
Assessing the Feasibility of
Hardware Interface Designs

in Microprocessor-based Systems

Marco A. Escalante Nikitas J. Dimopoulos

Technical Report ECE-95-1

Department of Electrical and Computer Engineering
University of Victoria, BC CANADA

P.O. Box 3055, Victoria, B.C., V8W 3P6

March 1995

Abstract

In this paper we address the feasibility of an “abstract” interface design. DAME is

an expert microprocessor-based-systems designer. Once the system architecture

has been selected and the major components (processors, memories, IO devices)

have been instantiated from a component library, DAME designs the necessary glue

logic to integrate the system. Such interface design is carried out according to the

protocols followed by the components. The design is called “feasible” if it

achieves the desired functionality and satisfies the timing constraints of the proto-

cols. In this paper we address the problem of determining the feasibility of a design

prior to its implementation. Because timing is an important aspect of a correct

design, we use an interpreted timed Petri net to represent the timed behavior of

protocols. Using a technique called timing analysis for synthesis we can check if a

design is feasible even before logic synthesis is carried out.

1. Introduction 1

University of Victoria Technical Report ECE-95-1

1. Introduction

As the complexity of hardware systems increases, techniques that facilitate their design

and verification are invaluable to hardware designers. The DAME project aims to automate

the mechanical aspects of microprocessor-based system design [3]. DAME’s main strength

is its finer component representation down to the interfacing protocol level. DAME follows

a top/down design process in which first a system architecture is decided, then the major

components (processors, memories, and IO devices) are selected from a database accord-

ing to user design constraints such as type of application, throughput, cost, etc. The next

step is system integration, during which DAME designs the necessary glue logic. In this

paper we address the problem of verifying that such interface design is feasible, i.e. the

interface generates the necessary events at the expected times to accomplish the intended

inter-component communication, before synthesis of the design is attempted. In this way

not only the iteration of the design-synthesis-verification cycle can be broken but also an

estimate of the quality of a design can be calculated (defined as how much delay margin a

design possesses) which can be used to evaluate designs at a higher level of the design

process.

Recent research in asynchronous design [8] indicates that interface design can benefit

from a delay-insensitive design methodology which generates circuits that behave cor-

rectly even in the presence of variations on gate and wire delays. However it is not always

possible to neglect timing information corresponding to either internal circuit delays or

constraints on the environment for proper circuit operation [12]. This is particularly true in

the design of microprocessor-based systems whose protocols are required to meet hard

deadlines. For this purpose we use an interpreted timed Petri net which allows us to reason

about operational circuit delays and environmental timing constraints.

Our model is suitable for symbolic timing analysis that finds bounds on the delays of

the circuit to be synthesized before the actual circuit is implemented [4]. Delay-insensitiv-

ity is a special case of circuit design in which timing constraints are satisfied by any

implementation regardless of the circuit delays. Moreover synchronous and partial hand-

shake protocols can be considered as variations of the full handshake with missing event

precedence links, requiring less control circuitry and exhibiting better performance at the

expense of having to obey timing relationships for proper operation.

In the following section we survey related previous work. In section 3 a bus arbitration

interface is used to motivate this work. The timed representation and the symbolic timing

analysis is briefly presented in section 4. The formulation of the interface design as the

merging of protocol graphs is discussed in section 5. Finally future directions are pointed

out in the conclusions.

2 2. Related work

Technical Report ECE-95-1 University of Victoria

2. Related work

A microprocessor-based system is a collection of components which operate indepen-

dently of one another but are required to communicate and synchronize with the rest of the

system through communication structures called buses. The interface design problem

arises during system integration when components are blended into a single entity. In gen-

eral the design of an interface involves not only electrical and logical signal conditioning

but also protocol conversion.

Signal transition graphs or STG’s, a Petri net based representation formalism, have been

used to describe the behavior of asynchronous control circuits [16, 1]. STG’s were first

applied to the design of delay-insensitive circuits which assumes unbounded wire and gate

delays. Although a very powerful design concept, delay-insensitivity is not realistic for

describing the behavior of microprocessor components.

Pioneering work by Nestor and Thomas [12] identified the necessity of dealing with

timing constraints in the design of interfaces. Recently some work has been done in

extending STG’s to model circuit delays. Myers and Meng [11] used a conservative esti-

mate of gate delays and available environmental timing constraints to remove links of the

original STG specification of an asynchronous circuit that become redundant when timing

bounds on the gate delays are taken into consideration. Their synthesis procedure relies on

an algorithm that determines an upper bound on the maximum distance between two

events in an acyclic graph. The general case, which involves solving a system of min/max

inequalities, was shown in [10] to be NP-complete. An algorithm that finds exact bounds

on the maximum distance between two events was reported in [6] which can only analyze

systems with max terms.

During the integration phase of the design, which takes place before synthesis, the path

delays of the interface are still unknown. None of the aforementioned approaches can han-

dle unknown delays directly, i.e. without having to assume values for the unknown delays

and iteratively checking that the assumed values satisfy the given timing constraints. In [4]

we proposed a symbolic timing analysis that finds tightest bounds on variable (unknown)

delays using the available information in the form of circuit delays and timing constraints.

In this paper we show that such technique can be used as the backbone of a procedure that

can determine the feasibility of an interface design without requiring to generate first an

implementation of the interface. The importance of this method is that it allows the

designers to evaluate timing aspects of an abstract design at a higher level of the design

process.

3. Motivation: A bus arbitration interface design 3

University of Victoria Technical Report ECE-95-1

3. Motivation: A bus arbitration interface design

Interface logic is necessary to interconnect the components that comprise a system. Micro-

processor components transfer information in the form of signals through wires that inter-

connect their ports. According to the functionality, signals are grouped into different

interfacing capabilities (e.g., data transfer, interrupt, bus arbitration). The interfacing pro-

tocol enforces the correct exchange of information by defining the ordering and timing of

elementary operations or actions[2]. Signal transitions are used to encode the actions of

the protocol. In general the components that constitute the system may use different proto-

cols. One of the main tasks of the interface is to perform protocol conversion.

