;
         M68000_FC0_U1 <= ‘0’;  wait for 370 * SCALE;
         M68000_FC0_U1 <= ‘0’;  wait for 160 * SCALE;
    end process STIMULUS_5;

    STIMULUS_6 : process
     begin
 --      it-delay: 270  address: 0
         M68000_FC1_U1 <= ‘0’;  wait for 140 * SCALE;
         M68000_FC1_U1 <= ‘1’;  wait for 370 * SCALE;
         M68000_FC1_U1 <= ‘0’;  wait for 160 * SCALE;
 --      it-delay: 270  address: 0
         M68000_FC1_U1 <= ‘0’;  wait for 140 * SCALE;
         M68000_FC1_U1 <= ‘1’;  wait for 370 * SCALE;
         M68000_FC1_U1 <= ‘0’;  wait for 160 * SCALE;
    end process STIMULUS_6;

    STIMULUS_7 : process
     begin
 --      it-delay: 270  address: 0
         M68000_FC2_U1 <= ‘0’;  wait for 140 * SCALE;
         M68000_FC2_U1 <= ‘0’;  wait for 370 * SCALE;
         M68000_FC2_U1 <= ‘0’;  wait for 160 * SCALE;
 --      it-delay: 270  address: 0
         M68000_FC2_U1 <= ‘0’;  wait for 140 * SCALE;
         M68000_FC2_U1 <= ‘0’;  wait for 370 * SCALE;
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         M68000_FC2_U1 <= ‘0’;  wait for 160 * SCALE;
    end process STIMULUS_7;

    STIMULUS_CLOCK : process
     begin
         SYS_CLOCK <= ‘0’;  wait for 25 ns;
         SYS_CLOCK <= ‘1’;  wait for 25 ns;
         SYS_CLOCK <= ‘0’;  wait for 0 ns;
    end process STIMULUS_CLOCK;

    STIMULUS_RESET : process
     begin
         SYS_RESET <= ‘0’;  wait for 1 ns;
         SYS_RESET <= ‘1’;  wait for 14 ns;
         SYS_RESET <= ‘0’;  wait for 1000000 ns;
    end process STIMULUS_RESET;

    STIMULUS_1000 : process
     begin
 --      it-delay: 270  address: 0
 --      M68000_LD_U1      76543210
         M68000_LD_U1 <= (“ZZZZZZZZ”);  wait for 170 * SCALE;
         M68000_LD_U1 <= (“00111100”);  wait for 330 * SCALE;
         M68000_LD_U1 <= (“ZZZZZZZZ”);  wait for 170 * SCALE;
 --      it-delay: 270  address: 0
 --      M68000_LD_U1      76543210
         M68000_LD_U1 <= (“ZZZZZZZZ”);  wait for 170 * SCALE;
         M68000_LD_U1 <= (“ZZZZZZZZ”);  wait for 330 * SCALE;
         M68000_LD_U1 <= (“ZZZZZZZZ”);  wait for 170 * SCALE;
    end process STIMULUS_1000;

    STIMULUS_1001 : process
     begin
 --      it-delay: 270  address: 0
 --      M6116_D_U24      76543210
         M6116_D_U24 <= (“ZZZZZZZZ”);  wait for 200 * SCALE;
         M6116_D_U24 <= (“ZZZZZZZZ”);  wait for 150 * SCALE;
         M6116_D_U24 <= (“ZZZZZZZZ”);  wait for 135 * SCALE;
         M6116_D_U24 <= (“ZZZZZZZZ”);  wait for 185 * SCALE;
 --      it-delay: 270  address: 0
 --      M6116_D_U24      76543210
         M6116_D_U24 <= (“ZZZZZZZZ”);  wait for 200 * SCALE;
         M6116_D_U24 <= (“ZZZZZZZZ”);  wait for 150 * SCALE;
         M6116_D_U24 <= (“00100100”);  wait for 135 * SCALE;
         M6116_D_U24 <= (“ZZZZZZZZ”);  wait for 185 * SCALE;

    end process STIMULUS_1001;

    STIMULUS_1002 : process
     begin
 --      it-delay: 270  address: 0
 --      M68000_UD_U1      76543210
         M68000_UD_U1 <= (“ZZZZZZZZ”);  wait for 170 * SCALE;
         M68000_UD_U1 <= (“00100000”);  wait for 330 * SCALE;
         M68000_UD_U1 <= (“ZZZZZZZZ”);  wait for 170 * SCALE;
 --      it-delay: 270  address: 0
 --      M68000_UD_U1      76543210
         M68000_UD_U1 <= (“ZZZZZZZZ”);  wait for 170 * SCALE;
         M68000_UD_U1 <= (“ZZZZZZZZ”);  wait for 330 * SCALE;
         M68000_UD_U1 <= (“ZZZZZZZZ”);  wait for 170 * SCALE;
    end process STIMULUS_1002;

