Assessing the Feasibility of
Hardware Interface Designs
in Microprocessor-based Systems

Marco A. Escalante Nikitas J. Dimopoulos

Technical Report ECE-95-1

Department of Electrical and Computer Engineering
University of Victoria, BC CANADA
P.O. Box 3055, Victoria, B.C., VBW 3P6

March 1995

Abstract

In this paper we address the feasibility of an “abstract” interface desigmeds

an expert microprocessor-based-systems designer. Once the system architecture
has been selected and the major components (processors, memodegices)

have been instantiated from a component libraryye designs the necessary glue
logic to integrate the system. Such interface design is carried out according to the
protocols followed by the components. The design is called “feasible” if it
achieves the desired functionality and satisfies the timing constraints of the proto-
cols. In this paper we address the problem of determining the feasibility of a design
prior to its implementation. Because timing is an important aspect of a correct
design, we use an interpreted timed Petri net to represent the timed behavior of
protocols. Using a technique called timing analysis for synthesis we can check if a
design is feasible even before logic synthesis is carried out.

1. Introduction 1

1. Introduction

As the complexity of hardware systems increases, techniques that facilitate their design
and verification are invaluable to hardware designers DAE project aims to automate

the mechanical aspects of microprocessor-based system desiganig]s nain strength

is its finer component representation down to the interfacing protocol levet @llows

a top/down design process in which first a system architecture is decided, then the major
components (processors, memories, @ndevices) are selected from a database accord-

ing to user design constraints such as type of application, throughput, cost, etc. The next
step is system integration, during whibhME designs the necessary glue logic. In this
paper we address the problem of verifying that such interface dedigsible i.e. the
interface generates the necessary events at the expected times to accomplish the intended
inter-component communication, before synthesis of the design is attempted. In this way
not only the iteration of the design-synthesis-verification cycle can be broken but also an
estimate of the quality of a design can be calculated (defined as how much delay margin a
design possesses) which can be used to evaluate designs at a higher level of the design
process.

Recent research in asynchronous design [8] indicates that interface design can benefit
from a delay-insensitive design methodology which generates circuits that behave cor-
rectly even in the presence of variations on gate and wire delays. However it is not always
possible to neglect timing information corresponding to either internal circuit delays or
constraints on the environment for proper circuit operation [12]. This is particularly true in
the design of microprocessor-based systems whose protocols are required to meet hard
deadlines. For this purpose we use an interpreted timed Petri net which allows us to reason
about operationalircuit delaysand environmentdaiming constraints

Our model is suitable for symbolic timing analysis that finds bounds on the delays of
the circuit to be synthesized before the actual circuit is implemented [4]. Delay-insensitiv-
ity iIs a special case of circuit design in which timing constraints are satisfied by any
implementation regardless of the circuit delays. Moreover synchronous and partial hand-
shake protocols can be considered as variations of the full handshake with missing event
precedence links, requiring less control circuitry and exhibiting better performance at the
expense of having to obey timing relationships for proper operation.

In the following section we survey related previous work. In section 3 a bus arbitration
interface is used to motivate this work. The timed representation and the symbolic timing
analysis is briefly presented in section 4. The formulation of the interface design as the
mergingof protocol graphs is discussed in section 5. Finally future directions are pointed
out in the conclusions.

University of Victoria Technical Report ECE-95-1

2 2. Related work

2. Related work

A microprocessor-based system is a collection of components which operate indepen-
dently of one another but are required to communicate and synchronize with the rest of the
system through communication structures called buses. The interface design problem
arises during system integration when components are blended into a single entity. In gen-
eral the design of an interface involves not only electrical and logical signal conditioning
but also protocol conversion.

Signal transition graphs ®&TGS, a Petri net based representation formalism, have been
used to describe the behavior of asynchronous control circuits [16TAF ®ere first
applied to the design of delay-insensitive circuits which assumes unbounded wire and gate
delays. Although a very powerful design concept, delay-insensitivity is not realistic for
describing the behavior of microprocessor components.

Pioneering work by Nestor and Thomas [12] identified the necessity of dealing with
timing constraints in the design of interfaces. Recently some work has been done in
extendingSTGs to model circuit delays. Myers and Meng [11] used a conservative esti-
mate of gate delays and available environmental timing constraints to remove links of the
original STG specification of an asynchronous circuit that become redundant when timing
bounds on the gate delays are taken into consideration. Their synthesis procedure relies on
an algorithm that determines an upper bound on the maximum distance between two
events in an acyclic graph. The general case, which involves solving a system of min/max
inequalities, was shown in [10] to be NP-complete. An algorithm that finds exact bounds
on the maximum distance between two events was reported in [6] which can only analyze
systems with max terms.

During the integration phase of the design, which takes place before synthesis, the path
delays of the interface are still unknown. None of the aforementioned approaches can han-
dle unknown delays directly, i.e. without having to assume values for the unknown delays
and iteratively checking that the assumed values satisfy the given timing constraints. In [4]
we proposed a symbolic timing analysis that finds tightest bounds on variable (unknown)
delays using the available information in the form of circuit delays and timing constraints.
In this paper we show that such technique can be used as the backbone of a procedure that
can determine the feasibility of an interface design without requiring to generate first an
implementation of the interface. The importance of this method is that it allows the
designers to evaluate timing aspects of an abstract design at a higher level of the design
process.

Technical Report ECE-95-1 University of Victoria

3. Motivation: A bus arbitration interface design 3

3. Motivation: A bus arbitration interface design

Interface logic is necessary to interconnect the components that comprise a system. Micro-
processor components transfer information in the form of signals through wires that inter-
connect their ports. According to the functionality, signals are grouped into different
interfacing capabilities (e.g., data transfer, interrupt, bus arbitration). The interfacing pro-
tocol enforces the correct exchange of information by defining the ordering and timing of
elementary operations actions[2]. Signal transitions are used to encode the actions of
the protocol. In general the components that constitute the system may use different proto-
cols. One of the main tasks of the interface is to perform protocol conversion.

