
Efficient Communication Using Message Prediction

for Cluster of Multiprocessors

Ahmad Afsahi Nikitas J. Dimopoulos

Department of Electrical and Computer Engineering, University of Victoria

P.O. Box 3055, Victoria, B.C;., Canada, V8W 3P6

{aafsahi, nikitas}@ece.uvic.ca

Abstract overheads are tens of microseconds [15]. This is worse in
With the increasing unip1"()cessor and SMP co11/putati(m cluster of workstations. Even with high performance net-

po"'er available today. inte1processor coII/lI/unication .has works [9, 19] available today, there is still a gap between
becol1/e an il1/portant .f{lctor that lil1/its the pe1:fornlance (~f what the network can otter and what the user application can
clu.\'fer ~f "'ork\1ations. Ma11.1'.f{lcto1:\. including coII/lI/unic,,- see. The communication software overhead cost comes
lion ha1-dware overhead. coII/lI/unication software overhL'ad. . I fr thr d .~ t . t t .

. d I.. h d .. 1 Jllam yom ee Illeren sources. crossmg pro ec Ion
and the u."er envlronl1/ent overhea (II/U III rea mg. ,.nu -Cc ..,
tiuse1-) ~ffect the pe1fonnance ~f the coII/lI/unication sub- b.~undarles several tImes between the user space and the ker-

,"y.\'fel1/." in ~.uch ~'ystel1/s. rjel space, passing several protocol layers, and involving a
A sign!ficant portion ~f the software coII/lI/unication Qumber of memory copying,

<?v~rhea,! belong." to a 1lu11/ber ~fl1/es."age copying, ~ealry. Several researchers are working to minimize the cost of
It I." de."lrable to Ilave a trIte zero-cop\J Plvtocol where the. t t. b d .d ..It I
ll/e~'sage i." ll/oved di1"ect~v .fivl1/ the ."end bl{ffer in its .user crossmg pr~ ~c.lon oun arIes, an ~smg Sl~p er pro oco

.\pace to the receive bl(ffer in the de.\1ination without any layers by utIhzmg u."er-IevellI/essagmg techmques such as

i1ltennediate bl(ffering. Howevel; due to the .fact that ll/es- active messages (AM) [37], fast messages (FM) [29],
sage-passing applicatioll." at the ."end ."ide do not kno"' the VMMC-2 [17], U-Net [38], LAPI [33], HIP [30], VIA [18],
ti.,lal receive bl{ffer addresses. ear~)! an.ivall1/es."age~. have "~PM [36]. A significant portion of the software commu-
to be buffered at a tel1/poran' area. f r . I t b f ,

.: h. I ..mttdn()n overhead be ongs o a num er o message copymg.
In thIs pape1; we sllow I at I le1"e IS a ll/es."age receptIon, ..

coII/lI/unication locali~v in ll/es."age-p(I.s'sing application", Id~lly,'message protocols should transfer messages m a sm-

~e have utilized thi~. ~olI/lI/unication ~ocali~c\J and devi.~..ed gle c~py (this is usually called a true zero-cop~). In other
dIfferent ll/essage predIctors at tile receIver ."Ide." ~f COII/lI/ll- words, the protocol should copy the message dIrectly from
n~cation~., In e.".~'enc.e. these ll/es."age predicto1:" ca~ be e(ti- the send buffer in its user space to the receive buffer in the
clentl.v u."ed to dram the network and cache tIle ll/col1/mg d t. t' .th t .t d. t b ffi .H
ll/e."sage." even !f the con-e~ponding receive call" have not es ma I?n :VI ou any m e~e la e u erlng. owever,

been po.~'fed .vet. Tile pe1..fonnance of the."e predicto1:~~ill the applicatIon at the send side does not know the final

tenn" ~f hit ratio. on ."ol1/e parallel application" areifliite receive buffer addresses and, hence, the communication sub-
p1v11/i.~illg and ."ugge.\'f that prediction has the potentJal to systems at the receiving end still copy messages unnecessar-
elil1/inate ll/o.\1 of the 1"el1/ailling ll/essage copie.". .ily from the network interface to a system buffer, and then

from the system buffer to the user buffer when the receiving
1.0 Introduction application posts the receive call,

., , ., Some researchers have tried to avoid memory copying
With the mcreasmg umprocessor and SMP computatIon 3 6 35 34] Wh . l h h b bl., , .[17 25 I. I e t ey ave een a e to remove

power avaIlable today, mterprocessor commumcatIon has h ' , , , , , b h I .. b ~
...t e memory copymg etween t e app IcatIon uller space

become an Important factor that hmlts the performance of d h k ."' th d .d b . ., ..an t e networ mterlace at e sen er SI e y usmg user-

workstatIons clusters. EssentIally, commumcatIon overhead I I . h . th h ' b bl...eve messagmg tec mques ey aven t een a e to

IS one of the most Important factors affectIng the perfor- h .' h .' dre8Qve t e memory copymg at t e receiver SI es com-

mance of parallel computers. Many factors affect the parfor- I I Th h ..
t th, ...(p ete y, ey may ac leve a zero-copy messagmg a e

mance of commumcatIon subsystems m parallel systei'1ts. d I . f h . II .
1 d dreceiver SI es on y I t e receive ca IS a rea y poste , a ren-

Specifically, commumcatIon hardware and ItS servIces, c0m- d ... d "' I.., ...ez-vous type commumcatIon IS use lor arge messages, or

mumcatIon softwale, and the user envIronment (multIpro- h d .. b ffi dd ' I d k b...t e estInatIon u er a ress IS a rea y nown y a pre-

grammmg, multIuser) are the majOr sources of the. . N h h MPI 2 [27] rt, . h d ' commumcatIon, ote, owever, t at -suppo s a
commumcatIon over ea. . b h .. 1 . blC ..

ti h d 1 d . t remote memory access operatIon ut t IS IS most y sulta e

ommumcatIon so tware over ea current y omma es , ...,
1 f k . I h for receIver-mItIated commumcatIons arlsmg from the

commumcatIon tIme m c uster O wor statIons. n t e cur- h d d .
., s are -memory para Igm.