    STIMULUS_1003 : process
     begin
 --      it-delay: 270  address: 0
 --      M6116_D_U35      76543210
         M6116_D_U35 <= (“ZZZZZZZZ”);  wait for 200 * SCALE;
         M6116_D_U35 <= (“ZZZZZZZZ”);  wait for 150 * SCALE;
         M6116_D_U35 <= (“ZZZZZZZZ”);  wait for 135 * SCALE;
         M6116_D_U35 <= (“ZZZZZZZZ”);  wait for 185 * SCALE;
 --      it-delay: 270  address: 0
 --      M6116_D_U35      76543210
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         M6116_D_U35 <= (“ZZZZZZZZ”);  wait for 200 * SCALE;
         M6116_D_U35 <= (“ZZZZZZZZ”);  wait for 150 * SCALE;
         M6116_D_U35 <= (“01000000”);  wait for 135 * SCALE;
         M6116_D_U35 <= (“ZZZZZZZZ”);  wait for 185 * SCALE;
    end process STIMULUS_1003;

    STIMULUS_1004 : process
     begin
 --      it-delay: 270  address: 0
 --      M68000_A_U1      32109876543210987654321
         M68000_A_U1 <= (“11111111111111111111111”);  wait for 170 * SCALE;
         M68000_A_U1 <= (“00000000100000000010010”);  wait for 330 * SCALE;
         M68000_A_U1 <= (“11111111111111111111111”);  wait for 170 * SCALE;
 --      it-delay: 270  address: 0
 --      M68000_A_U1      32109876543210987654321
         M68000_A_U1 <= (“11111111111111111111111”);  wait for 170 * SCALE;
         M68000_A_U1 <= (“00000000000000100011010”);  wait for 330 * SCALE;
         M68000_A_U1 <= (“11111111111111111111111”);  wait for 170 * SCALE;
    end process STIMULUS_1004;
 end TEST_BENCH_SYSTEM_COMPLETE;

 configuration TEST_BENCH_SYSTEM_CONFIG of TEST_BENCH_SYSTEM is
    for TEST_BENCH_SYSTEM_COMPLETE
    end for;
 end TEST_BENCH_SYSTEM_CONFIG;
 -- END of vhdl code for COMPLETE
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Appendix F
Other Interface Design Examples

F.1  Interface Design Example: i8086

The Interface Designer was given the following design problem:

• Microprocessor: Intel i8086A-2 (8Mhz)

• RAM: Four RCA cmd6116-3 2Kx8 (150ns) with 16-bit datapath interface mapped
address 0x00000 and 0x08000 in the 20-bit address space

• ROM: Two Mostek etc2716-1 2Kx8 (350ns) EPROMs with 16-bit datapath interfac

mapped at address 0x0e400

• PIO: Intel i8255a (400ns) parallel IO device with 8-bit datapath interface mapped 
address  0x0c000

.

FIGURE F-1.   i8086 System
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Memory, U2
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Memory,U3
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Some of the features illustrated by this design example are: microprocessor sy

design using more than one type of component, address decoding using multip

address signals, interfacing 16-bit memory and 8-bit memory mapped IO devices to

bit microprocessor allowing both 16-bit and 8-bit data transfer, interfacing componen

different speed using wait signal generation, and connection of multiplexed to non-m

plexed address signals. A design problem specification block diagram is show

Figure F-1. The block diagram indicates that separate IBs must be generated for the

ROM and the PIO.

The VHDL simulation output for this interface is shown in Figure F-2. The simu

tion shows three data transfer cycles: a 16-bit write cycle to the RAM at address 0x08

an 8-bit read cycle from the ROM at address 0x0c61a and an 8-bit read cycle from the

at address 0x0e420. The timing diagram illustrates the correct operation of the inte

specifically the correct generation of enable and write signals, demultiplexing of

address signals and generation of theWAIT signal. The timing parameters from the simu

lation output were verified against the timing parameters given by the component m

facturers and were found to provide a positive margin, indicating a valid design.

design shows that the Interface Designer is able to correctly design a more complex m

processor system utilizing more than one type of different speed component.

