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Abstract for transceivers, VCSELs and SEEDs for photon genera-
Communication overhead is one of the most important tion or modulation. We shall assume that one or more of

factors affecting the performance of message passing mul- these technologies will be used to implement the proposed
ticomputers. We present evidence (through the analysis of interconnect. Under such an implementation, the various
several para/lei benchmarks) that there exists communica- overheads associated with the reconfiguration of the net-
tions locality, and that this locality is «structured". We work are lumped together as the reconfiguration delay do

have devised a number of heuristics that can 'predict" the Beam routers Potential links
target of subsequent communication requests. This tech- ~ ~,~ +
nique, can be applied to reconfigurable interconnects to J ~ ~ide the communications latency by reconfiguring the Active links

Interconnect concurrently to the computation. By compar- 0 1 2 I
I.ng th . t . t .. if ...Nodes e In er-commumca Ion computation times o a num-

ber of para/lei benchmarks with some ;I; FIGURE 1. RON(k, N), a massively parallel computer
.I; ..specb.c Interconnected bya complete free-space optical network

reco~.guratlon times, we argue that the computation inter- o .o
val can be used to hide the concurrent reconjiguration of The node-to-node commumcatlon delay IS modeled as

the interconnect, and present the performance enhance- T = d + ts + Im or with d being the reconfiguration delay,

ments of the proposed heuristics. ts the setup time, Im the length of message, or the per unit

transmission time. The setup time ts [7] and reconfiguration

1 O I t d ti delay d, are the major contribution of the communication
.n ro uc on d 1 .e ay 1: both bemg of the order of several Ils .Several

Message-passing multicomputers are composed of a researchers are working to minimize this cost by user-level
number of computing nodes that communicate by exchang- messaging techniques such as active messages [8] or fast
ing messages through an interconnect. Optics is ideally messages [16]. In this work we are particularly interested
suited for implementing interconnection networks because in the techniques that hide the reconfiguration delay, d.
of its superior characteristics over electronics [20,15]. Vari- It is obvious that if a link is already in place, then the
ous optical interconnection networks including the works configuration phase does not enter the picture with a com-
in [5,12] have been proposed. mensurate savings in the message transmission time. This

We have introduced [ 1] a reconjigurable optical net- can be accomplished, if the target of the communication
work, RON (k, N), consisting of N computing nodes. A operation can be "predicted" before the message itself is
node is capable of connecting directly to any other node available. If the communication operation is regular and
and can establish k simultaneous connections. Connections known, then it is possible to determine the destinations and
are established by reconfiguring the interconnect and the instances that these shall be used [1]. However, if the
remain established until they are explicitly destroyed. A algorithm is not known, the approach mentioned above
block diagram of the network is shown in Figure 1. Circuit- cannot be used.
switching with k-port or single-port models with full- In the context of the shared memory programming, there
duplex communication is assumed. are several works on hardware-controlled and software-

Various implementation technologies exist to embody controlled prefetching of the next shared data request
the above abstract model. Such technologies include com- [14,18,22]. In the context of message passing program-
puter generated holograms and deformable mirrors for ming, many parallel algorithms are built from loops con-
switching, frequency hoping for coding, wavelength tuning sisting of computation and communication phases. Hence,



communication patterns may be repetitive, This has moti- A number of heuristics were proposed and studied in a
vated researchers to find the communications locality prop- previous work [2,3], These include

erties ofparalle~ ap~lications.[10,11], ..I, The Least Recently Used (LRU) [10], First-In-First-Out
By communications localIty, we mean that If a certam (FIFO) d L t "' tl T~ d (LFU) h ' t ' II, ..., an eas rrequen y use eUfls ICS, a

source-destlnation paIr has been used It wIll be re-used f hi h ' tam' t f k d tm' ti' [3] If'
th ' h 'I ..' o w c mam a se o message es a ons ,

WI hig probabl Ity by a portion of code that IS "near" the th t d t . ti., lr ad . th t th h 't . ., , e nex es ma on IS a e y m e se , en a I IS

place that was used earlIer, and that It wIll be re-used in the d d Oth ., , d d d th d., ' recor e , erwlse, a mlss IS recor e an e new es-
near future, If communications locality exists m parallel t ' t . I fth d tin' ti' , th t d, , ., .' ma Ion rep aces one o e es a ons m e se accor -
applIcations, then It IS possible to cache the configuratiOn ' t th ad t d LRU FIFO LFU tratth ' ., mg o e op e , or s egy,

at a previous communication request has made and reuse
it at a later stage. Caching in the context of this discussion 2, The Single-cycle heuristic [3], implements a simple cycle
will mean that a communication channel will remain estab- discovery algorithm, Starting with a cycle-head node the
lished until it is explicitly destroyed, sequence of requests is logged until the cycle-head node