rent generatIon of parallel computer systems, the software

We are interested in bypassing the memory copying at 2.0 Motivation and Related Work
the destination in the general case, synchronous or asyn-
chronous, eager or rendez-vous and for sender-initiated High performance computing is increasingly concerned
communications as in MPI [26, 27]. In this paper, we argue with efficient communication across the interconnect due to
that it is possible to address the message copying problem at the availability of high-speed highly-advanced processors.
the receiving side by speculation. We support our claim by Modern switched networks, called ~\'stem Area Net\1'orks
showing that messages display a form of locality at the (SAN), such as Myrinet [9] and ServerNet [19], provide
receiving ends of communications. high communication bandwidth and low communication

This paper, for the first time as far as the authors know, latency. However, because of high processing overhead due
introduces the notion of message prediction for the receiving to communication software including network interface con-
side of message-passing systems. By predicting the next trol, flow control, buffer management, memory copying,
receive communication call, and hence the next destination polling and interrupt handling, users cannot see much differ-
buffer address, before the receiving call is posted we will be ence compared to traditional local area networks.
able to copy the message directly into the CPU cache specu- Fortunately, several user-level messaging techniques
latively before it is needed so that an effect of a zero-copy have been developed to remove the operating system kernel
can be achieved. and protocol stack from the critical path of communications

We are interested to utilize similar predictors as in [1, 2], [37, 29, 17, 38, 18, 30, 33, 36]. This way, applications can
but this time at the receiver sides to predict the next consum- send and receive messages without operating system inter-
able message and drain the network as soon as the message vention which often greatly reduces the communication

arrives. Upon a message arrival, a user-Ievel thread is latency.
invoked. If the receive call has not been issued yet, the mes- Data transfer mechanisms and message copying, control
sage will be cached, but efficient cache mapping mecha- transfer mechanisms, address translation mechanisms, pro-
nisms need to be devised to facilitate binding at the moment tection mechanisms, and reliability issues are the key factors
the receive call is issued. If the receive call has already been for the performance of a user-Ievel communication system.
issued, then the message can be written to its final destina- In this paper, we are particularly interested to avoid message
tion. copying at the receiver sides of communications.

The first contribution of this paper is that we show evi- A significant portion of the software communication
dence that there exists message communication locality at overhead belongs to a number of message copying. With the
the receiver sides of message-passing parallel applications. traditional software messaging layers, there are usually four
The second contribution of this work is the introduction and message copying operations from the send buffer to the
evaluation of different message predicting techniques for the receive buffer, as shown in Figure I. These copies are
receiving side of message-passing systems. namely from the send buffer to the system buffer (I), from

This paper concentrates on message predictions at the the system buffer to the network interface (NI) (2), and at
destinations in message-passing systems using MPI in isola- the other end of communication from the network interface
tion. This is analogous to branch prediction, and coherence to the system buffer (3), and from the system buffer to the
activity prediction [28] in isolation. Our tools are not ready receive buffer (4) when the receive call is posted. Note that,
for measuring the effectiveness of our predictors on the we haven't considered data transfer from the network inter-
application run-time yet. Our preliminary evaluation mea- face (NI) at the sending process to the network interface at
sures the accuracy of the predictors in terms ofhit ratio. The the receiving process as a separate copy. Also, the network
results are quite promising and suggest that prediction has interface's place can be either on the 1/0 bus or on the mem-
the potential to eliminate most of the remaining message ory bus.
copies. At the send side, some user-Ievel messaging layers use

In Section 2.0 of this paper, we explain the motivation programmed 1/0 to avoid system buffer copying. FM uses
behind this work and mention related works. We elaborate programmed 1/0 while AM-II and BIP do so only for small
on how prediction would help eliminate the message copies messages. Some other user-messaging layers use DMA.
at the receiving side of communications, in Section 3.0. Our VMMC-2, U-Net, and PM use DMA to bypass the system
experimental methodologies to gather communication traces buffer copy while AM-II and BIP do so only for large mes-
of our parallel applications are explained in Section 4.0. In sages. In systems that use DMA, applications or a library
Section 5.0, we show communication frequency and unique d):'llamically pins and unpins pages in the user space that
message identifier distributions in the applications, and contain the send and the receive buffers. Address translation
present evidence of message locality at the receiver sides. In can be done using a kernel module as in BIP, or by caching a
Section 6.0, we propose our message predictors and present limited number of address translations for the pinned pages
their performance on the applications. Finally, we conclude as in VMMC-2, U-NetlMM [7], and PM. Some network

our paper in Section 7.0.

interfaces also pennit bypassing message copying at the net- directly moved to the application user space. Otherwise, it
work interface by directly writing into the network. has to be copied into the fast socket buffer.

FM 2.x [25] uses a similar approach as fast sockets,
Send Process Receive Process namely layer interleaving. FM collaborates with the handler
Send buffer Receive buffer to direct the incoming messages into the destination buffer if

the receive call has already been posted.
MPI-LAPI [6] is an implementation of MPI on top of

LAPI [33] for the IBM SP machines. In the implementation
Sy er of the eager protocol, the header handler of the LAPI returns

a buffer pointer to LAPI which tells LAPI where the packets
of the message must be reassembled. If a receive call has
been posted, the address of the user buffer is returned to

\ LAPI. If the header handler doesn't fin~ a matching receive,
~ / it will return the address of an e~rly arrival bl{ff~r and hence

, a one-copy transfer is accompltshed. Meanwhile, message
sizes of larger than eager size is transferred using 2-phase