Consider for example a microprocessor system which consists of multiple masters

shown in Figure 1. A master is able to initiate a data transfer via a shared resource: the

data transfer bus. The bus arbitration lines are used to guarantee that at most one master

requesting the bus takes over the DTB at any given time. A bus arbitration protocol is

defined by the standard bus, and each of the masters may use a different bus arbitration

protocol. The interface circuit between a master and the standard bus generates the input

actions to both components.

The timing diagram of a typical bus arbitration protocol used by a master is shown in

Figure 2. The master signals to the arbiter that it wants to use the bus by asserting the out-

put REQ signal (a suffix ‘*’ in a signal name indicates that the signal uses negative logic,

i.e. it is asserted low), and it waits for ACK to become asserted before seizing the bus.

When the master ends its transaction, it releases REQ. The arbiter will then release ACK so

that another arbitration cycle can take place.

In Figure 2 input signals are shown underlined. The REQ/ACK signals are control signals

which can be asserted and negated, while the DTB is a group of lines that are initially in a

high-impedance state, and are driven by the master when it utilizes the bus. Control signal

Figure 1. Multi-master system.

arbitration

arbiter

interface

master

lines

interfaceinterfaceinterface

master

interface

data transfer bus

4 3. Motivation: A bus arbitration interface

Technical Report ECE-95-1 University of Victoria

transitions change the state from negated to asserted or viceversa, denoted respectively by

+/−, while the data bus lines can switch from disabled to enabled or viceversa, denoted

respectively by ↑/↓.

The Petri net shown in Figure 3a describes the protocol of Figure 2. Places in the net

model delays, and transitions of the net represent signal changes. There are two different

types of timed behavior: circuit delays and environmental constraints. A circuit delay rep-

resents the response time of the master and is modeled by operational places connected by

continuous links. For instance, in Figure 3 place p3 describes the internal delay in the mas-

ter from receiving the bus grant (a+) to driving the DTB lines. Timing constraints specify

how the external circuit should behave for proper operation. This is shown by constraint

places connected by dashed links. For example, place p2 in Figure 3 specifies that a grant

(a+) is expected to occur some time after the master issues a request (r+). The net in

Figure 3a is a marked graph (i.e., every place in the net has one input transition and one

output transition). Marked graphs can be represented more succinctly as synchronization

graphs [15] in which transitions are drawn as nodes and places are drawn as links as

shown in Figure 3b.

From the example above one can see that a protocol specification contains not only the

component’s internal operation but also the allowed behavior of the environment. It is the

interface’s task to generate an appropriate environment for the master. Figure 4 shows a

bus arbitration interface between a DMA device (master) and the VMEbus. In the structural

Figure 2. Master bus arbitration protocol.

Figure 3. Master bus arbitration protocol: (a) Petri net; (b) synchronization graph.

REQ*

ACK*

dtb

r+

a+

r−

b↑ b↓

a−

r+ a+

r−

b↑

b↓

a−

p1

p2

p3

p4

p5

p6

r+
a+

b↑

b↓r−

a−

p1

p2

p3

p4

p5

p6

(a) (b)

3. Motivation: A bus arbitration interface design 5

University of Victoria Technical Report ECE-95-1

view the connectivity of input and output signals can be identified. The DMA device has a

pair of control signals, while the VMEbus protocol uses three control signals and one status

signal (BUSFREE).

The corresponding protocols are shown in Figure 4b. In the protocol graphs, the follow-

ing shorthands are used for the names of the signals: HREQ is r, HLDA is a, the data transfer

bus is b, BR is R, BG is G, BBSY is GA and BUSFREE is B. The DMA device uses a variation

of the fully handshaken protocol shown in Figure 3. The difference is that the request sig-

nal is released before completion of the bus transaction. This fact has important repercus-

sions in the design. In both protocols the release of the request triggers a sequence of

events that eventually will grant the bus to a master. However while in the fully hand-

shaken protocol the release of request occurs when the bus is already available, in the par-

tial handshake (shown in Figure 4b right) potentially another master can take over the bus

before the previous master relinquishes the lines if delay γc is large compared to the other

delays. Therefore in the latter protocol it is necessary to check that such hazard never

occurs. Constraint ∆c states that the bus lines should be released before a new cycle starts.

Figure 4. Bus arbitration interface: (a) structural view; (b) behavioral view.

BG*
BBSY*

BR*

HREQ*

HLDA*

Interface

VMEbus DMA

(a)

(b)

VMEbus

DMA
R+

G+

GA+

B+

γ3

∆1

γ1

∆9

γ2

∆2

∆5

∆10

R−

G−

GA−
B−

∆3

∆4

a+

r+

a−

r−

b↑

b↓

γa

γb

γc

γd

∆b

∆a

∆c

BUSFREE

dtbusdata transfer bus

∆6

∆7

∆8

dtbus

6 4. Timed representation of protocols

Technical Report ECE-95-1 University of Victoria

Although it can be thought that the fully handshake is a more robust protocol, this comes

at a price. The partial handshake is faster because it allows the arbitration to take place

(the path from r− to a+) at the same time as the transaction is completed (b↓).

The VMEbus bus arbitration protocol is more involved. It defines the arbiter’s behavior.

After a request is received (R+) a grant is generated (G+). A master being granted the bus

acknowledges the grant by asserting the grant-acknowledge signal (GA+) to which the

arbiter responds by releasing grant (G−). GA is used to speed up the arbitration similarly to

the partial handshake by allowing the arbitration to take place while the last part of the

transaction is still in progress. The master must monitor the availability of the bus (B)

before driving the bus lines.

The interface reads the output events of both protocols and generates the necessary

input events. In Figure 4 the components to be interconnected follow different protocols

so that protocol conversion is required. It is not possible to check if the constraint links are

satisfied using conventional verification techniques because they require that the interface

delays δ be known. Instead we find the tightest bounds on the delays δ such that the timing

constraints are satisfied. If there is no such set of values then the interface must be rede-

signed (e.g. by modifying some or all of the δ links in the merged graph or by choosing

different components). Otherwise those bounds can be used to select an appropriate target

technology and guide time-driven synthesis tools. Finally a correct realization of the inter-

face must not exceed the bounds computed by the analysis.