This work has two parts, The first part is an extension of is requested again, This stored sequence constitutes a
our work in [3] and explores the effect that a number of cycle, and can be used to predict the subsequent requests,
heuristics has in predicting the target of a communication If the requested node does not coincide with the pre-
request, For these studies, we have used the MPI [13] dicted one, then a new cycle formation stage commences
implementation of the NAS parallel benchmarks suite with the cycle-head being the node that caused the miss,

(NPB) (version 2.3, W class) [4], the Parallel Spectral 3, The Single-cycle2 heuristic [3] is identical to the single-
Transform Shallow Water Model (PSTSWM) parallel cycle heuristic with the addition that during cycle forma-
benchmark (version 6,2) [19], and the pure QCD Monte tion, the previously requested node is offered as the pre-
Carlo Simulation Code with MPI (QCDMPI) parallel dicted node, Both cycle heuristics have a better
benchmark (version 1.4) [9] on an IBM SP2. We wrote our performance than the LRU, FIFO and LFU heuristics
own profiling codes using the wrapper facility of the MPI under the single-port assumption,
to gather the communication traces and the timing profiles
of these applications, It is worth mentioning that the pro- 2.1 Better-cycle and Better-cycle2 heuristics
posed heuristics can be used in any circuit-switched net-
works including the wave switching [6] and [21]. The performance of the cycle heuristics is improved if

The second part considers the execution time of the the previously formed cycles are maintained, In the Better-
computation phases of these parallel benchmarks on an cycle heuristic, we keep the last cycle associated with each
IBM SP2 using its high performance switch under the user cycle-head encountered, In case of a miss, if the prediction
space mode when we had an exclusive access to the sys- offered by the stored cycle associated with the node that
tern, We show that computation times, are sufficiently large caused the miss, is incorrect, then a new cycle formation
for reconfigurations, proceeding concurrently with compu- commences. Otherwise, the stored cycle is used to predict
tations, to terminate before the computation, and we the subsequent requests, The state diagram of this heuristic
present the performance enhancements achieved because is shown in Figure 2. This heuristic performs better than
of the latency hiding power of the heuristics developed, the Single-cycle and Single-cycle2 heuristics [2],

Section 2 analyzes the proposed heuristics. In section 3, Cycle-head
we obtain the inter-send computation times for the bench- M ' l ( 1 h d)ISS , c c e new cyc e- ea
marks, and present the performance enhancements of the .t
proposed heuristics, Finally, we conclude with section 4.

2.0 Latency hiding heuristics f.

The heuristics proposed in this section predict the desti- i
nation node of a subsequent communication request based ~
on a past history of communication patterns, Our heuristics ~
would execute on each node of the multicomputer, and pre- [
dict the destination nodes for communications originating ~

at the node on which they reside, We use the hit ratio to
establish and compare the performance of these heuristics.
As a hit ratio, we define the percentage of times that the .~- ,- ,~-

d ' d d ' , d Hit. vne-cycle-complete
pre Icte estinatlon no e was correct, FIGURE 2 St t d ' f th Bett I I 'th.a e lagram 0 e er-cyc e a gorl m



an excellent perfonnance (hit ratios in the upper 90%) for
all the benchmarks except for the CG, PSTSWM, and the
QCDMPI benchmarks. The reason is that these bench-
marks include send operations with a target address calcu-
lated based on loop variables. Thus, the same section of
code cycles through a number of different target addresses.

The Better-cycle2 heuristic is identical to the Better-
cycle heuristic with the addition that during the cycle for-
mation and cycle revision phases the previously requested
node is offered as the predicted node. The performance of
this heuristic is shown in Figure 3. This heuristic has better
performance than the Single-cycle and Single-cycle2 heu-
ristics, and the Better-cycle heuristic for the BT, SP, and the
QCDMPI benchmarks [2].
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FIGURE 3. Effects of the Better-cycle2 heuristic on
the benchmarks
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2.2 Tagging heuristic

The Tagging heuristic [3], assumes a communications
environment in which a particular communication request
(send) in a section of code, will be to the same target node
with a high probability. Therefore, as the execution trace
nears the section of code in question, it can cause the com-
munications environment to establish the connection to the
target node before the actual communications request is
issued. This can be implemented with the help of the com-
piler or by the programmer through a pre-connect(tag)
operation which will force the communication system to
connect to the destination before the actual communica-
tions request is issued. This technique is similar to the
prefetch operation advocated by Mowry and Gupta [14].