Consider for example a microprocessor system which consists of multiple masters
shown in Figure 1. A master is able to initiate a data transfer via a shared resource: the
data transfer bus. The bus arbitration lines are used to guarantee that at most one master
requesting the bus takes over B at any given time. A bus arbitration protocol is
defined by the standard bus, and each of the masters may use a different bus arbitration
protocol. The interface circuit between a master and the standard bus generates the input
actions to both components.

master master arbiter
‘ |nterfacﬁ |nterfac4z |nterfacﬁ ‘ |nterfac4z |nterfacﬁ

< j W TE W TE > artfiirt]rgéion
<; data transfer bus >

Figure 1. Multi-master system.

The timing diagram of a typical bus arbitration protocol used by a master is shown in
Figure 2. The master signals to the arbiter that it wants to use the bus by asserting the out-
put REQ signal (a suffix *’ in a signal name indicates that the signal uses negative logic,
i.e. it is asserted low), and it waits fack to become asserted before seizing the bus.
When the master ends its transaction, it rele’sesThe arbiter will then releagek so
that another arbitration cycle can take place.

In Figure 2 input signals are shown underlined. RB&/ACK signals are control signals
which can be asserted and negated, whiletiseis a group of lines that are initially in a
high-impedance state, and are driven by the master when it utilizes the bus. Control signal

University of Victoria Technical Report ECE-95-1

4 3. Motivation: A bus arbitration interface

dtb \~ b1

\

Figure 2. Master bus arbitration protocol.

transitions change the state from negated to asserted or viceversa, denoted respectively by
+/-, while the data bus lines can switch from disabled to enabled or viceversa, denoted
respectively by /:.

The Petri net shown in Figure 3a describes the protocol of Figure 2. Places in the net
model delays, and transitions of the net represent signal changes. There are two different
types of timed behavior: circuit delays and environmental constraints. A circuit delay rep-
resents the response time of the master and is modeled by operational places connected by
continuous links. For instance, in Figure 3 plagdescribes the internal delay in the mas-
ter from receiving the bus grargH) to driving thebTB lines. Timing constraints specify
how the external circuit should behave for proper operation. This is shown by constraint
places connected by dashed links. For example, plaiceFigure 3 specifies that a grant
(at) is expected to occur some time after the master issues a regyedthe net in
Figure 3a is a marked graph (i.e., every place in the net has one input transition and one
output transition). Marked graphs can be represented more succinctly as synchronization
graphs [15] in which transitions are drawn as nodes and places are drawn as links as
shown in Figure 3b.

r+ P2

“a g
Py ; \‘pg
a_

» bt

Pe". ’/94

M~e—p
Ps '

(b)

Figure 3. Master bus arbitration protocol: (a) Petri net; (b) synchronization graph.

From the example above one can see that a protocol specification contains not only the
component’s internal operation but also the allowed behavior of the environment. It is the
interface’s task to generate an appropriate environment for the master. Figure 4 shows a
bus arbitration interface betweemma device (master) and theiebus. In the structural

Technical Report ECE-95-1 University of Victoria

3. Motivation: A bus arbitration interface design 5

view the connectivity of input and output signals can be identifiedDiaedevice has a
pair of control signals, while thevebus protocol uses three control signals and one status
signal BUSFRER.

VMEbus DMA
BR* I
BG* » HREQ*
BBSY Interface o
BUSFREE! i}
|
dtbus data transfer bus 4 dtbus

Figure 4. Bus arbitration interface: (a) structural view; (b) behavioral view.

The corresponding protocols are shown in Figure 4b. In the protocol graphs, the follow-
ing shorthands are used for the names of the sigirgiisr, HLDA is a, the data transfer
bus ish, BRiS R, BG is G, BBSY is GA andBUSFREEIs B. TheDMA device uses a variation
of the fully handshaken protocol shown in Figure 3. The difference is that the request sig-
nal is released before completion of the bus transaction. This fact has important repercus-
sions in the design. In both protocols the release of the request triggers a sequence of
events that eventually will grant the bus to a master. However while in the fully hand-
shaken protocol the release of request occurs when the bus is already available, in the par-
tial handshake (shown in Figure 4b right) potentially another master can take over the bus
before the previous master relinquishes the lines if delsylarge compared to the other
delays. Therefore in the latter protocol it is necessary to check that such hazard never
occurs. Constrairt,; states that the bus lines should be released before a new cycle starts.

University of Victoria Technical Report ECE-95-1

6 4. Timed representation of protocols

Although it can be thought that the fully handshake is a more robust protocol, this comes
at a price. The partial handshake is faster because it allows the arbitration to take place
(the path fronr—to a+) at the same time as the transaction is complétgd (

The vMEbus bus arbitration protocol is more involved. It defines the arbiter’s behavior.
After a request is receive®<) a grant is generate®¢). A master being granted the bus
acknowledges the grant by asserting the grant-acknowledge s@#s) (0 which the
arbiter responds by releasing gradt). GAis used to speed up the arbitration similarly to
the partial handshake by allowing the arbitration to take place while the last part of the
transaction is still in progress. The master must monitor the availability of théBpus (
before driving the bus lines.

The interface reads the output events of both protocols and generates the necessary
input events. In Figure 4 the components to be interconnected follow different protocols
so that protocol conversion is required. It is not possible to check if the constraint links are
satisfied using conventional verification techniques because they require that the interface
delaysd be known. Instead we find the tightest bounds on the délsiysh that the timing
constraints are satisfied. If there is no such set of values then the interface must be rede-
signed (e.g. by modifying some or all of thdinks in the merged graph or by choosing
different components). Otherwise those bounds can be used to select an appropriate target
technology and guide time-driven synthesis tools. Finally a correct realization of the inter-
face must not exceed the bounds computed by the analysis.