In the following section we discuss the formal tools that lead to a symbolic timing anal-

ysis for a subclass of Petri nets, namely the subclass that can represent AND and OR causal-

ity [18].

4. Timed representation of protocols

In the following subsection we introduce our timed STG representation. Then our symbolic

timing analysis is posed as a transposition of the constraint satisfaction problem, namely

given a set of known operational delays and timing constraints, determine possible values

of unknown interface path delays. In microprocessor-based system design, the known

operational delays and timing constraints correspond respectively to circuit delays and

timing constraints specified in the component data sheets, while the unknown path delays

are the delays of the interface logic that is yet to be synthesized.

4. Timed representation of protocols 7

University of Victoria Technical Report ECE-95-1

4.1 Timed Petri net model

A timed Petri Net is a quintuple TPN = 〈P, T, F, M0, Λ〉 where P is a non-empty set of

places, T is a non-empty set of transitions, F ⊆ (P × T) ∪ (T × P) is the flow relation,

M: P → N is the marking function, and Λ: P → I+ is the time labeling function that assigns

to each place a non-negative compact interval λ ∈ I+. N is the set of the natural numbers

and I+ is the set of non-negative compact real intervals.

The set of places is partitioned into two subsets Po and Pc. Time labels assigned to

places belonging to Po, the set of operational places, are used to model circuit delay. Time

labels assigned to places belonging to Pc, the set of constraint places, are used to specify

required behavior of the environment for proper operation of the circuit. The flow function

is naturally partitioned by the sets Po and Pc, i.e., F = Fo ∪ Fc where Fo ⊆ (Po × T) ∪
(T × Po) and Fc ⊆ (Pc × T) ∪ (T × Pc). The preset (postset) of a transition t is the set of

incoming places to (outgoing places from) t and is denoted •t (t•). The intersection of •t

(t•) with Po is denoted as •to (to•), likewise for •tc (tc•). The firing rule of the Petri net is

extended accordingly to take into account the different behavior of operational and con-

straint places.

Firing rule :

1. A transition t is enabled when every place p ∈ •to contains a token.

2. An enabled transition fires immediately. When it fires, the transition sends tokens to

every place p ∈ t• and anti-tokens to every place p ∈ •t.

3. An operational place p labelled with λp = [τmin, τmax] upon receiving a token at time τ
makes it visible to transitions t ∈ p• at time τ + τx, where τx ∈ λp. The token is held by the

place until it is annihilated by an anti-token.

4. A constraint place p labelled with λp = [τmin, τmax] upon receiving a token at time τ
holds it during the interval [τ + τmin, τ + τmax]. If the constraint place receives an anti-token

when it does not hold a token, it flags a constraint violation.

The use of anti-tokens is our mechanism of assigning to the places the responsibility of

flagging violations.

4.2 Timed signal transition graphs

Ports are designated by unique names. Input port names are written underlined, e.g., a, b,

c, while output port names are written as a, b, c. Signals carry the values of ports through

wires. Let X be the set of input signals and Z the set of non-input signals of a circuit. The

set of signals is Y = X ∪ Z. The set of signal transitions (or actions) is A = Y × { +, −, ↑, ↓).

8 4. Timed representation of protocols

Technical Report ECE-95-1 University of Victoria

A pair (a, +), written as a+, represents a transition of signal a from negated to asserted.

Likewise the other transition symbols represent signal transitions from asserted to

negated, from disabled to enabled, and from enabled to disabled respectively.

STG’s are Petri nets whose transitions are interpreted as signal transitions. A timed STG

is the triplet 〈TPN, Y, L〉 where TPN is a marked timed Petri net, Y is a set of signals, and

L: T → A is a labelling function which assigns transitions t ∈ T of the Petri net to signal

transitions a ∈ A.

Not every interpretation of a Petri net describes a correct behavior of a circuit (e.g., if

two successive transitions of the Petri net are labelled with the same signal transition). The

validity of an STG can be checked by ensuring that the corresponding state graph is consis-

tent [17]. The validity of timed STG’s is further discussed in section 5.1. Several synthesis

techniques for STG’s have been reported in the literature [8, 11, 17]. The following defini-

tion states under which circumstances the time behavior of an STG is said to be time-con-

sistent.

Definition 4.2.1.- A timed STG is time-consistent if no constraint place flags a violation

during any possible execution of the STG.

In the following subsection we develop the analytical machinery to determine if a timed

STG is time-consistent.

4.3 Symbolic timing analysis

In this subsection we formulate the time-consistency of periodic timed STG’s as an optimi-

zation problem that avoids the enumeration of all possible executions. We use interval

arithmetic to compute the time of occurrence of transitions due to operational places.

Let I be the set of real compact intervals. An interval operation ⊗ for α, β ∈ I is defined

by:

α ⊗ β = {a ⊗ b : a ∈ α ∧ b ∈ β}

In particular expressions for interval addition, subtraction, and min and max functions

are given by:

α + β = [amin + bmin, amax + bmax]

α − β = [amin − bmax, amax − bmin]

min (α, β) = [min (amin, bmin), min (amax, bmax)]

max (α, β) = [max (amin, bmin), max (amax, bmax)]

where α = [amin, amax] and β = [bmin, bmax].

4. Timed representation of protocols 9

University of Victoria Technical Report ECE-95-1

Consider the Petri net subclass of marked graphs (|•p| = |p•| = 1, and thus places can be

drawn as links between two transitions). Transition d in Figure 5 has three incoming oper-

ational places shown as links labelled with intervals γi, i=1..3. The occurrence times of

transitions a, b and c are also shown in Figure 5. The firing rule states that transition d sees

a token in each of its incoming places at any time during the corresponding shadowed

interval, and d is enabled when all three tokens on the incoming places are made visible to

d. This occurs within the interval max (τa + γ1, τb + γ2, τc + γ3).

A constraint place between two transitions a and b (see Figure 6) signals a violation iff

τb does not occur within the constraint interval after the occurrence of τa. A constraint

place is said to be time-consistent if it does not signal a violation under any possible exe-

cution of the STG. Let τx
i denote the time of the ith occurrence of transition x. To determine

if the place ever signals a violation under any possible execution of the STG, one has to

check the bounds on the time separation from τb
i to τa

i, written τb
i − τa

i.