Network rendez-vous protocol.
MPICH-PM/CLUMP [34] is an MPI library imple-

FIGURE 1. Data transfers in a traditional mented on a cluster ofSMPs. It uses a message-pas~ing only
messaging layer model where each process runs on a processor of an SMP

node. For internode communications, it uses eager and ren-
On the contrary to the send side, bypassing the system dez-vous protocols internally. For short messages, it

buffer copying at the receiving side mayor may not be achieves one-copy using eager protocol as the message is
achievable. Processes at the sending sides do not know the copied into a temporary buffer if the MPI receive primitive
destination buffer addresses. Therefore, when a message has not been issued. For large message, it uses rendez-vous
arrives at the receiving side it has to be buffered if the protocol to achieve zero-copy by using a remote write oper-
receive call has not been posted yet. VMMC [8] for the ation but it needs an extra communication. For intranode
SHRIMP multicomputer is a communication model that communications, it achieves a one-copy using a kernel prim-
provides direct data transfer between the sender's and itive that allows to copy messages from the sender to the
receiver's virtual address space. However, it can achieve receiver without involving the communication buffer.
zero-copy transfer only if the sender knows the destination TOMPI [13] is a threaded implementation of MPI on a
buffer address. Therefore, the receiver exports its buffer single SMP node. It copies a message only once by utilizing
address by scouting a message to the sender before the multiple threads on an SMP node. Unfortunately, it is not

,,~ actual transmission can take place. scalable to cluster of SMP machines.

VMMC-2 [17], uses a tran.5(er redil-ection mechanism Another technique to bypass extra copying is the
instead. It uses a default, redirectable receive buffer for a l-e-mapping technique. A zero-copy TCP stack is imple-
sender who does not know the address of the receive buffer. mented in Solaris by using copy-on-write pages and re-map-
When a message arrives at the receiving network interface, ping to improve communication perfonnance [I I]. It
the redirection mechanism checks to see if the receiver has achieves a relatively high throughput for large messages.
already posted its buffer address. If the receive buffer has However, it does not have a good perfonnance for small
been posted earlier than the message arrival, the message messages. This work is also solely dedicated to the SUN
will be directly transferred to the user buffer. Thus it Solaris virtual memory system.
achieves a zero-copy transfer. If the buffer address is not .tbl{f\. [16] is also using the re-mapping technique to avoid
posted, the message must be buffered in the default buffer. It the penalty of copying large messages across different layers
will then be transferred when the receive buffer is posted. of protocol stack. However, tbufs allows re-mapping only
Thus, it achieves a one-copy transfer. However, if the for a limited range of user virtual memory.
receiver posts its buffer address when the message arrives, It is quite clear that the user-Ievel messaging techniques
part of the message is buffered at the default buffer and the may not achieve a zero-copy communication all the time at
rest is transferred to the user buffer. the receiver side of communications. Meanwhile, the major

Fast sockets [31] has been built using active messages. It problem with all page re-mapping techniques is their poor
uses a mechanism at the receiver side called l-eceive posting perfonnance for short messages which is extremely impor-
to avoid the message copy in the fast socket buffer. If the tant for parallel computing.
message handler knows that the data's final memory destina- Prediction techniques have been proposed in the past to
ti on is already known upon message arrival the message is predict the future accesses of sharing patterns and coherence

activities in distributed shared memory (DSM) by,looking at given node in a message-passing program, Second, deciding
their observed behavior [28, 24, 21,40, 12, 32]. These tech- where and how this message is to be moved in the cache.
niques assume that memory accesses and coherence activi- Third, efficient cache re-mapping and late binding mecha-
ties in the near future will follow past patterns. Sakr and his nisms need to be devised for when the receive call is posted.
colleagues have used time series and neural networks for the In this work, we are addressing the first problem. That is,
prediction of the next memory sharing requests [32]. Dahl- devising message predictors and evaluating their perfor-
gren and his colleagues devised hardware regular stride mance. We are working on several methods to address the
techniques to prefetch several blocks ahead of the current remaining issues. We shall report on these issues in the
data block [12]. More elaborate hardware-based irregular future.
stride prefetching approaches have been proposed by Zhang
and Torrellas [40]. Kaxiras and Goodman have recently pro- 4.0 Experimental Methodology
posed an instruction-based approach which maintains the
history of load and store instructions in relation to cache In exploring the effect that different heuristics have in
misses and predicting their future behavior [21]. Mukherjee predicting the next receive call, we utilized a number of par-
and Hill proposed a general pattern-based predictor to learn allel benchmarks, and extracted their communication traces
and predict the coherence activity for a memory block in a on which we applied our predictors.
DSM [28]. In a recent paper, Lai and Falsafi proposed a new We have used some well-known parallel benchmarks
class of pattern-based predictors, memoly sharing predic- form the NAS parallel benchmark.5 (NPB) suite [5], and the
tors, to eliminate the coherence overhead on a remote access Parallel Spectral Trans:form Shallow Water Model
latency by just predicting the memory request messages (PSTSWM) application [39]. We used the MPI [26] imple-
[24]. mentation of the NPB suite (version 2.3), and version 6.2 of

As stated above, many prediction techniques have been the PSTSWM application.
proposed to reduce or hide the latency of a remote memory We are only interested in the patterns of the point-to-
access in shared memory systems. Recently, Afsahi and point communications between pair-wise nodes in our appli-
Dimopoulos proposed some heuristics to predict the destina- cations. For this, we executed these applications on an IBM
tion target of subsequent communication requests at the SP2 machine. We wrote our own profiling code using the
send side of communications in message-passing systems wrapper facility of the MPI to gather the communication
[1,2]. However, to the best of our knowledge, no prediction traces. We did this by inserting monitor operations in the
technique has been proposed for the receive side of commu- profiling MPI library for the communication related activi-
nications in message-passing systems to reduce the latency ties. These operations include arithmetic operations for the
of a message transfer. calculation of the desired characteristics. Collecting com-

This paper, reports on an innovative approach for remov- munication traces does not affect the communication pat-
ing message copying at the receiving ends of communica- terns of the applications.
tions for message-passing systems. We argue that it is We considered different system sizes and problem sizes
possible to address the message copying problem at the for our applications to evaluate the performance of our pre-
receiving sides by speculation. We introduce message pre- diction heuristics. Specifically, we experimented with the
diction techniques such that messages can be directly trans- workstation class "W", and the large class "A " of the NPB

ferred to the cache even if the receive calls have not been suite, and the default problem size for the PSTSWM appli-
posted yet. cation. The NPB results are almost the same for "W" and

"A " classes. Hence, we report only for the "A " class here.