In the following section we discuss the formal tools that lead to a symbolic timing anal-
ysis for a subclass of Petri nets, namely the subclass that can repr&santor causal-

ity [18].
4. Timed representation of protocols

In the following subsection we introduce our tingad representation. Then our symbolic
timing analysis is posed as a transposition of the constraint satisfaction problem, namely
given a set of known operational delays and timing constraints, determine possible values
of unknown interface path delays. In microprocessor-based system design, the known
operational delays and timing constraints correspond respectively to circuit delays and
timing constraints specified in the component data sheets, while the unknown path delays
are the delays of the interface logic that is yet to be synthesized.

Technical Report ECE-95-1 University of Victoria

4. Timed representation of protocols 7

4.1 Timed Petri net model

A timed Petri Net is a quintupl&@PN = [P, T, F, My, ADwhereP is a non-empty set of
places,T is a non-empty set of transitiors,[] (P x T) O (T x P) is the flow relation,
M: P - Nis the marking function, amll: P - 1+ is the time labeling function that assigns
to each place a non-negative compact intexvall+. N is the set of the natural numbers
andl+ is the set of non-negative compact real intervals.

The set of places is partitioned into two subsgteind P.. Time labels assigned to
places belonging tB,, the set obperational placesare used to model circuit delay. Time
labels assigned to places belongindg’tpthe set otonstraint placesare used to specify
required behavior of the environment for proper operation of the circuit. The flow function
is naturally partitioned by the sefey andP,, i.e.,F = F, O F, whereF, 00 (P, x T) O
(TxP,) andF, O (P, x T) O (T x Py). The preset (postset) of a transitiois the set of
incoming places to (outgoing places froi@nd is denotedt«te). The intersection ofte
(t+) with P, is denoted astg (t,*), likewise for ¢, (t.*). The firing rule of the Petri net is
extended accordingly to take into account the different behavior of operational and con-
straint places.

Firing rule :
1. Atransitiont is enabled when every plapé] «t, contains a token.

2. An enabled transition fires immediately. When it fires, the transition sends tokens to
every place [J te and anti-tokens to every plapé] st.

3. An operational placp labelled withA, = [T, TmaJ UpON receiving a token at tinte
makes it visible to transitiortd] pe at timet + 1, wheret, [J A,. The token is held by the
place until it is annihilated by an anti-token.

4. A constraint place labelled withA, = [T, Tmad UpON receiving a token at tine
holds it during the intervak[+ T, T+ T,54- If the constraint place receives an anti-token
when it does not hold a token, it flags a constraint violation.

The use of anti-tokens is our mechanism of assigning to the places the responsibility of
flagging violations.

4.2 Timed signal transition graphs

Ports are designated by unique names. Input port names are written underlinadbe.g.,
¢, while output port names are writtenaa®, c. Signals carry the values of ports through
wires. LetX be the set of input signals aAdhe set of non-input signals of a circuit. The
set of signals i¥ = X [0 Z. The set of signal transitions (or actionshis Y x {+, —, 1, 1).

University of Victoria Technical Report ECE-95-1

8 4. Timed representation of protocols

A pair (@ +), written asa+, represents a transition of signal a from negated to asserted.
Likewise the other transition symbols represent signal transitions from asserted to
negated, from disabled to enabled, and from enabled to disabled respectively.

STG's are Petri nets whose transitions are interpreted as signal transitions. Atieed
is the triplettTPN, Y, LOwhereTPNis a marked timed Petri néef,is a set of signals, and
L: T » Als a labelling function which assigns transitiaris T of the Petri net to signal
transitionsa (1 A.

Not every interpretation of a Petri net describes a correct behavior of a circuit (e.g., if
two successive transitions of the Petri net are labelled with the same signal transition). The
validity of ansTG can be checked by ensuring that the corresponding state graph is consis-
tent [17]. The validity of timedTGs is further discussed in section 5.1. Several synthesis
techniques fosTGs have been reported in the literature [8, 11, 17]. The following defini-
tion states under which circumstances the time behavior sf@is said to b&ime-con-
sistent

Definition 4.2.1.-A timed STG is time-consistent if no constraint place flags a violation
during any possible execution of tHeG.

In the following subsection we develop the analytical machinery to determine if a timed
STGIs time-consistent.

4.3 Symbolic timing analysis

In this subsection we formulate the time-consistency of periodic tim&s as an optimi-
zation problem that avoids the enumeration of all possible executions. We use interval
arithmetic to compute the time of occurrence of transitions due to operational places.

Let| be the set of real compact intervals. An interval operatidor o, 3 [J | is defined
by:
aUOB={alb:alalblp}
In particular expressions for interval addition, subtraction, rmmdand max functions
are given by:
@+ B = [apin + B Bt Dived
o = B = [8min = Bmax 8max~ Drmirl
min (a, B) = [Min (@nin Bryin), MIN (@may Bna]
max(a, B) = [Max (@min, biin), MaX(8max Bmay)]
wherea = [ayin 8nad aNdB = [Brin Bmad-

Technical Report ECE-95-1 University of Victoria

4. Timed representation of protocols 9

Consider the Petri net subclass of marked grappls=(Jp¢| = 1, and thus places can be
drawn as links between two transitions). Transitdon Figure 5 has three incoming oper-
ational places shown as links labelled with interygl$=1..3. The occurrence times of
transitionsa, b andc are also shown in Figure 5. The firing rule states that transitees
a token in each of its incoming places at any time during the corresponding shadowed
interval, andd is enabled when all three tokens on the incoming places are made visible to
d. This occurs within the intervahax(t, +v;, Tp + Yo, T + Vs)-

A syle

a b C T, - ti{r;e a Vi a b-
Y2 I :‘3—> a b

Vi Va A Y2

d T _ time D VWVZ
A ' Vs c EE ¢
|

(@) - e .
J - (b)

time

Figure 5. Firing of a transition: (AND causality; (b)oR causality.