Definition 4.3.1.- A constraint place is time-consistent if for all occurrences i:

τb
i − τa

i ⊆ ∆ [Eq. 1]

Figure 5. Firing of a transition: (a) AND causality; (b) OR causality.

Figure 6. Fork transition for constraint ∆.

a b c

d

γ1 γ3

γ2

γ1

τa

γ2

τb

γ3

τc

τd

time

time

time

time

a- b-

c-

+

a

b

c

γ1 γ2

γ1

(a)

(b)

a

∆
b

x1

x2

pq

rs

t

u

10 4. Timed representation of protocols

Technical Report ECE-95-1 University of Victoria

Proposition 4.3.2.- An STG is time-consistent iff all its constraint places are time-con-

sistent.

Proof.- It follows from Definition 4.2.1.

To compute the time interval difference in Eq. 1, we unfold the STG starting from the

initial marking. The resulting unfolded graph is acyclic and infinite. Figure 7 shows a sim-

ple protocol between two signals and its corresponding unfolded graph. In our application

we require that the execution of a protocol graph result in periodic behavior. Thus, after a

finite transient, Eq. 1 becomes independent of the occurrence i. A common ancestor of

both transitions a and b from which τb − τa can be computed is called a fork transition.

Definition 4.3.3.- A transition x is called a fork transition for constraint ∆ from a to b if

there exist two lattices in the unfolded graph whose common least upper bound is x, and

with greatest lower bounds a and b respectively such that, for every node in each lattice

except x, all its ancestors belong to the corresponding lattice.

For example the fork transition for ∆ in Figure 6 is x1. Note that s does not qualify as a

fork transition because r, which is an ancestor of t, does not belong to the lattice from s to

b. The fork transition is not necessarily unique: x2 in Figure 6 is also a fork transition for

∆. However the choice of fork transition is immaterial for the evaluation of Eq. 1.

After a fork transition x has been identified, the time separation is computed as the

interval difference between the occurrence times of transitions b and a in the unfolded

graph relative to x. For example the separation between transitions b+i and a+i in Figure 7

for any cycle i > 0 (the first cycle corresponds to i=0) is {max (γ2 + γ4 + γ1, γ3 + γ5)} −
{ γ2 + γ4}. The fork transition of b+i and a+i is b+i-1.

A causal constraint is a constraint place labeled [0, ∞). The following proposition is

useful to simplify the timing analysis.

Figure 7. Simple signal transition graph and a partial view
of its unfolded infinite acyclic graph.

a+
b+

a-
b-

a+
b+

a-
b-

a+
b+

a-

b-

γ1

γ2
γ3

γ4

γ1

γ2
γ3

γ4
γ5

γ5

γ1

γ2
γ3

γ4 γ5

i=0

i=1

4. Timed representation of protocols 11

University of Victoria Technical Report ECE-95-1

Proposition 4.3.4.- Let ∆ be a causal constraint from a to b. If a is a fork transition for

∆, then ∆ is always satisfied.

Proof.- If a is a fork transition, then τb − τa can be computed by traversing a lattice

starting from a, that yields a non-negative interval. It follows that if ∆ is causal, it is

always satisfied.

Eq. 1 involves the subtraction of interval expressions, each possibly containing max

terms. Thus Eq. 1 is a nonlinear interval expression. Using an approach adapted from [10],

it is possible to solve the constraint satisfaction problem by solving first a finite set of sub-

problems. A subproblem is produced by choosing a winner for each of the max terms. The

solution of each subproblem can be formulated as a linear program which finds the mini-

mum and maximum values of a linear interval expression (i.e., with the max terms

removed) subject to the γi intervals and to the conditions imposed by the choices of win-

ners in the max terms, which are also linear expressions on γi. The solution of the original

problem is the union of the solutions of all subproblems. For notational clarity, in the

sequel we denote intervals with Greek letters (e.g., γ, ∆) and a particular value within the

interval with the Latin alphabet (e.g., c ∈ γ).

Consider for example the graph shown in Figure 8. The constraint satisfaction equation

is τd − τe ⊆ ∆, where τd = max(γ1, γ2 + γ3) + γ4, and τe = γ2 + γ5 (a is the fork transition).

There are two possible choices of winners for the unique max term. The subproblem

obtained by choosing γ2 + γ3 ≥ γ1 generates the following linear program:

min/max {c3 + c4} − {c5}

subject to

ci ∈ γi, i = 1..5

c1 − c2 − c3 ≤ 0

where the conditions ci ∈ γi can be expanded into the conjunction of inequalities ci ≤ γi,max

and −ci ≤ −γi,min. For γ1 = [0, 90], γ2 = [0, 100], and γ3 = γ4 = γ5 = [10, 20], the solution of

τd − τe is [0, 30]. Similarly for the subproblem γ1 ≥ γ2 + γ3, τd − τe = [0, 100]. Thus for any

∆ such that [0, 100] ⊆ ∆, the constraint place of Figure 8 is time-consistent.

Figure 8. Constraint satisfaction.

a

b

c

d
e

γ1

∆

γ2

γ3 γ5

γ4

12 4. Timed representation of protocols

Technical Report ECE-95-1 University of Victoria

We now state the symbolic timing analysis formulation. Suppose that some of the oper-

ational intervals are unknown, denoted by δi. The constraint equations are now written in

terms of known γi’s, unknown δj’s, and constraint ∆k’s. As before we can construct linear

subproblems of the constraint satisfaction problem corresponding to a particular winner

choice for each max term. For a given subproblem, a value yk that satisfies the left-hand

side of a constraint equation for ∆k (i.e., yk ∈ τb − τa) can be written as yk = fb(ci, dj) −
fa(ci, dj), where fa and fb are two linear functions on the ci’s and dj’s such that ci ∈ γi and

dj ∈ δj. According to Eq. 1, yk ∈ ∆k. Possible values for the δj’s must satisfy the following

conditions:

yk ∈ ∆k, k= 1..L,

ci ∈ γi, i = 1..M,

dj ≥ 0, j = 1..N, and

conditions given by the choice of max terms.

where L is the number of constraint ∆k’s, M is the number of known operational γi’s, and N

is the number of unknown δj’s.