3.0 Using Message Predictions Note that we also removed the initialization part from the
communication traces of the PSTSWM application.

In this section, we analyze the problem with the early Although the derived results are for the above mentioned
arrival of messages at the destinations in message-passing parallel applications, however, we believe that these applica-

, systems. In such systems, a number of messages arrive in tions are representative of the existing scientific and engi-

arbitrary order at the destinations. The consuming process or neering parallel applications.
thread will consume one message at a time. If we know
which message is going to be consumed next, we can move 5.0 Receiver-side Locality Estimation
the message upon its arrival to near the place that it is to be
consumed (e.g. a staging cache). Our applications use S~6kf8RQ"~ "",1 ""~,,,~h~8flO11S MPI

For this, we have to consider three different issues. First, receive primitives, namely MPI-Recv and MPI-Irecv [26].
deciding which message is going to be consumed next. This MPI-Recv (bl~r. count, datatype, source, tag, comm, .5tatus)
can be done by devising receive call predictors, history- is a standard blocking receive call. When it returns, data is
based predictors that predict subsequent receive calls by a available at the destination buffer. The PSTSWM applica-

tion uses this type of receive call. MPI-Irecv (buj count,
dataf)'pe, source, tag, comm, request) is a standard non-
blocking receive call. It immediately posts the call and
returns. Hence, data is not available at the time of return. It
needs another call to complete the call. All applications in
our study use this type of receive call.

One of the communication characteristics of any parallel
application is the frequency of communications. Figure 2,
illustrates the minimum, average, and maximum number of
receive communication calls in the applications under differ-
ent system sizes. We ran our applications once for each dif-
ferent system size and counted the number of receive calls
for each node of the applications. Hence, in Figure 2, by
average, minimum, and maximum, we mean the average,
minimum, and maximum number of receive calls taken over
all nodes of each application. It is clear that all nodes in the
BT, SP, and CG applications have the same number of
receive communication calls. While nodes in the PSTSWM
application have different number of receive communication
calls.

As stated earlier, MPI-Recv and MPI-Irecv calls have a
7-tuple set consisting of source, tag, count, dataf)pe, bllj;
comm, and .\'(atus or request. In order to choose precisely
one of the received messages at the network interface and
transfer it to the cache, our predictors need to consider all
the details of a message envelop. That is, source, tag, count,

, datat)Jpe, bl(f, and comm (we don't consider status and

requec'lt as they are just a handle when the calls return). We
cannot rely only on the buffer address, bl{(, of a receive call
as many nodes may send their messages to the same buffer
address of a particular destination node. We cannot also rely
only on the sender, .'lource, of a message, or on the length,
count, ofa message. We can only rely on the combination of
all six fields. Therefore, we assign a different identifier for
each unique 6-tuple found in the communication traces of

the applications. Figure 3, shows the number of unique mes-
sage identifiers in our applications under different system
sizes. By average, minimum, and maximum, we mean the
average, minimum, and maximum number of unique identi-
fiers taken over all nodes of each application. It is evident
that all nodes in the BT, and CG applications have the same
number of unique message identifiers while nodes in the SP,
and PSTSWM applications have different number of unique
message identifiers (except when the number of processors
is four for the SP benchmark).

FIGURE 3. Number of unique message identifiers in the
applications under different system sizes

Figure 4, shows the distribution of each unique message
identifier for node zero of the applications when the number
of processors is 64 for CG and 49 for the other applications.
We chose node zero because this node has the largest num-
ber of unique message identifiers among all nodes and is
also responsible for distributing data and verifying the
results of the computation. As it is shown in Figure 4, the
message identifiers are evenly distributed in BT. However,
the distribution of the message identifiers in CG and
PSTSWM are almost bimodal with two separated peaks.
The SP benchmark shows four different peaks for the mes-
sage identifiers. Note that we have found similar results
regarding the distribution of unique message identifiers
under other system sizes [3].

5.1 Communication Locality

In the context of message passing programming, many
parallel algorithms are built from loops consisting of com-
putation and communication phases. Therefore, communi-
cation patterns may be repetitive. This has motivated
researchers to find or use the communic£ltions locality prop-
erties of parallel applications [1,2,22,20,23, 14, 10]. Kim
and Lilja [22] have shown that there is a locality in message
destination, message sizes, and consecutive runs of send/
receive primitives in parallel algorithms. They have pro-

The Least Recently Used (LRU), First-In-First-Out
(FIFO), and Least Frequently Used (LFU) heuristics, all
maintain a set of k (k is the window size) unique message
identifiers. If the next message identifier is already in the set,
then a hit is recorded. Otherwise, a miss is recorded and the
new message identifier replaces one of the identifiers in the
set according to which of the LRU, FIFO or LFU strategies
is adopted.

Figure 5, shows the results of the LRU, FIFO, and LFU
heuristics on the application benchmarks when the number

posed and expanded the concept of memory access locality of processors is 64 for CG and 49 for all other applications.
based on the Least Recently Used, LRU, stack model to Similar results have been produced for different system
determine these localities. In [I, 2], Afsahi and Dimopoulos sizes [3]. It is clear that the hit-ratios in all benchmarks
have shown the communication locality of message-passing approach I as the window size increases. The performance
application in terms of message destination locality. Karls- of the FIFO algorithm is the same as the LRU for BT, and
son and Brorsson [20] have compared the communication PSTSWM benchmarks, and almost the same for the SP and
properties of parallel applications in message-passing sys- CG benchmarks. The LFU algorithm consistently has a bet-
tems using MPI, and shared memory systems using Tread- ter performance than the LRU and FIFO heuristics on the
Marks [4]. BT, CG, and PSTSWM applications. It also has a better per-

BT(49nodes) ,;I'(49nodeSI formance than the LRU and FIFO heuristics on the SP
250 2500: benchmark for window sizes of greater than five.