A constraint place between two transiti@nandb (see Figure 6) signals a violatidgh
T, does not occur within the constraint interval after the occurrencg &f constraint
place is said to be time-consistent if it does not signal a violation under any possible exe-
cution of thesTG. Lett,' denote the time of thith occurrence of transition To determine
if the place ever signals a violation under any possible execution sfrthene has to
check the bounds on the time separation figrto T, writtent,' - /.

1

Ay

Xy
/ /\

i/\/

A‘b

Figure 6. Fork transition for constrait

Definition 4.3.1.-A constraint place is time-consistent if for all occurrences

-1, OA [Eq. 1]

University of Victoria Technical Report ECE-95-1

10 4. Timed representation of protocols

Proposition 4.3.2.-An STG is time-consistenif all its constraint places are time-con-
sistent.

Proof.- It follows from Definition 4.2.1.

To compute the time interval difference in Eq. 1, we unfoldshe starting from the
initial marking. The resulting unfolded graph is acyclic and infinite. Figure 7 shows a sim-
ple protocol between two signals and its corresponding unfolded graph. In our application
we require that the execution of a protocol graph result in periodic behavior. Thus, after a
finite transient, Eq. 1 becomes independent of the occurieceommon ancestor of
both transitions andb from whicht, — 1, can be computed is calledak transition

Vi v i=0
a+
+ B \YL‘b+
= \Y‘l Y2
@ yf/b+ "
a” s ey -Y4-¢----b:--|—1
b- §+\YL‘ y5
y b+
2
g—A/ Ys
b-

Figure 7. Simple signal transition graph and a partial view
of its unfolded infinite acyclic graph.

Definition 4.3.3.-A transitionx is called a fork transition for constrafstfrom a to b if
there exist two lattices in the unfolded graph whose common least upper bauadds
with greatest lower boundsandb respectively such that, for every node in each lattice
exceptx, all its ancestors belong to the corresponding lattice.

For example the fork transition férin Figure 6 isx;. Note thats does not qualify as a
fork transition because which is an ancestor gfdoes not belong to the lattice frato
b. The fork transition is not necessarily unigyein Figure 6 is also a fork transition for
A. However the choice of fork transition is immaterial for the evaluation of Eq. 1.

After a fork transitionx has been identified, the time separation is computed as the
interval difference between the occurrence times of transiboasd a in the unfolded
graph relative ta. For example the separation between transitiehandat' in Figure 7
for any cyclei > 0 (the first cycle corresponds ite0) is {max(y, + V4 + Vi, Y3 + V5)} —

{Y> + Ya}. The fork transition ob+ anda+' is b+,

A causal constraint is a constraint place labeledo}0,The following proposition is
useful to simplify the timing analysis.

Technical Report ECE-95-1 University of Victoria

4. Timed representation of protocols 11

Proposition 4.3.4.-Let A be a causal constraint fraato b. If a is a fork transition for
A, thenA is always satisfied.

Proof.- If ais a fork transition, them, — 1, can be computed by traversing a lattice
starting froma, that yields a non-negative interval. It follows thatiifis causal, it is
always satisfied.

Eqg. 1 involves the subtraction of interval expressions, each possibly conteiaig
terms. Thus Eq. 1 is a nonlinear interval expression. Using an approach adapted from [10],
it is possible to solve the constraint satisfaction problem by solving first a finite set of sub-
problems. A subproblem is produced by choosing a winner for eachrobttierms. The
solution of each subproblem can be formulated as a linear program which finds the mini-
mum and maximum values of a linear interval expression (i.e., withmépeterms
removed) subject to thg intervals and to the conditions imposed by the choices of win-
ners in themaxterms, which are also linear expressiong;omhe solution of the original
problem is the union of the solutions of all subproblems. For notational clarity, in the
sequel we denote intervals with Greek letters (g,@\) and a particular value within the
interval with the Latin alphabet (e.g.[Xy).

a
Y1 \4;/2
c‘{s Ys
Ya

A/,e
d 4«

<4—

Figure 8. Constraint satisfaction.

Consider for example the graph shown in Figure 8. The constraint satisfaction equation
IS Ty — 7. O A, wherety=max(yy, Y, +Ys) + Y, andt. =V, +ys (a is the fork transition).
There are two possible choices of winners for the uniga& term. The subproblem
obtained by choosing, + y; =y, generates the following linear program:

min/max {c; + ¢, — {Cs}

subject to
¢Oy,i=1.5
C;—C—C<0

where the conditiong [l y; can be expanded into the conjunction of inequalgiesy, .,
and—¢; < -y, min. Fory; = [0, 90],y, = [0, 100], andj; =y, = Vs = [10, 20], the solution of
Tq— T IS [0, 30]. Similarly for the subproblew >y, + ys, T4 — T, = [0, 100]. Thus for any
A such that [0, 100 A, the constraint place of Figure 8 is time-consistent.