The above conditions for a particular subproblem describe a set of feasible points

{ ci, dj} which, when non-empty, is delimited by a (possibly unbounded) convex polytope.

A convex polytope is the convex hull of its vertices, thus finding a finite number of verti-

ces suffices to characterize a particular solution set (if the polytope is unbounded, only

additional direction vectors describing the edges to infinity are required). Let

poly= {ci, dj} be the union of all the polytopes generated by the particular solutions. The

total solution is the largest set {dj* } such that {ci, dj* } ∈ poly for all values ci ∈ γi .

Transition d in Figure 5a fires when all places in •d make a token visible. This is the

standard AND causality in Petri nets. A complementary behavior, called OR causality in

[18] can be described as follows: a transition fires as soon as one of the incoming places to

the transition makes the token visible. (In [7] the terms AND/OR causality are referred as

latest/earliest timing relationships respectively.) This is depicted in Figure 5b. Transition

c- occurs as soon as the first of a- or b- occurs. This happens within the interval min (τa- +
γ1, τb- + γ2). The OR behavior can be represented using standard Petri net constructs [18].

Our method can also handle nets with OR causality by replacing the max terms with min

terms (a choice of winner in a min term generates a condition which is also linear). Note

that marked graphs is a proper subset of the class of nets that can describe AND and OR

causality.

Consider the circuit implementation of a D-element shown in Figure 9 which was

reported in [6]. The D-element synchronizes two components that use handshakes to com-

municate. The left handshake li+→lo+→li−→lo− is interspersed with the right handshake

4. Timed representation of protocols 13

University of Victoria Technical Report ECE-95-1

ro+→ri+→ro−→ri− as described by the STG shown in Figure 10a. A state variable x is

used to differentiate two half cycles. Martin [9] uses the D-element to implement sequenc-

ing between two processes via the handshakes. Observe that the left handshake is passive,

i.e., it is initially in a waiting state. Both the AND gate with inverted inputs and the buffer

outside the D-element simulate its environment by generating the desired acknowledg-

ment transitions after a gate delay.

Figure 10b shows in detail the sequence of transitions in one cycle of the D-element.

Operational links represent as usual the behavior of the circuit. Delays through gates are

labelled with γi, and to distinguish wire delays, they are labelled with ωi. The wire delays

labelled with α and β and the constraint links have a special meaning as it will be clear

shortly. Assume that the S-R flip-flop and all signals are initially set at zero. After a reset

pulse, the first li+ transition is generated. That transition switches the S-R flip-flop to one,

which in turn causes transition lo+ to occur. After the reset pulse the AND gate behaves as

an inverter and so it generates li−. Now the AND gate of the D-element causes transition

ro+, which is propagated to ri+. The flip-flop is reset, which subsequently produces the

sequence ro−→ri−→lo−. If a transition is propagated through different paths to different

parts of the circuit, new transitions are created to take into consideration that the paths

may have different delays. For example, transition li+ forks transitions li1+ and li2+ to rep-

resent its arrival at the inverted input of the AND gate and the S input of the flip-flop

respectively.

In the circuit implementation, malfunction may occur due to differences in the path

delays of signals ri , li , and x to different parts of the circuit. For example, if transition li1+
at the inverted input of the AND gate occurs after it has been propagated to x1+, an unde-

sirable glitch will appear at the output of the gate. In order to avoid these hazards, Martin

[9] suggested to assume isochronic forks, i.e., that the delays of forked transitions created

Figure 9. Circuit implementation of the D-element.

li 1

li 2li

x1

x2

ri 1

ri 2 ri

ro

lo
reset

S
R

Q x

D-element

14 4. Timed representation of protocols

Technical Report ECE-95-1 University of Victoria

from a common transition that branches out into different paths are negligible compared to

other delays and thus the forked transitions will occur at about the same time. The hazard

discussed above is precluded by the isochronic fork assumption.

Hulgaard et al observed in [6] that the isochronic fork assumption is too strong, and can

be relaxed as follows: the circuit will function correctly as long as forked transitions that

do not have a successor transition in the STG (and thus are not acknowledged) occur before

they are used later in the execution of the circuit. This can be accomplished by adding

causal ∆i constraints from such fork transitions to the appropriate transitions. For example,

li1+ must occur before x1+ arrives at the non-inverted input of the upper AND gate, other-

wise the gate will produce a spurious pulse at ro; this is monitored by constraint ∆1. The

problem is to determine under which conditions the added constraints are satisfied.

Suppose that all gate delay ranges are γi = [2, 3] and that all wire delay ranges are

ωi = [0, 1] with the exception of α and β which are to be determined. Hulgaard’s proce-

dure can check the constraints only for known values of α and β, so he does find ranges

for α and β that satisfy the constraints by trial and error. It is not clear that all possible

ranges for α and β can be found using such procedure.

Our symbolic timing analysis on the other hand finds all possible values for α and β that

satisfy the constraints without iterations. First we write the four constraint equations corre-

sponding to each ∆i. For example the equation for constraint ∆2 using x+ as the fork transi-

tion is written as follows:

Figure 10. Behavior of the D-element: (a) abstract behavior;
(b) detailed behavior showing the fork transitions.

li+ x+

lo+

li -

ro+

ri +

x-

ro-

ri -

lo-

li1+

li2+

li1- li 2-x1+

x1-

x2+

x2-

ri 1+

ri 1-

ri2+

ri2-

li+

x+ lo+ li -

ro+

ri+

x-

ro-

ri -
lo-

α

β

α

β

ω3 γ3

∆1

∆2

∆3

∆4

(a) (b)

γ1

γ2

γ4

γ5

γ6

γ7

γ8
γ9

γ10
γ11

γ12

ω1

ω2
ω4

ω5

ω6 ω7

ω8

4. Timed representation of protocols 15

University of Victoria Technical Report ECE-95-1

{ max(ω2 + γ2, ω3 + γ3 + γ4 + γ5 + α) + γ6 + β}

− {ω3 + ω4 + γ3 + γ4} ⊆ ∆2 [Eq. 2]

Note that it is always the case that ω2 + γ2 < ω3 + γ3 + γ4 + γ5 + α. Thus Eq. 2 can be

reduced to:

{2γ + α + β} − {ω} ⊆ ∆2

where we have dropped the subscripts of the operational labels. Likewise the other con-

straint equations are: {2ω + γ} − {α} ⊆ ∆1, {β + γ + ω} − {ω} ⊆ ∆3, and {2ω + 2γ} −
{ β} ⊆ ∆4. The result of the timing analysis proves that all the constraints are satisfied if

α = [0, 2] and β = [0, 4]. The solution is the shaded area shown in Figure 11. Note that the

circuit will function properly even if β violates the isochronic fork assumption.