~,
r II r eT (49 nodes) SP (49 nodes)

150 1500 o::=~ f

I 1000 o g ,
! e e ::

: sooj I 1111 f I II III I t: i: ,f-~:..."..'.C~.'~'

0 ffi 20 "' 40 50 00 5 10 15 3) < ~
Me...oe lden."" Me kIen..., o 02 -""

CG (64 nodes) PSTSWM (49 nodes) ---:~
500 35 ,

SI '0 " 20
""n..'w -w~~~~~~ "'

25 CG (64 nodes):0>0 '
20f
15 0

~ ~.10 '0 00

'00 [I~r 1~"""5' 20 ~ 200 400 600 800 io i
Message lden1"ie, Message Iden.fie' 0 ,-"" -U'U

FIGURE 4. Distribution of the unique message :---:~% ---:~
.dt .f ." th I..'0'. 20 °'00200~""..' 'oo
I en I lers In e app Icatlons Wndow Wn..'w , ...FIGURE 5. Effects of the LRU, FIFO, and LFU heuristics

We define the terms message receptIon locality ill con- on the applications
junction with this work. By message reception locality we
mean that if a certain message reception call has been used it Essentially, the LRU, FIFO and LFU heuristics do not
will be re-used with high probability by a portion of code predict exactly the next receive call but shows the probabil-
that is "near" the place that was used earlier, and that it will ity that the next receive call might be in the set. For instance,
be re-used in the near future. the SP benchmark shows nearly 60% hit ratio for a window

In the following subsection, we present the performance size of five under the LRU heuristic. This means that 60% of
of the classical LRU, LFU, and FIFO heuristics on the appli- the time one of the five most recently issued call will be
cations to see the existence of locality or repetitive receive issued next. These heuristics perform better when the win-
calls. We use the hit ratio to establish and compare the per- dow size k is sufficiently large. However, this large window
folmance of these heuristics. As a hit ratio, we define the adds to the hardware/software implementation complexity
percentage of times that the predicted receive call was cor- as one need to move all messages in the set to the cache in
rect out of all receive communication requests. the likelihood that one of them is going to be used next. This

is prohibitive for large window sizes.
5.2 The LRU, FIFO and LFU Heuristics We are interested to devise predictors that can predict the

next receive call with a high probability. In Section 6.0, we
The Least Recently Used (LRU), First-In-First-Out introduce our novel message predictors employing different

, (FIFO), and Least Frequently Used (LFU) heuristics, all heuristics and evaluate their performance.

maintain a set of k (k is the window size) unique message
identifiers. If the next message identifier is already in the set, 6.0 Message Predictors
then a hit is recorded. Otherwise, a miss is recorded and the
new message identifier replaces one of the identifiers in the The set of predictors introduced in this section predict the
set according to which of the LRU, FIFO or LFU strategies subsequent receive calls based on the past history of com-
is adopted. munication patterns on a per node basis. These heuristics

Figure 5, shows the results of the LRU, FIFO, and LFU were originally proposed in [I, 2] to predict the destination
heuristics on the application benchmarks when the number target of subsequent communication requests at the sender

sides of communications to reconfigure the interconnect

conculTent to the computation. These predictors can be used the ones with the circle represent hits. The "dash" in place of
dynamically at the communication assist with or without the a predicted request indicates that a cycle is being formed,
help of a programmer or a compiler. In the following figures, and therefore no prediction is offered (note that this is also
by average, minimum, and maximum, we mean the average, added to the misses).
minimum, and maximum hit ratio taken over all nodes of
each application. Request sequence

13561356771356

6.1 The Tag Predictor Predicted ~~~~ ~
3 5 6 I -~. -

The Tag predictor assumes a static communication envi- c Iyc e Cycle Cycle
ronment In the sense that a partIcular commumcatlon fonnatiol1 tomlatiol1 tonnatiol1

receive call in a section of code, will be the same one with a. large probability. We attach a different tag (this is different. This pre~lctor.lmplements a slmpl~ cycle dls~o~ery algo-

than the tag in an MPI communication call; It may be a nth~. StartIng w~th a cycle-head receIve call (this IS ~he first

unique identifier or the program counter at the address of the receIve call tha.t IS requested at start-up, or the recelv~ call

communication call) to each of the receive calls found in the that causes a mlss), we log the sequence of requests untIl the

applications. This can be implemented with the help of the cycle-head rec~ive call is requested again. This ~tored

compiler or by the programmer through a pre-receive (tag) sequence constItutes a cycle, an~ can be u~ed to pre~lct. the

operation which will be passed to the communication sub- su.bsequent requests. If the predIcted receive call colnc!des

system to predict the next receive call before the actual with the subsequent requested one, then we record a hIt. If

receive call is issued. the requested receive call does not coincide with the pre-

To this tag and at the communication assist, we assign dicted one, then we. record a miss and t~e cycle fo~ation

this receive call. A hit is recorded if in subsequent encoun- stage commences ~Ith the cycle-head beIng the ~ecelve call

ters of the tag, the requested communication is the same as that ~ause.d the mls.s. T~e perform.ance. of the SI~gle-cycle

the receive call already associated with the tag. Otherwise, a predlct~r IS s~own In Flgur~ 7. It. IS e~ldent that ItS perfor-

miss is recorded and the tag is assigned the newly requested mance IS consistently very high (hIt ratIos ofmore than 0.9).

receive call. The performance of the Tag predictor is shown Cycle p'e"cl°' ClOto p~,
in Figure 6. It is evident that this predictor doesn't have a I = ~~" 0' ft ::;;;::: I! ~ I

good performance on the applications. It cannot predict the ~ , ~

communication patterns of PSTSWM at all, and has a ~o'. 11 ;§°

degrading performanc~ for all other applications when the i"' I '0
number of processors Increases.' ° ::: :

, -+- CG
i... PSTS-

Tag p,O"cl°' Tag p,e6ct°' co PSTS- 10 20 ~ "' ~ "' 70
Numbe' of prlK:O6SOrs

~ ~ 0'0. ...Aw'"" + SP N ~ 64 for CG. and 49 for others
m~ ~ CG

* PSTSWM
2 2
jOa I :0 FIGURE 7. Effects of the Single-cycle predictor on the

i.4
IF ~ applications , , ,0

.!
~o: II ~ I <0 6.3 The Tag-cycle Predictor

" se CG PS's- "' 70
Numbe, of pn)ceaaors

N ~ 64 for CG. and 49 for others The Tag predictor didn't have a good performance on the