University of Victoria Technical Report ECE-95-1

12 4. Timed representation of protocols

We now state the symbolic timing analysis formulation. Suppose that some of the oper-
ational intervals are unknown, denoteddyThe constraint equations are now written in
terms of knowny’s, unknowng's, and constrainy’s. As before we can construct linear
subproblems of the constraint satisfaction problem corresponding to a particular winner
choice for eacimaxterm. For a given subproblem, a valyehat satisfies the left-hand
side of a constraint equation fay, (i.e.,y, U 1, - T,) can be written ag, = fi(c, d) -
fa(ci, d), wheref, andfy, are two linear functions on thegs andd;’s such that; Uy, and
d; U g According to Eq. 1y, [A,. Possible values for ti's must satisfy the following
conditions:

v OA k= 1.1,

¢ Oy,i=1.M,

d =20,j=1.N, and

conditions given by the choice of max terms.

wherelL is the number of constraiff’s, M is the number of known operationygs, andN
is the number of unknowd’s.

The above conditions for a particular subproblem describe a set of feasible points
{ci, d} which, when non-empty, is delimited by a (possibly unbounded) convex polytope.
A convex polytope is the convex hull of its vertices, thus finding a finite number of verti-
ces suffices to characterize a particular solution set (if the polytope is unbounded, only
additional direction vectors describing the edges to infinity are required). Let
poly={c;, d} be the union of all the polytopes generated by the particular solutions. The
total solution is the largest sed{} such that ;, d*} U polyfor all valuesc; D y; .

Transitiond in Figure 5a fires when all places id make a token visible. This is the
standardanD causality in Petri nets. A complementary behavior, catierdausality in
[18] can be described as follows: a transition fires as soon as one of the incoming places to
the transition makes the token visible. (In [7] the teams/OR causality are referred as
latest/earliest timing relationships respectively.) This is depicted in Figure 5b. Transition
c- occurs as soon as the firstasfor b- occurs. This happens within the interwah (T, +
Y1, Tp. + Yo). TheoRr behavior can be represented using standard Petri net constructs [18].
Our method can also handle nets vathcausality by replacing the max terms with min
terms (a choice of winner in a min term generates a condition which is also linear). Note
that marked graphs is a proper subset of the class of nets that can desordred OR
causality.

Consider the circuit implementation of a D-element shown in Figure 9 which was
reported in [6]. The D-element synchronizes two components that use handshakes to com-
municate. The left handshake - lo+ - li— - lo— is interspersed with the right handshake

Technical Report ECE-95-1 University of Victoria

4. Timed representation of protocols 13

ro+-ri+-ro—-ri— as described by th&rG shown in Figure 10a. A state variables

used to differentiate two half cycles. Martin [9] uses the D-element to implement sequenc-
ing between two processes via the handshakes. Observe that the left handshake is passive,
l.e., it is initially in a waiting state. Both theexD gate with inverted inputs and the buffer
outside the D-element simulate its environment by generating the desired acknowledg-
ment transitions after a gate delay.

|
|
|
|
l
|
|

lo|
reset |

D-element

Figure 9. Circuit implementation of the D-element.

Figure 10b shows in detail the sequence of transitions in one cycle of the D-element.
Operational links represent as usual the behavior of the circuit. Delays through gates are
labelled withy;, and to distinguish wire delays, they are labelled wjtiThe wire delays
labelled witha and3 and the constraint links have a special meaning as it will be clear
shortly. Assume that the S-R flip-flop and all signals are initially set at zero. After a reset
pulse, the firsti+ transition is generated. That transition switches the S-R flip-flop to one,
which in turn causes transitidot+ to occur. After the reset pulse theD gate behaves as
an inverter and so it generates. Now theAND gate of the D-element causes transition
ro+, which is propagated t0+. The flip-flop is reset, which subsequently produces the
sequenceo— - ri— - lo—. If a transition is propagated through different paths to different
parts of the circuit, new transitions are created to take into consideration that the paths
may have different delays. For example, transilidriorks transitiondi ;+ andli,+ to rep-
resent its arrival at the inverted input of thedD gate and thé input of the flip-flop
respectively.

In the circuit implementation, malfunction may occur due to differences in the path
delays of signals, li, andx to different parts of the circuit. For example, if transitiigt
at the inverted input of the AND gate occurs after it has been propagated am unde-
sirable glitch will appear at the output of the gate. In order to avoid these hazards, Martin
[9] suggested to assume isochronic forks, i.e., that the delays of forked transitions created

University of Victoria Technical Report ECE-95-1

14 4. Timed representation of protocols

i X+ —>Io+ —>I
4
li+ —»x+ / wl/ i i I
.\ A i+ - — Xt i i o
lo+ [/0(' \¢ Y5 /
; Do i} \ /)
li- A ro+
_\ ’ ¢y6 /AZ
® ro+ | s ri+ /
#Jr | L 4 »
n . ri+ y, it
i_ VIR Y A ; N
3 X-
A A
ro- | v AG/\(DZ
v \ v X Xy
- \ o V8¢
Io-‘/ N Y11 ro
\\ |o-<—ri1-v\w8_1p/
@) (b) ~ 4T
—riy " B

Figure 10. Behavior of the D-element: (a) abstract behavior;
(b) detailed behavior showing the fork transitions.

from a common transition that branches out into different paths are negligible compared to
other delays and thus the forked transitions will occabautthe same time. The hazard
discussed above is precluded by the isochronic fork assumption.

Hulgaardet alobserved in [6] that the isochronic fork assumption is too strong, and can
be relaxed as follows: the circuit will function correctly as long as forked transitions that
do not have a successor transition inghe (and thus are not acknowledged) occur before
they are used later in the execution of the circuit. This can be accomplished by adding
causal; constraints from such fork transitions to the appropriate transitions. For example,
li,+ must occur beforg + arrives at the non-inverted input of the uppep gate, other-
wise the gate will produce a spurious pulseoathis is monitored by constraify;. The
problem is to determine under which conditions the added constraints are satisfied.

Suppose that all gate delay rangesyare [2, 3] and that all wire delay ranges are

=[O0, 1] with the exception ot and3 which are to be determined. Hulgaard’s proce-
dure can check the constraints only for known values anhd[3, so he does find ranges
for a andp that satisfy the constraints by trial and error. It is not clear that all possible
ranges fox andp can be found using such procedure.