Another example is a fully-handshake data read transaction between a CPU and a RAM

device (see Figure 12). A dual-rail encoding of the data signals [13] is used so that the

accept action (ack+) can be generated after the data is received. If the four ∆-constraints

are causal, it is evident from Proposition 4.3.4 that all the constraints are satisfied by the

operational links. In this example, the solution polytope {δ1, δ2} consists of the complete

positive quadrant.

Figure 11. Solution polytope for delays α and β.

Figure 12. Fully handshake protocols.

α

β

4

2

rd+

ack+

rd-

ack-

dat↑

rd+

dat↓

rd-

δ1

δ2

δ1

δ2

∆

∆

∆ ∆
γ1

γ2

γa

γb

dat↑

dat↓

γ3

γ3

CPU RAM

16 5. Feasibility of the interface design

Technical Report ECE-95-1 University of Victoria

5. Feasibility of the interface design

The interface design conceptualization is facilitated by an appropriate timed framework

such as the one discussed in section 4. In a timed STG, operational links describe the inter-

nal operation of components while constraint links specify the desired environment. In

this section we develop a test to determine if an interface design is feasible, that is, it pro-

duces a correct environment for the components to be interconnected. The test involves

checking that the constraints are satisfied. Because no silicon has been assigned to the

interface at this stage, values for the interface operational delays are not known. Therefore

a symbolic timing analysis procedure is essential to perform a test for feasibility.

The starting point is to characterize what constitutes a valid specification. As mentioned

before, a timed STG that describes the interfacing protocol of a component captures not

only the internal operation of the device but also the expected behavior of the environ-

ment. Because the protocols that we are interested in are reactive, we also require that the

STG be live and safe. To design the interface, we construct a merged graph which consists

of the original protocol graphs with additional operational links that constitute the inter-

face. There are some restrictions regarding the addition of new operational links. For

instance, interface links cannot be drawn to output transitions of the protocol graphs which

are generated internally by the components and are therefore inaccessible to the interface

logic. Finally to guarantee that the purpose of the protocols is accomplished, semantic

constraints must also be satisfied.

5.1 Valid specification

The significance of a valid specification is that it describes a correct behavior considering

both the internal operation and the environment of a component. A valid specification is

checked on the time reduction of a timed STG.

Definition 5.1.1.- A time reduction of a timed STG TS = 〈TPN, Y, ∆〉 where TPN =

〈P, T, F, M0, Λ〉, is the untimed STG S = 〈PN, Y, ∆〉, where PN = 〈P, T, F, M0〉. Furthermore

there is no partition defined in the place set of PN.

In the time reduction of a timed STG, the time labels are removed from the original

graph and places are not partitioned into constraint and operational subsets.

Definition 5.1.2.- Let S = 〈PN, Y, ∆〉 be a timed STG. S is said to be a valid specification

if its time reduction has the following properties:

1. There is at least one simple cycle containing both transitions a! and a!* .

2. In every simple cycle containing both transitions a! and a!* , the transitions alternate.

5. Feasibility of the interface design 17

University of Victoria Technical Report ECE-95-1

3. There is one and only one token in every simple cycle of the graph.

The above properties reflect the fact that the protocols we are concerned with exhibit

cyclic behavior. Condition 1 assumes return-to-zero cycles. Condition 2 guarantees the

consistency of the graph. Condition 3 characterizes a live and safe graph.

5.2 Interface design and STG feasibility

A correct interface implements the expected environment in both protocol graphs by gen-

erating the necessary input transitions. Note that input/output transitions in the protocol

specifications are output/input transitions of the interface. In the simplest case, where the

operational behavior of one specification emulates the environment of the other, the inter-

face reduces to wiring up the corresponding output/input pairs of transitions. In the gen-

eral case, the interface may need to perform protocol conversion. There are some

restrictions for the addition of operational interface links: it is not allowed to add any oper-

ational links to output transitions of the protocol graphs (output transitions are generated

by the internal circuitry of the components and cannot be modified by the interface), and

transitions on bundled lines (e.g., the data transfer bus lines) cannot be used to generate

control events.

A semantic specification is a valid STG containing selected transitions of the specifica-

tions which are joined only by constraint links.

Definition 5.2.1.- Let TS1 and TS2 be two specifications with transition sets T1 and T2,

and labeling functions ∆1 and ∆2. Let T′ ⊆ T1 ∪ T2 and ∆′ be the labeling function that

maps transitions of T′ to the same signal transitions as given by ∆1 and ∆2. A semantic

specification of TS1 and TS2 is a valid timed STG TS′ = 〈TPN′, Y′, ∆′〉 with

TPN′ = 〈P′, T′, F′, M0′, Λ′〉 where all places are constraint places.

The semantic specification is meant to specify the goal to be achieved by exercising the

protocols [14]. For example, Figure 13a shows the semantic specification for a bus arbitra-

tion cycle. In words, it specifies that once the data transfer bus is seized by a master (b+)

the transaction must terminate (b−) before the bus can be taken over again.

Definition 5.2.2.- Given two valid specifications of two protocols together with their

associated semantic specification, a complete STG is a timed STG TS′ = 〈TPN′, Y′, ∆′〉 such

that:

1. The STG’s of the protocol and semantic specifications are subgraphs of the complete

STG.