F.2  Interface Design Example: 68020

The Interface Designer was given the following design problem:

• Microprocessor: Motorola mc68020-12.5 (12.5Mhz)

• RAM: Four Motorola mcm6164-45 8kx8 (45ns) with 32-bit datapath interface mapp
at address 0x00008000 in the 32-bit address space

• ROM: Two Intel 27128a-2 16kx8 (200ns) EPROMs with 16-bit datapath interface
mapped at address 0x00000000

• RAM: one Motorola mcm6810 (450ns) 128 byte scratch pad RAM mapped at add
0x0001f000

This design example illustrates a design that uses the dynamic bus sizing feat

the 68020: the RAM, ROM and PIO to 68020 data transfer interface width are 32-bit

bit and 8-bit respectively using memory devices of different speed. The VHDL simula

of the interface as shown in Figure F-3, illustrates data transfer cycles for each of the

different memories.

TheU1 DTAK0/1 signals are both asserted for the 6164 RAM write cycle (t=100

indicating that the RAM is capable of transferring 32-bit data. However only 24 bits
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FIGURE F-2.   i8086 Design - VHDL Simulation
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transferred, as can be seen by the activation of 3 of the 6164 RAMCE1 signals (/

m6164_CE1_U2, /m6164_CE1_U3 , /m6164_CE1_U4 ), since the 32-bit write cycle

is on an odd address (0x000080F5).

TheU1 DTAK1signal is asserted for the 27128 RAM read cycle (t=750ns) indic

ing that the ROM is capable of transferring 16-bit data. However only 8 bits are tr

ferred, as can be seen by the activation of the/m27128_CE_U6 signal, since this 16-bit

read cycle is on an odd address (0x00000027).

For the 6810 read cycle at t=1470ns only theU1 DTAK0signal is asserted indicating

that scratch pad RAM is capable of transferring 8-bit data. The 8 bits are transferred

the/m6810_d_u8 signals to the/m68020_uud_u1 signals as can be seen in the sim

lation timing diagram (note: the naming convention for the 68020 uses ‘uud’

D24:D31 , ‘umd’ for D16:D23, ‘lmd’ for D8:D15 and lld forD0:D7).

The DTAK0/1 signals of the 68020 serve two purposes in this design: they indic

the data path width of the slave device and they are also used as the handshake sig

terminates the data transfer. The VHDL simulation shows that the assertedDTAK0/1

event is delayed depending on the speed of the slave component, about 100ns for the

250ns for the 27128, and about 450ns for the 6810, as required from the componen

ufacturer’s data sheet, indicating a valid interface.

The VHDL code was manually inspected to verify that the correct address sig

on the slave devices are connected to the address signals on the microprocess

expected, the 32-bit 6164 RAM memory bankA0:A12 signals are connected to the 6802

A2:A14 signals, the 16-bit 27128 ROM memory bankA0:A13 signals are connected to

the 68020A1:A14 signals and the 8-bit 6810 scratch pad RAMA0:A6 signals are con-

nected to the 68020A0:A6 signals. The result of these connections can also be observe

the simulation of Figure F-3.

The timing diagram illustrates the correct operation of the interface, specifically

correct generation of enable and write signals for the dynamically sized data bus and

eration of theDTAKsignals. The timing parameters from the simulation output were v

fied against the timing parameters given by the component manufacturers and were

to provide a positive margin, indicating a valid design.

This design example illustrates a more difficult design. Unless intimately fam

with the data sheet of the 68020, a human designer will have to spend time investig

the dynamic bus sizing signals and the signal protocol of the 68020. The human des

has to become familiar with the relationship between theDTACK0, DTACK1, SIZE0 ,
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ers,

igner
SIZE , A0 andA1 signals and the 32-bit data bus for 32-bit, 16-bit and 8-bit data transf

and then translate the information learned into a working design. The Interface Des

.

FIGURE F-3.   68020 Design - VHDL Simulation
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nating errors introduced into the design due to mistakes in the interpretation or trans

tion of information from the data books.

F.3  6809 Interface Example

The Interface Designer was given the following design problem:

• Microprocessor: Motorola mcm6809e (1Mhz)

• IO: one Motorola mcm6821 (450ns) Parallel IO Controller mapped at address 0xe

• IO: one Motorola mcm6845 (450ns) CRT Controller mapped at address 0xe800.

• IO: one Motorola mcm6850 (450ns) UART mapped at address 0xe000.

This design example tests the design of a simple 8 bit microprocessor to IO d

interface. In the VHDL simulation shown in Figure F-4. A data transfer cycle for each

the three different IO devices is shown. The 6809 does not have an acknowledge sig

a wait signal, so fixed E signal pulse width of 450ns is used in the simulation.
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FIGURE F-4.   m6809 Design - VHDL Simulation
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F.4  t32020 Interface Example

The Interface Designer was given the following design problem:

• Microprocessor: Texas Instruments tms32020 (20Mhz).