Our symbolic timing analysis on the other hand finds all possible valuasafmlf3 that
satisfy the constraints without iterations. First we write the four constraint equations corre-
sponding to each;. For example the equation for constrdipusingx+ as the fork transi-
tion is written as follows:

Technical Report ECE-95-1 University of Victoria

4. Timed representation of protocols 15

{max(w, +V,, w3 +Yy3+y,+Ys+ Q) +ys+ B}
—{wytw,tys+y OA, [Eq. 2]

Note that it is always the case that+y, < w; +y; +Yy, + Yy + a. Thus Eq. 2 can be
reduced to:

{2y+a+B} - {w} 04,

where we have dropped the subscripts of the operational labels. Likewise the other con-
straint equations are: 2+ vy} — {a} O A, {B+y+ w} - {w} OA; and {20+ 2y} -

{B} O A, The result of the timing analysis proves that all the constraints are satisfied if
a =0, 2] andP = [0, 4]. The solution is the shaded area shown in Figure 11. Note that the
circuit will function properly even i violates the isochronic fork assumption.

N

4

Figure 11. Solution polytope for delagsand.

Another example is a fully-handshake data read transaction betwaenaad arRAM
device (see Figure 12). A dual-rail encoding of the data signals [13] is used so that the
accept actiongckt) can be generated after the data is received. If thef@onstraints
are causal, it is evident from Proposition 4.3.4 that all the constraints are satisfied by the
operational links. In this example, the solution polytopg §,} consists of the complete
positive quadrant.

,,,,,, RAM _ .. __.
&
—» rd+ <4
& Yy
- datt
EA A .
5, v
‘Vﬂ'
Yo
% dati - -

Figure 12. Fully handshake protocols.

University of Victoria Technical Report ECE-95-1

16 5. Feasibility of the interface design

5. Feasibility of the interface design

The interface design conceptualization is facilitated by an appropriate timed framework
such as the one discussed in section 4. In a tsngedoperational links describe the inter-

nal operation of components while constraint links specify the desired environment. In
this section we develop a test to determine if an interface design is feasible, that is, it pro-
duces a correct environment for the components to be interconnected. The test involves
checking that the constraints are satisfied. Because no silicon has been assigned to the
interface at this stage, values for the interface operational delays are not known. Therefore
a symbolic timing analysis procedure is essential to perform a test for feasibility.

The starting point is to characterize what constitutes a valid specification. As mentioned
before, a timedTG that describes the interfacing protocol of a component captures not
only the internal operation of the device but also the expected behavior of the environ-
ment. Because the protocols that we are interested in are reactive, we also require that the
STG be live and safe. To design the interface, we constmnargedgraph which consists
of the original protocol graphs with additional operational links that constitute the inter-
face. There are some restrictions regarding the addition of new operational links. For
instance, interface links cannot be drawn to output transitions of the protocol graphs which
are generated internally by the components and are therefore inaccessible to the interface
logic. Finally to guarantee that the purpose of the protocols is accomplished, semantic
constraints must also be satisfied.

5.1 Valid specification

The significance of a valid specification is that it describes a correct behavior considering
both the internal operation and the environment of a component. A valid specification is
checked on the time reduction of a tinsaub.

Definition 5.1.1.- A time reduction of a timedtc TS = OPN Y, AOwhereTPN =
[P, T, F, M, Allis the untimedT1G S=[PN, Y, AL} wherePN = [P, T, F, MLl Furthermore
there is no partition defined in the place sePf

In the time reduction of a timesiTG, the time labels are removed from the original
graph and places are not partitioned into constraint and operational subsets.

Definition 5.1.2.-Let S=[PN, Y, Allbe a timedTG. Sis said to be a valid specification
if its time reduction has the following properties:

1. There is at least one simple cycle containing both transaiozasdal* .

2. In every simple cycle containing both transitiahsinda!*, the transitions alternate.

Technical Report ECE-95-1 University of Victoria

5. Feasibility of the interface design 17

3. There is one and only one token in every simple cycle of the graph.

The above properties reflect the fact that the protocols we are concerned with exhibit
cyclic behavior. Condition 1 assumes return-to-zero cycles. Condition 2 guarantees the
consistency of the graph. Condition 3 characterizes a live and safe graph.

5.2 Interface design andsTG feasibility

A correct interface implements the expected environment in both protocol graphs by gen-
erating the necessary input transitions. Note that input/output transitions in the protocol
specifications are output/input transitions of the interface. In the simplest case, where the
operational behavior of one specification emulates the environment of the other, the inter-
face reduces to wiring up the corresponding output/input pairs of transitions. In the gen-
eral case, the interface may need to perform protocol conversion. There are some
restrictions for the addition of operational interface links: it is not allowed to add any oper-
ational links to output transitions of the protocol graphs (output transitions are generated
by the internal circuitry of the components and cannot be modified by the interface), and
transitions on bundled lines (e.g., the data transfer bus lines) cannot be used to generate
control events.

A semantic specification is a valgtG containing selected transitions of the specifica-
tions which are joined only by constraint links.

Definition 5.2.1.-Let TS andTS, be two specifications with transition sdtsandT,,
and labeling functiond; andA,. Let T O T, O T, andA’ be the labeling function that
maps transitions of’ to the same signal transitions as givenApyandA,. A semantic
specification of TS and TS, is a valid timedstc TS = OPN, Y, A0 with
TPN =[F, T', F', My, N'Owhere all places are constraint places.

The semantic specification is meant to specify the goal to be achieved by exercising the
protocols [14]. For example, Figure 13a shows the semantic specification for a bus arbitra-
tion cycle. In words, it specifies that once the data transfer bus is seized by a agster (
the transaction must terminate-j before the bus can be taken over again.