.applications while the Single-cycle predictor had a very
FIG~RE.6. Effects of the Tag predictor on the good p erformance We would like to see the im p act of theapplications .

cycle algorithm on the Tag predictor. Therefore, we combine
the Tag algorithm with the Single-cycle algorithm and call it

6.2 The Single-cycle Predictor the 1llg-cycle predictor.
In the Tag-cycle predictor, we attach a different tag to

The Single-cycle predictor is based on the fact that if a each of the communication requests found in the bench-
group of receive calls are issued repeatedly in a cyclical marks and do a Single-cycle discovery algorithm on each
fashion, then we can predict the next request one step ahead. tag. To this tag and at the communication assist, we assign
The following example illustrates the single-cycle predictor. the requested receive call, to be called tagcycle-head node
The top trace represents the sequence of requested receive (this is the first receive call that is requested at this tag, or
calls, while the bottom trace represents the predicted the node that causes a miss). We log the sequence of the
sequence. The arrows with the cross represent misses, while requests at this tag until the tagcycle-head node is requested

again. This stored sequence constitutes a cycle at each tag, 6.5 Message Predictors' Comparison
and can be used to predict the subsequent requests. The per-
formance of the Tag-cycle predictor is shown in Figure 8. Figure 10, presents a comparison of the performance of
The Tag-cycle predictor performs well on all benchmarks. the predictors presented in this paper when the number of
Its performance is the same as the Single-cycle predictor on processors is 64 for CG and 49 for the other benchmarks. As
BT and PSTSWM. However, it has a better performance on we have seen so far, Single-cycle, Tag-cycle and Tag-better-
CG and a lower performance on SP. cycle all perform well on the benchmarks. However, the per-

formance of the Single-cycle is better on the SP benchmark
T,g-cyde p'ediolo' Tao-CY"le preddorI = ~,::;: 1 0-,::= .while Tag-cycle and Tag-better~yc~e have be~ter perfor-

c ; " ~ 0 ~ mance for the CG benchmark. Slmllar companson results

!06 j ~ !0 for other systems sizes can be found in [3].
; :1] ~ "
0 ~ I" " !I
£"' I i II i:' ! ::: ~~ ! ~~:.~;~reCle

J l ii '-CG 08 ~:~ i: i' -6- PSTS- .I ~ +:~::~~c.Y!:!)!!-J
or " cc 10 ..30 ..50 00 70 O

Number ..P'OCesao,s =
N 64 tor CCi. and 49 t(,r others 1°.6

:2

FIGURE 8. Effects of the Tag-cycle predictor on the ~0.4
..~

applications ~
<

0.2

6.4 The Tag-bettercycle Predictor
0- BT SP CG PSTSWM

In the Single-cycle and Tag-cycle predictors, as soon as a
receive call breaks a cycle we remove the cycle and form a N = 64 for CG. and 49 for others

new cycle" In the Tag-bettercvcle predictor, we keep the last FIGURE 10 C . f th rf f th" .-" .omparlson o e pe ormance o e
cycle associated with each tagcycle-head encountered m the predictors on the applications
communication patterns of each node" This means that when
a cycle breaks we maintain this cycle in memory for later
references. If we haven't already seen the new tagcycle-head 7.0 Conclusion
then we form a new cycle for it, otherwise we predict the" "

t " t " II b d th b f th 1 Commumcatlon latency adversely affects the perfor-
nex commumca Ion ca ase on e mem er o e cyc e

. t d "th th . t 1 h d th t h ~ mance of networks of workstations. A significant portion of
assocla e WI IS new agcyc e- ea a we ave lrom
the past I"n memory The ~ f th .., b tt 1 the software communication overhead belongs to a number

.perlormance o e lag- e ercyc epred "
t . h . F " 9 of message copymg operatIons. Ideally, it IS very desirable

IC or IS s own m 19ure ."
to have a true zero-copy protocol where the message IS

T,g-betl1e'cydepred;C1Or -"""'~ 1 ~' .moved directly from the send buffer in its user space to the
o ~ \1 ~ m :::::;~ 0 receiv~ buffer in the ~e~tination without ~ny intermediate

" !i I I ~ buffenng. However, this IS not always possible as a message

0" c c " , 0

10, ii i !i io may arrive at the destination where the corresponding

~O' Ii ij ~ ~o -aT receive call ha~ not been issued yet. Hence, the message has

r;] ~ I::::: ~ to be buffered m a temporary buffer-
! !p c~ 10 20 ., ..;PS:-TO In this paper, we have shown that there is a message-, of P'OCesao's

N ~ 64 tor CG" and 49 for others reception communication locality in message-passing appli-

cations. We have utilized this communication locality and
FIGURE 9. Effects of the Tag-bettercycle predictor on devised different message predictors for the receiver sides of
the applications communications. By predicting receive calls early, a node

.can perform the necessary data placement upon message
The Tag-bettercycle predictor performs well on all t . d th d . tl . t th h UT recep Ion an move e message Irec y m O e cac e. vve

benchmarks. Its performance is the same as the Single-cycle t d th ~ f th d . t.presen e e perlormance o ese pre IC ors on some par-

and Tag-cycle predictors on BT and PSTSWM. However, it II 1 I " t " Th ~ It .t . a e app Ica Ions" e perlormance resu s are qul e promls-

has a better performance on CG and a lower performance on . d " t .f k " th "
mg an JUS I y more wor m IS area.