• RAM: Two Motorola mcm6164-45 8kx8 (45ns) with 16-bit datapath interface

Mapped at address 0x0000.

• ROM: Two Intel 2764a-1 16kx8 (180ns) EPROMs with 16-bit datapath interface

Mapped at address 0xe000.

This design example tests the design of the interface for a 16-bit DSP micropro

sor to a high speed memory. In the VHDL simulation shown in Figure F-5, two data tr

fer cycles are shown. The first data transfer cycle is a write to m6164 memory at ad

0x0000, while the second data transfer cycle is a read from the m2764 at address 0

spellcheck
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FIGURE F-5.   t32020 Design - VHDL Simulation
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Appendix G
The Model Frame

When entering the component data structures into the component library, a s

device frames is created that will represent the component. For example, when en

the 68000 microprocessor, a device frame will be created that is based on the microp

sor frame prototype. The created frames will be linked to its prototype through a ^is-a

relation. The frame will have a series of slots that must be filled in. The content of a

can be static value such as the number 68 for the number of pins, or it can be an

frame. In any case, for every slot there will be a limited number of possible type

entries: either a value such as a number with a certain range, or some other frame.

some circumstance a slot may be left empty. What is allowed for the content of a s

determined by the rules used to design with the component. For example consid

^has-capabilityslot for a component: only those capabilities for which the expert sys

rule base was written are allowed for the content of the ^has-capabilityslot. For now only

the data transfer interface and the bus arbitration interface are considered by the rule

so only bus arbitration and data transfer capability frames are allowed in the ^has-capabil-

ity slot.

A method is required to represent the permitted or required content of a slot

device frame. This is required for several reasons: First it allows documentation o

possible devices for which the interface rules developed so far will work. Second it al

a small expert system to be written, that uses the data structure to help and guide a k

edge engineer in entering a new device, assuring that no mistakes are made. T

allows an expert system to be written which can test an entered device for validity:

expert system can verify if the content of a slot is valid and if all the required informa

to complete the design is present.

The data structure that represents the permitted or required content of a slot is

amodel frame. Every prototype frame will have a model frame that indicates the permi

or allowed values for the slots of a device frame based on the prototype frame. The m

frame will guide the design engineer that is entering the component, giving him hint

what possible object or value to put as the content of a slot. This ’guiding’ is either ma

(i.e. the design engineer looks at the model frames and figures out what to put i

device frame slot) or automated using an intelligent component editor (i.e. a small e

system that tells the design engineer what the contents of a slot should/must be).
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Using the model frame when entering a device, it would be possible to presen

user of the component entry expert system with a choice of possible options for the

tents of a slot. For example, if the user is currently entering a newXYZ microprocessor

component, he will create a frame which will be based on the microprocessor proto

After creating a device frame based on the microprocessor prototype and calling itXYZ,

slots must be created in theXYZ frame and filled in. One of these slots is the^has-capabil-

ity slot. When filling in thê has-capabilityslot of theXYZmicroprocessor, the user shoul

be presented with a choice of creating a data transfer, interrupt or bus arbitration capa

frame, assuming rules have been developed in the expert system to design the data

fer, interrupt or bus arbitration interface. No other frames or values are allowed fo

^has-capabilityslot. If the user decides that the device under construction has data tra

capability, a new data transfer capability device frame is created and entered in the^has-

capability slot. This new frame must then be filled in according to information obtain

from its prototype frame.

The model frames of a prototype frames will have their own hierarchy as show

Figure G-1. They give the possible device hierarchy, since every model frame slot

contain any allowed model frame. The hierarchy of the model frame serves two purp

First the hierarchy of prototype models is used to give a complete device hierarchy

every slot in the model has a permitted model frame or data value. Second, every s

the model frame can have a comment or note attached which can be shown to the u

the system who is trying to enter a component into the library of components, and

gives a method of assisting the user in the entry of components.

The flexibility of the model frame hierarchy allows device models of any detail to

entered. The limit is not the information the model can show, but how much informa

the design engineer who enters the prototypes into the frame library is willing to enter

the model frames.

The complete overall device frame layout including the model frame is show

Figure G-2 for a 68000 microprocessor. The frames found in the component model c

organized into four different classes: prototype, model, device and instance. The prot

class contains all the information that should be inherited by a device frame. The m

class contains all the possible and permitted contents of the slots of device frame t

based on a prototype frame. The device class contains the actual frame that mak

device. The instance class refers to actual devices in a system and will inherit all info

tion from a device class frame.spellcheck
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FIGURE G-1.   The Model Hierarchy
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FIGURE G-2.   Prototype, Model, Device and Instance of Device frames
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