Definition 5.2.2.- Given two valid specifications of two protocols together with their
associated semantic specification, a cometeis a timedsTc TS = [TPN, Y, A'[Isuch
that:

1. ThesTGs of the protocol and semantic specifications are subgraphs of the complete
STG.

University of Victoria Technical Report ECE-95-1

18 5. Feasibility of the interface design

2. Neither should interface operational links sink to output transitions of the protocol
specifications nor connect a transition of a set of bundled signals to a transition of a con-
trol signal.

3. For every constraint in the complstes there is a fork transition.

A completesTG describes the interface design. Condition 1 ensures that the protocol
specifications (internal behavior plus environment) as well as the semantic functionality
are taken into consideration for the interface design. Condition 2 forbids certain opera-
tional links. Condition 3 makes sure that the complete graph can be checked for constraint
satisfaction. We now state conditions under which a given interface design is feasible. For
this effect we shall use the symbolic timing analysis procedure discussed in section 4.3.

Definition 5.2.3.-A completesTGis called feasible if it is time-consistent.

In a time-consisterdTG all timing constraints are satisfied. We emphasize that timing
constraints in our framework not only specify timing relations between transitions but,
more importantly, they define the environment of a component. In this sense, checking
that the timing constraints of the complete graph are satisfied is equivalent to guaranteeing
that the environment of the components is properly generated by the interface.

It is possible that several designs for a given interface are feasible. Currently we are
investigating knowledge-based techniques to efficiently find feasible designs given the
protocols and the semantic specification. In the following example we show how different
interface designs can be measured by comparing their solutions of the symbolic timing
analysis.

5.3 Bus arbitration interface example

A design representing the bus arbitration interface presented in section 3 (see Figure 4) is
shown in Figure 13. The semantic specification (Figure 13a) specifies that once a transac-
tion commences, it must finish before the next transaction may take placeormpgete

STG representing the interface design is shown in Figure 13b. One can recognize the two
component protocols as subgraphs of the merged graph. New links (places) have been
added to input transitions that correspond to the interface paths. Such links are labeled
with & indicating that their values are unknown at this moment; however they represent
circuit delays (like thg links). The added interface links are compliant with condition 2 of
Definition 5.2.2. For instance, interface path délagorresponds to the logic and wiring

path that passes a request issued by the master to the arbiter.

Note that the timing relationship between the use of thel)uen@ the bus-free status
signal @) is inverted. One would expect that transiti@rsandB- should frame the utili-

Technical Report ECE-95-1 University of Victoria

5. Feasibility of the interface design 19

Figure 13. Bus arbitration controller: (a) semantic specification; (b) interface design.

zation of the bus (betwedn andb.) as shown in Figure 14a. HowevwevEebus allows

the designer to use the address strobe signal, which belongot®ilees indicator of the
status of the bus and thus observing the relationship shown in Figure 14b. Constraint link
A; monitor the possibility of a bus collision. All constraint plasgare causaldescribing

a precedence requirement) excapand4,, which are labeled with intervals [38) and

[90,) respectively. Let us investigate the effect of these two constraints on the unknown
interfaced delays.

. w B+ ¥ b K
.I T b1 ,I \AE"‘
. J * A v
‘ b "\ Yy_ B-
) E_A/ .l bl A/
(@ (b)

Figure 14. Bus busy status signal: (a) strobe relation; (b) actual relation.

First we write the constraint equations (see Eq. 1M fandA,. The fork transition for
both constraints is transitioBA+. The constraint equations are given by the following
expressions:

University of Victoria Technical Report ECE-95-1

20 5. Feasibility of the interface design

{Max (8, + 05+ Ya + Yo O + Vo)t — {33} 1 [30,)

{max (85 + 85+ Ya + Yp O * Vo)) U [90,)
We proceed to apply the symbolic timing analysis procedure discussed in the previous

section. We linearize thmaxterm (common to both equations) by considering two cases:

1.0+ 05+ YV, + ¥y 206+ Y,

{0, + 05+ V, + Yt — {03} U [30,)

{04+ 05+ Y, + Yo} 1[90,)
2.0+ 05+ Yo+ Vp< 05t Y,

{06 *+ Y2} — {33} 0 [30,)

{3+ Y} L[90,)

Using the following values for the known delays:= [15, 30],y, = [20, 80], and
Y, = [40, 100], one can write the following two sets of linear inequalities:

Case 1. Case 2.
—-Ca—C+d;—d;—d;<-30 -C+d3—-dg<-30
-Ca—C,—d,—d;<-90 -C,—dg<-90
15<¢,<30 15<¢,<30
20<c,< 80 20<c,< 80
40<c¢, <100 40< ¢, < 100
cG—-C,—C—d,—d;+d;<0 -CtC,+C,+d,+ds—dg<0
d=0,i=3..6 d=0,i=3..6

Figure 15a shows of the solution polytope &y 9,, ds;, & (one of the axis is labeled
o, + & to display the solution in three dimensions). The polytope is the volume bounded
by planes that extend to infinity in the directions shown by the five pointers, reflecting the
fact that arbitrary large delays are accommodated by the handshakes in the protocols.
Small values for the interface delays however can cause violations of the timing con-
straints. The relation between ths is shown in the polytope. For instance, the plane
below the pointer starting ad{ d,+d;, d5) = (30, 60, 0) is the region where the path
throughd, andd; is too fast with respect to thg path, which causes a violation &f.
Informally a delay-insensitive circuit is defined as a circuit whose correct operation is
independent of circuit delays. The bus arbitration interface is clearly not delay-insensitive,
otherwise its solution would consist of the whole positive octant.