SP relative to the Single-cycle predictor. The Tag-bettercy- UT. . th d" t t b d t d "
th tvve envision ese pre IC ors o e use o ram e ne -

cle predictor has a better performance on SP compared to k d 1 th ." " th h " hth .wor an p ace e mcommg messages m e cac e m suc

e Tag-cycle predictor. . h b b .l . h h "
IIa way so as to mcrease t e pro a I Ity t at t e messages WI

still be in cache when the consuming thread needs to access [10] S. Chodnekar, V. Srinivasan, A. Vaid~a, ~. Sivasubral~ani~m
and C. Das, "Towards a CommunIcatIon Charactenzatlon

them. , III A I .." P ed . t ' thI d Methodology tor Para e pp Icatlons , roce Ings o e

Further Issues we are presently mvestigatmg mc u e .. 1 S . H. h P rf'
Conp ter...Third Intematlona ymposlum on Ig e onnance I u

mechanisms for m-the-cache late bmdmg and thread sched- A h .
1997.rc Itecture, .

uling to guarantee that the consum~g thread finds the mes- [11] H. Chu, '-Zero-copy TCP in Solaris, "Proceeding.\. o.f the

sage in the cache of the processor It executes on. We shall USENIX Anl11lal Technical Coi!ference, 1996, pp. 253-263.

report on these issues in the future. [12] F. Dahlgren, M. Dubois and P. Stenstrom, -'Sequential

Hardware Pretetching in Shared-Melnory Multipr()Cessors",
Acknowledgments IEEE Transactions on Paral'el and Di.\trib/1ted S:1'.\tems, 6(7),

This work was supported by grants from NSERC and the 1995. .,
University of Victoria. We would like to thank Dr. Murray [13] E. D. Demaine, "A Threads-On!y MPI ImplelnentatlOn tor the
Campbell at the IBM T J Watson Research Center for his Development of Paral.lel Progral~s", Proceedings o.f the I ~th

kind hel in accessing the IBM Deep Blue machine. We also International ~vmpo.\'l11m on High Pel,formance Comp/1tmg
p ~ ~ h . I Sv.\tems HPCS 97, 1997, pp. 153-163.

would like to thank the an~nymous relerees lor t elr va u- [14] B. v. .Dao, Sudhakar Yalamanchili, and Jose Duato,

able comments and suggestions. "Architectural Support for Reducing Communication Overhead

in Multiprocessor Interconnection Networks", Proceedings o.f
References the Third International S:vmpo.\.i/1m on High Peiformance

[I] A. Atsahi and N. J. Dimopoulos, .-Hidi.ng Com.municati~~ Comp/1ter Architect/Ire, 1997, pp. 343-352.

Latency in Reconfigurable Message-PassIng Envlronme.nts , [15] J. J. Dongarra and T. Dunigan, "Message-Passing Perfonnance

Plvceedings o.f the o.f IPPS/SPDP 1999. IJth International of Various Computers", Conc/1rl-ency: Practice and E.\"perience,

Paral'el Processing S:vmposillln and lOth S:pmposi/1m on Volume 9, Issue 10, 1997, pp. 915-926.

Paral'el and Distrib/1ted Processing, April 1999: PP: 55-60. [16] P. Druschel and L. L. Peterson, "Fbuts: A High-bandwidth

[2] A. Atsahi and N. J. Dimopoulos, "CommunIcatIon Latency Cross-domain Transfer Facility", Plvceeding.\. of the F0/1rteenth

Hiding in Reconfigurable Message-Passing Environments: ACM Svmpo.\"ilml on Operating SystenlS Principles, 1993, pp.

Quantitative Studies", IJth Ann/1al International S:vmpo.\"i/1m on 189-202.

High Peiformance Comp/1ting SystenlS and Applications, [17] C. Dubnicki, A. Bilas, Y. Chen, S. Damianakis and K. Li,

HPCS'99,June,1999,pp.III-126. "VMMC-2: Efficient Support tor Reliable, Connection-
[3] A. Afsahi and N. J. Dimopoulos, "Efficient Communication Oriented Communication", Proceedingc\" of the Hot

Using Message Prediction tor Clusters of Multiprocessor", Interconnect.97,1997.

Technical Rep<:rt ~CE-99-5., D~artm,ent. of .Electrical and [18] D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B.

Computer Englneenng, UnIversIty ot Vlctona, December, Shubert, F. Berry, A. M. Merritt, E. Gronke and C. Dodd, "The

1999. Virtual Interface Architecture", IEEE Micro, March-April,

[4] C. Am7.a, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. 1998, pp. 66-76.

Rajamony, W. Yu. and W. Zwaenep(~I,. "TreadM~rks,: Shared [19] R. W. Horstand D. Garcia, "ServerNet SAN 1/0 Architecture",

Memory ComputIng on Networks of WorkstatIon, IEEE Proceedings o.fthe Hot Interconnects V, 1997.

Computer, Volume 29,.no. 2, Febru~ry 1996, pp. 18-~8. [20] S. Karlson and M. Brorsson, "A Comparative Characterization

[5] D. H. Bailey, T. Harsls, W. Saphlr, R. V. der WIJngaart, A. of Communication Patterns in Applications Using MPI and

Woo and M. Yarrow, "The NAS Parallel Benchmarks 2.0: Shared Melnory on an IBM SP2", Proceedings of the Workshop

Report NAS-95-020", Nasa Ames Research Center, December on Comm/1nication. Architecfllre, and Applications .for

1995. Network-based Paral'el Comp/1ting. International S:vmposillm

[6] M. Banikazelni, R. K. Govindaraju, R. Blackmore and D. K. on Hf!{h Pelformance Comp/1ter Architecfllre, February 1998.

Panda, "lmplelnenting Efficient MPI on,LAPI tor IBM ~S/ [21] S. K;xiras. and J. R. Goodman, "Improving CC-NUMA

6000 SP Systems: Experiences and Perfonnance EvaluatIon, Perf(mnance Using Instruction-Based Prediction", International

"Proceeding.\" o.f the o.f IPPS/SPDP 1999. IJth Interl.lational S:vmposi/1m on High Pel.formance Comp/1ter Architecfllre.

Paml'el Plvcessing S:pmpo.\"i/1m and lOth S:pmpo.\"I/1m on 1999.

Pm"Ol'el and Distrib/1ted Proces.~ing, April 1999, p~. 183-190. [22] J. Kim and D. J. Lilja, "Characterization of Communication

[7] A. Basu, M. Welsh, T. V. Elcken, "IncorporatIng Memory Patterns in Message-Passing Parallel Scientific Application

Management into User-Level Network Interfaces", Hot Programs", Proceedin.g;\" of the Work\'hop on Comm/1nication.