18 5. Feasibility of the interface design

Technical Report ECE-95-1 University of Victoria

2. Neither should interface operational links sink to output transitions of the protocol

specifications nor connect a transition of a set of bundled signals to a transition of a con-

trol signal.

3. For every constraint in the complete STG there is a fork transition.

A complete STG describes the interface design. Condition 1 ensures that the protocol

specifications (internal behavior plus environment) as well as the semantic functionality

are taken into consideration for the interface design. Condition 2 forbids certain opera-

tional links. Condition 3 makes sure that the complete graph can be checked for constraint

satisfaction. We now state conditions under which a given interface design is feasible. For

this effect we shall use the symbolic timing analysis procedure discussed in section 4.3.

Definition 5.2.3.- A complete STG is called feasible if it is time-consistent.

In a time-consistent STG all timing constraints are satisfied. We emphasize that timing

constraints in our framework not only specify timing relations between transitions but,

more importantly, they define the environment of a component. In this sense, checking

that the timing constraints of the complete graph are satisfied is equivalent to guaranteeing

that the environment of the components is properly generated by the interface.

It is possible that several designs for a given interface are feasible. Currently we are

investigating knowledge-based techniques to efficiently find feasible designs given the

protocols and the semantic specification. In the following example we show how different

interface designs can be measured by comparing their solutions of the symbolic timing

analysis.

5.3 Bus arbitration interface example

A design representing the bus arbitration interface presented in section 3 (see Figure 4) is

shown in Figure 13. The semantic specification (Figure 13a) specifies that once a transac-

tion commences, it must finish before the next transaction may take place. The complete

STG representing the interface design is shown in Figure 13b. One can recognize the two

component protocols as subgraphs of the merged graph. New links (places) have been

added to input transitions that correspond to the interface paths. Such links are labeled

with δ indicating that their values are unknown at this moment; however they represent

circuit delays (like the γ links). The added interface links are compliant with condition 2 of

Definition 5.2.2. For instance, interface path delay δ1 corresponds to the logic and wiring

path that passes a request issued by the master to the arbiter.

Note that the timing relationship between the use of the bus (b) and the bus-free status

signal (B) is inverted. One would expect that transitions B+ and B− should frame the utili-

5. Feasibility of the interface design 19

University of Victoria Technical Report ECE-95-1

zation of the bus (between b↑ and b↓) as shown in Figure 14a. However VMEbus allows

the designer to use the address strobe signal, which belongs to the DTB, as indicator of the

status of the bus and thus observing the relationship shown in Figure 14b. Constraint link

∆c monitor the possibility of a bus collision. All constraint places ∆i are causal (describing

a precedence requirement) except ∆3 and ∆4, which are labeled with intervals [30, ∞) and

[90, ∞) respectively. Let us investigate the effect of these two constraints on the unknown

interface δ delays.

First we write the constraint equations (see Eq. 1) for ∆3 and ∆4. The fork transition for

both constraints is transition GA+. The constraint equations are given by the following

expressions:

Figure 13. Bus arbitration controller: (a) semantic specification; (b) interface design.

Figure 14. Bus busy status signal: (a) strobe relation; (b) actual relation.

R+

G+

GA+

B+

R−

G−

GA−

B−

a+

r+

a−

r−

b↑

b↓

δ1

δ2
δ3

δ4

δ5

δ7

δ6

γa

γb

γc

γd

∆b

∆a

γ3

∆1

γ1

∆9

γ2

∆2

∆5

∆3

∆4

∆6

∆7

∆8

∆c

γx

γy

b↑

b↓

∆x

∆y

(a)

(b)

(a) (b)

B+

B−

b↑

b↓

γx

γy B−

b↑

b↓

B+
∆c

20 5. Feasibility of the interface design

Technical Report ECE-95-1 University of Victoria

{max (δ4 + δ5 + γa + γb, δ6 + γ2)} − {δ3} ⊆ [30, ∞)

{max (δ4 + δ5 + γa + γb, δ6 + γ2)} ⊆ [90, ∞)

We proceed to apply the symbolic timing analysis procedure discussed in the previous

section. We linearize the max term (common to both equations) by considering two cases:

1. δ4 + δ5 + γa + γb ≥ δ6 + γ2

{δ4 + δ5 + γa + γb} − {δ3} ⊆ [30, ∞)

{δ4 + δ5 + γa + γb} ⊆ [90, ∞)

2. δ4 + δ5 + γa + γb ≤ δ6 + γ2

{ δ6 + γ2} − {δ3} ⊆ [30, ∞)

{ δ6 + γ2} ⊆ [90, ∞)

Using the following values for the known delays: γ2 = [15, 30], γa = [20, 80], and

γb = [40, 100], one can write the following two sets of linear inequalities:

Figure 15a shows of the solution polytope for δ3, δ4, δ5, δ6 (one of the axis is labeled

δ4 + δ5 to display the solution in three dimensions). The polytope is the volume bounded

by planes that extend to infinity in the directions shown by the five pointers, reflecting the

fact that arbitrary large delays are accommodated by the handshakes in the protocols.

Small values for the interface delays however can cause violations of the timing con-

straints. The relation between the δ’s is shown in the polytope. For instance, the plane

below the pointer starting at (δ3, δ4+δ5, δ6) = (30, 60, 0) is the region where the path

through δ4 and δ5 is too fast with respect to the δ3 path, which causes a violation of ∆3.

Informally a delay-insensitive circuit is defined as a circuit whose correct operation is

independent of circuit delays. The bus arbitration interface is clearly not delay-insensitive,

otherwise its solution would consist of the whole positive octant.

Consider now a slightly different scenario: interface path δ6 is removed from the

merged graph in Figure 13b. This new design is also feasible and its solution polytope is

shown in Figure 15b. To compare both designs, we form the projection of the solution pol-

Case 1. Case 2.