Consider now a slightly different scenario: interface pahs removed from the
merged graph in Figure 13b. This new design is also feasible and its solution polytope is
shown in Figure 15b. To compare both designs, we form the projection of the solution pol-

Technical Report ECE-95-1 University of Victoria

6. Conclusions 21

da+ 0 () 3 (b) ©

Figure 15. Solution polytope fdy; = [30,) andA, = [90, «): (a) With interface patBy;
(b) without interface patBy; (c) projection of part (a).

ytope in Figure 15a into thel{, d,+ds) plane, which is shown in Figure 15c. Region A
depicts the permitted values for the deldysd,, andds for any valuedg = 0. The first
design has clearly a larger delay margin. Moreovey 3 75, then region B is added to the
projection of the solution, thus including completely the second design.

The information provided by the solution polytope can be advantageously used during
synthesis, for instance to guide the layout and routing tools or, once the final delays are
calculated in the final implemented circuit, to check that the final implementation com-
plies with the interface design. The solution polytope can also be used to compare inter-
face designs.

6. Conclusions

DAME, an expert microprocessor-based-systems designer, represents components at a finer
detail, the component protocol, so that during system integration it can design the required
interface circuitry. Our representation, based on a timed Petri net model, allows designers
to reason about circuit delays and timing constraints that are necessary to describe accu-
rately the protocols used by microprocessor components. In this paper we present how
such a design is produced, tmgrgingthe protocol graphs of the components to be inter-
connected. Moreover, we state conditions under which the design is feasible, that is, it
achieves its purpose (described by a semantic specification), and produces a correct envi-
ronment for the interconnected components (described by the timing constraints specified
in the protocols). Semantic and protocol specifications are represented uniformly in
DAME’s framework as timed signal transition grapssads). By using a symbolic timing
analysis procedure that finds tight bounds on unknown path delays, the interface design
can be proven feasible before an implementation is carried out, thus avoiding the expen-
sive iteration between design and synthesis.

University of Victoria Technical Report ECE-95-1

22 6. Conclusions

Acknowledgments

The first author wants to thank Karim Khordoc and Professor Ed Cerny of the University

of Montreal for an invaluable exchange of ideas regarding the modeling of hardware inter-
faces that took place during the author’s workterm at BNR (Ottawa), and to Allan Silburt

of BNR for making this interaction possible.

References

[1] T.-A. Chu, “On the models for designingLSI asynchronous digital systems,”
INTEGRATION, the VLSI journaho. 4, pp. 99-113, 1986.

[2] D.del Corso, H.Kirmann, and J. D. Nicoujicrocomputer buses and links
Academic Press, 1986.

[3] N.J. Dimopoulos, K. F. Li, and E. G. Manning, “DAME: a rule-base designer of
microprocessor-based systems”,Rroc. of the 3rd. International Conference of
Industrial & Engineering Applications of Artificial Intelligence and Expert Systems
pp. 716725, July 1990.

[4] M. A. Escalante and N.J. Dimopoulos, “Timing analysis for synthesis in micro-
processor interface design,” Proceedings of the Seventh High-Level Synthesis
Symposiumpp. 23-28, May. 1994.

[5] P.E. Green, “Protocol conversionEEE Trans. on Communicatigngp. 257—-268,
Mar. 1986.

[6] H.Hulgaard, S. M. Burns, T. Amon, and G. Borriello, “Practical applications of an
efficient time separation of events algorithm,’Hroc. ICCAD pp. 146-151, 1993.

[7]1 K. Khordoc, M. Dufresne, E. Cerny, P. A. Babkine, and A. Silburt, “Integrating
Behavior and Timing in executable specifications”Piroc. CHDL, pp. 385-402,
1993.

[8] L.Lavagno, “Synthesis and testing of bounded wire delay asynchronous circuits
from signal transition graphs,” Tech. Rep. UCB/ERL M92/140, U.C. Berkeley, Nov.
1992.

[9] A.J. Martin, “Programming in VLSI: From communicating processes to delay-
insensitive circuits,” inUT Year of Programming Institute on Concurrent
Programming(C. A. H. Hoare, ed.), pp. 1-64, Addison-Wesley, 1990.

[10] K. L. McMillan and D. L. Dill, “Algorithms for interface timing verification,” in
Proc. ICCD, pp. 48-51, 1992.

Technical Report ECE-95-1 University of Victoria

6. Conclusions 23

[11] C.J. Myers and T. H.-Y. Meng, “Synthesis of timed asynchronous circlB8E
Trans. on VLSI Systemsl. 1, no. 2, pp. 106-119, June 1993.

[12] J. A. Nestor and D. E. Thomas, “Behavioral synthesis with interfaces?ran.
ICCAD, pp. 112-115, 1986.

[13] C.D. Nielsen and A. J. Martin, “Design of a delay-insensitive multiply-accumulate
unit,” INTEGRATION, the VLSI journaho. 15, pp. 291-311, 1993.

[14] K. Okumura, “A formal protocol conversion method,” ftoc. ACM SIGCOMM
pp. 30-37, 1986.

[15] W. Reisig,Petri nets: An IntroductionSpringer-Verlag, Berlin, 1985.

[16] L.Y. Rosenblum and A.V. Yakovlev, “Signal graphs: From self-timed to timed
ones,” inProc. of the Intl. Workshop on Timed Petri Ngts. 199-207, July 1985.

[17] P. VanbekbergenSynthesis of Asynchronous Controllers from Graph-theoretic
SpecificationsPhD dissertation, Katholieke Universiteit Leuven, Sept. 1993.

[18] A.V. Yakovlev, “On limitations and extensions of STG model for designing
asynchronous control circuits,” Proc. ICCD, pp. 396—-400, 1992.

University of Victoria Technical Report ECE-95-1