Interconnects V, August 1997. Architecflll-e, and Applications for Network-based Parallel

[8] M. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. Felten,. and,J. Compuling. International S:pmpo.\"ium on High Peifonnance
Sandberg, " A Virtual Memory Mapped Network Interface tor Computer Architecture, February 1998, pp. 202-216.

the SHRIMP Multicomputer", Proceeding;\' of the 21st Anl11lal [23] D. G. de Lahaut and C. Gennain, "Static Communications in

International S:pmposium on Computer Architecture, 1994, pp. Parallel Scientific Programs", Plvceedings o.f PARLE'94.

142-153. Parallel Architecfllre and Language.\", July 1994.
[9] N. J. Boden, D. Cohen, R. E. Feldennan, ~. E. Kula-:vik,.C. L. [24] A.-C. Lai and B. Falsafi, '-Memory Sharing Predictor: The Key

Seitz, J. N. Seizovic and W-K. Su, --Mynnet: A Glgablt-per- to a Speculative Coherent DSM", Proceeding.\" o.f the 26th

Second Local Area Network", IEEE Micro, February 1995. Anl11lal Internatimlal S:pmpo.\"illm on Comp/1ter AI"Chitecture.\",

1999, pp. 172-183. Operating Systems Principles, December, 1995.

[25] M. Lauria, S. Pakin and A. A. Chien, "Efficient Layering tor [39] P. H. Worley and I. T. Foster, "Parallel Spectral Transtonn

High Speed Communication: Fast Messages 2.x", Proceedings Shallow Water Model: A Runtime-tunable parallel benchmark

~f the 7th HZ~h Peiformmlce Distributed COmpuling, HPDC7, code", Proceedings of the Scalable High Peifornlance

Coiiference, 1998. COmpulingCol1ference, 1994,pp.207-214.

[26] Message Passing Inteiface FOnml: MPI: A Message-Passing [40] Z. Zhang and J. Torrellas, "Speeding Up Irregular Applications

InteifaceStandard. Version 1.1 (June 1995). in Shared-Memory Multiprocessors: Melnory Binding and

[27] Me,\,sage Passing Inteiface Forum: MPI-2: Extensions to the Group Pretetching", Proceeding.\' ~f the 22nd Anmlal

Message-Pas's.ing Intel,face, (July 1997). International.S:vmposilIm on Computer Archileclllre,\', 1995, pp.

[28] S. S. Mukheljee and M. D. Hill, "Using Prediction to Accelerate 188-199.

Coherence Protocols", Proceedings. of the 25th Anmlal

International .S:)'mposium on Computer A rchitcclllre, 1998.

[29] S. Pakin, M. Lauria, and A. Chien, "High Pertonnance

Messaging on Workstation: Illinois Fast Messages (FM) t()r

Myrinet:' Proceeding.\' ~fthe Supercomputing'95, Nov., 1995.

[30] L. Prylli and B. Tourancheau, "BIP: A New Protocol Designed

for High Perfonnance Networking on Myrinet", Proceedings ~f

the PC-NOW98: Internalional Work.l.hop on Pel:1"onal

Computer bas.ed Network.l' Of Workstatiol1S, in conjunction with

IPPS/SPDP'98,1998.
[31] S. H. Rodrigues, T. E. Anderson and D. E. Culler, "High-

Perfonnance Local Area Communication with Fast Sockets",

USENIX 1997 Anmlal Technical Col1ference, January 1997.

[32] M. F. Sakr, S. P. Levitan, D. M. Chiarulli, B. G. Home, and C.

L. Giles, "Predicting Multiprocessor Melnory Access Patterns

with Learning Models", Proceeding,\, ~f the Fourteenth

International Col1ference on Machine Learning:' 1997, pp.

305-312.

[33] G. Shah, J. Nieplocha, J. Mirza and C. Kim, R. Harrison, R. K.

Govindaraju, K. Gildea, P. DiNicola, and C. Bender,

"Perfonnance and Experience with LAPI -a New High-

Perfonnance Communication Library for the IBM RS/6000

SP", Fi,:1"t Mel-ged .S:vmposillm IPPS/SPDP {998 12th

International Parallel Processing s.vmposium & 9th .S:vmposium

on Parallel and Dis.tributed Proces,l"ing. 1998.

[34] T. Takahashi, F. O'Carrol, H. Tezuka, A. Hori, S. Sumimoto, H.

Harada, V. Ishikawa, P.H. Beckman, "Implementation and

Evaluation of MPI on an SMP Cluster", Proceedings ~fthe PC-

NOW99: International Workshop on Pel:\'onal Computer ba.\'ed

Nem'orkl" Of Work.l'/ations., in col1}llIlction with PPS/SPDP'99,

1999.

[35] V. Tanaka, M. Matsuda, M. Ando, K. Kubota and M. Sato,

"COMPaS: A Pentiurn Pro PC-based SMP Cluster and its

Experience", Proceedings of the PC-NOW98: International

Workshop on Personal Computer based Networks Of

Workstations, in conjunction with IPPS/SPDP '98, 1998.

[36] H. Tezuka, F. O'Carroll, A. Hori, and V. Ishikawa, "Pin-down

Cache: A Virtual Melnory Managelnent Technique tor Zero-

copY Communication", Fir.\'t Mel-ged .S:vmposillm IPPS/SPDP

1998 12th International Parallel Plvce.\'.l"ing s.vmposium & 9th

.S:)lmpo.l"ium on Pm.allel and Distributed Procec\',l"ing, 1998.

[37] T. V. Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser,

"Active Messages: A MechaniSIn for Integrated

Communication and Computation, Proceedings ~f the 19th

Amlllal InternationaJ .S:vmposium on Computer Architecture,

May 1992, pp. 256-265.

[38] T. V. Eicken, A. Basu, V. Buch and W. Vogels, "U-Net: A

User-Level Network Interface tor Parallel and Distributed

Computing'\ Proceedings of the 15th ACM Symposium on