− ca − cb + d3 − d4 − d5 ≤ -30 − c2 + d3 − d6 ≤ -30

− ca − cb − d4 − d5 ≤ -90 − c2 − d6 ≤ -90

15 ≤ c2 ≤ 30 15 ≤ c2 ≤ 30

20 ≤ ca ≤ 80 20 ≤ ca ≤ 80

40 ≤ cb ≤ 100 40 ≤ cb ≤ 100

c2 − ca − cb − d4 − d5 + d6 ≤ 0 − c2 + ca + cb + d4 + d5 − d6 ≤ 0

di ≥ 0, i = 3..6 di ≥ 0, i = 3..6

6. Conclusions 21

University of Victoria Technical Report ECE-95-1

ytope in Figure 15a into the (d3, d4+d5) plane, which is shown in Figure 15c. Region A

depicts the permitted values for the delays d3, d4, and d5 for any value d6 ≥ 0. The first

design has clearly a larger delay margin. Moreover if d6 ≥ 75, then region B is added to the

projection of the solution, thus including completely the second design.

The information provided by the solution polytope can be advantageously used during

synthesis, for instance to guide the layout and routing tools or, once the final delays are

calculated in the final implemented circuit, to check that the final implementation com-

plies with the interface design. The solution polytope can also be used to compare inter-

face designs.

6. Conclusions

DAME, an expert microprocessor-based-systems designer, represents components at a finer

detail, the component protocol, so that during system integration it can design the required

interface circuitry. Our representation, based on a timed Petri net model, allows designers

to reason about circuit delays and timing constraints that are necessary to describe accu-

rately the protocols used by microprocessor components. In this paper we present how

such a design is produced, by merging the protocol graphs of the components to be inter-

connected. Moreover, we state conditions under which the design is feasible, that is, it

achieves its purpose (described by a semantic specification), and produces a correct envi-

ronment for the interconnected components (described by the timing constraints specified

in the protocols). Semantic and protocol specifications are represented uniformly in

DAME’s framework as timed signal transition graphs (STG’s). By using a symbolic timing

analysis procedure that finds tight bounds on unknown path delays, the interface design

can be proven feasible before an implementation is carried out, thus avoiding the expen-

sive iteration between design and synthesis.

Figure 15. Solution polytope for ∆3 = [30, ∞) and ∆4 = [90, ∞): (a) With interface path δ6;
(b) without interface path δ6; (c) projection of part (a).

d3

60
75

d4 + d5

d6

30

d3

d4 + d5

30

d3

30

60

30
AB

(a) (b) (c)

d4 + d5

22 6. Conclusions

Technical Report ECE-95-1 University of Victoria

Acknowledgments

The first author wants to thank Karim Khordoc and Professor Ed Cerny of the University

of Montreal for an invaluable exchange of ideas regarding the modeling of hardware inter-

faces that took place during the author’s workterm at BNR (Ottawa), and to Allan Silburt

of BNR for making this interaction possible.

References

[1] T.-A. Chu, “On the models for designing VLSI asynchronous digital systems,”

INTEGRATION, the VLSI journal, no. 4, pp. 99–113, 1986.

[2] D. del Corso, H. Kirmann, and J. D. Nicoud, Microcomputer buses and links.

Academic Press, 1986.

[3] N. J. Dimopoulos, K. F. Li, and E. G. Manning, “DAME: a rule-base designer of

microprocessor-based systems”, in Proc. of the 3rd. International Conference of

Industrial & Engineering Applications of Artificial Intelligence and Expert Systems,

pp. 716–725, July 1990.

[4] M. A. Escalante and N. J. Dimopoulos, “Timing analysis for synthesis in micro-

processor interface design,” in Proceedings of the Seventh High-Level Synthesis

Symposium, pp. 23–28, May. 1994.

[5] P. E. Green, “Protocol conversion,” IEEE Trans. on Communications, pp. 257–268,

Mar. 1986.

[6] H. Hulgaard, S. M. Burns, T. Amon, and G. Borriello, “Practical applications of an

efficient time separation of events algorithm,” in Proc. ICCAD, pp. 146–151, 1993.

[7] K. Khordoc, M. Dufresne, E. Cerny, P. A. Babkine, and A. Silburt, “Integrating

Behavior and Timing in executable specifications”, in Proc. CHDL, pp. 385–402,

1993.

[8] L. Lavagno, “Synthesis and testing of bounded wire delay asynchronous circuits

from signal transition graphs,” Tech. Rep. UCB/ERL M92/140, U.C. Berkeley, Nov.

1992.

[9] A. J. Martin, “Programming in VLSI: From communicating processes to delay-

insensitive circuits,” in UT Year of Programming Institute on Concurrent

Programming (C. A. H. Hoare, ed.), pp. 1–64, Addison-Wesley, 1990.

[10] K. L. McMillan and D. L. Dill, “Algorithms for interface timing verification,” in

Proc. ICCD, pp. 48–51, 1992.

6. Conclusions 23

University of Victoria Technical Report ECE-95-1

[11] C. J. Myers and T. H.-Y. Meng, “Synthesis of timed asynchronous circuits,” IEEE

Trans. on VLSI Systems, vol. 1, no. 2, pp. 106–119, June 1993.

[12] J. A. Nestor and D. E. Thomas, “Behavioral synthesis with interfaces,” in Proc.

ICCAD, pp. 112–115, 1986.

[13] C. D. Nielsen and A. J. Martin, “Design of a delay-insensitive multiply-accumulate

unit,” INTEGRATION, the VLSI journal, no. 15, pp. 291–311, 1993.

[14] K. Okumura, “A formal protocol conversion method,” in Proc. ACM SIGCOMM,

pp. 30–37, 1986.

[15] W. Reisig, Petri nets: An Introduction, Springer-Verlag, Berlin, 1985.

[16] L. Y. Rosenblum and A. V. Yakovlev, “Signal graphs: From self-timed to timed

ones,” in Proc. of the Intl. Workshop on Timed Petri Nets, pp. 199–207, July 1985.

[17] P. Vanbekbergen, Synthesis of Asynchronous Controllers from Graph-theoretic

Specifications. PhD dissertation, Katholieke Universiteit Leuven, Sept. 1993.

[18] A. V. Yakovlev, “On limitations and extensions of STG model for designing

asynchronous control circuits,” in Proc. ICCD, pp. 396–400, 1992.