For our experiments, we attach a different tag to each of
the communication requests found in the benchmarks. To
this tag, we assign the requested target node. A hit is
recorded if in subsequent encounters of the tag, the
requested communication node is the same as the target
already associated with the tag. Otherwise, on a miss, the
tag is assigned the newly requested target node.
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2.3 Tag-bettercycle and Tag-bettercycle2 heuristics

Cycle heuristics are excellent in discovering cyclic
occurrences of target. We have combined therefore the tag-
ging heuristic with the cycle heuristics discussed in section
2.0. The results for the tag-cycle and tag-cyle2 were pre-
sented in [3].

In the Tag-bettercycle heuristic, we attach a different tag
to each of the communication requests found in the bench-
marks and do a Better-cycle discovery algorithm on each
tag. The Tag-bettercycle2 heuristic is identical to the Tag-
bettercycle heuristic with the addition that during cycle for-
mation, similar to the Better-cycle2 heuristic, the previ-
ously requested node is offered as the predicted node. The
performance of Tag-bettercycle for the QCDMPI bench-
mark is better than the Tag-cycle algorithm, but not better
than the Tag-cycle2 heuristic [2]. However, the Tag-
bettercycle2 heuristic is superior to all other heuristics for
all parallel benchmarks, as shown in Figure 5.
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FIGURE 5. Effects of the Tag-bettercycle2 heuristic on
the benchmarks

2.4 Heuristics performance comparison

Figure 6, presents a comparison of the performance of
the heuristics presented in this work under single-port
assumption when the number of processors is 64. It is evi-
dent that the Tag-bettercycle2 heuristic is the best for all
benchmarks and its hit-ratio is consistently very high for all
benchmarks considered here [2].

~

!:t 1-

"'*'---~... 3.0 Inter-send computation times and Speedup
10

To reconfigure the optical interconnect concurrently to
the computation, two conditions are necessary: (I) An
accurate prediction of the destination; (2) Enough lead time
so that the reconfiguration of the interconnect be completed
before the communication request arrives.

N=64

FIGURE 4. Effects of the Tagging heuristic on the
benchmarks

The performance of the tagging heuristic is presented in

Figure 4. As it can be seen, the tagging heuristic results in



FIGURE 6. Comparison of the performance of the heuristics
discussed in this work for the benchmarks under single-port
modeling when the number of processors is 64

In Section 2.0 we have presented a number of heuristics
that can be used to accurately predict the destination of the
subsequent communication request. In this section, we
shall argue that, at least in the application benchmarks
studied, there is enough computation preceding a commu-
nication request to effectively hide the reconfiguration cost.

We used a four node ffiM SP2 (160 MHZ P2SC thin
nodes and second generation high performance switch) and
run the suite of benchmarks in the user space, one process
per node, and under an exclusive access to the nodes. Our
measurements determined a lower bound on the inter-send
computation times (i.e. the time devoted to computation
between two send requests). The inter-send computation
measurements excluded any overhead associated with other
communication primitives (e.g. receive) and it can thus be

considered as a lower bound on the pure computation.
Table 1, shows the minimum pure computation times for

each node and for all the benchmarks while Figure 7, pre-
sents a summary of the distribution of the inter-send com-
putation times attesting to the fact that the inter-send

computation times are distributed widely.

TABLE 1. Minimum inter-send computation times of the

parallel benchmarks when N = 4, all times are in microsecond

Node O Node 1 Node 2 Node 3

BT 4.888 4.472 4.472 4.888

SP 4.576 4.264 4.264 4.472

LU 5.824 240.006 600.340 8.840

MG 5.928 6.240 6.240 7.072

CG 335.556 336.908 337. 700 365.404

PSTSWM 0.546 0.325 1.027 0.819

QCDMPI 6.448 1166.880 1167.816 1240.34

Researchers in optical engineering are using different
approaches to reduce the reconfiguration time of the optical

interconnects and are currently reporting reconfiguration
times of 25 !ls [ 17]. We compare the pure computation
times of these benchmarks with this 25 !ls reconfiguration

time, and with reconfiguration times of 10,5, and 1 ~s as a
measure of future advancements in this area. Figure 7 pre-
sents the percentage of the number of computation times
less than and more than 1,5, 10, and 25 ~s for each node of
the SP2 and for each application. It is evident that the
majority of the reconfigurations can proceed in parallel
with the computation and be readied before the end of the
computation. For the cases where the computation time is

not sufficiently long to completely hide the reconfiguration
it effectively reduces the reconfiguration cost by the corre-

sponding length of time.
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FIGURE 7. Percentage of the inter-send computation times for
different benchmarks less than, and more than specific length of
times when N = 4

3.1 Total reconfiguration time and application speedup

In this section, we shall quantify the ability of the pro-
posed heuristics to hide the reconfiguration delays. In addi-
tion, we shall detennine the impact of the proposed

heuristics on the application speedup.
We assume a multicomputer with nodes similar to the

thin nodes of an IBM SP2 system but with a reconfigurable
optical interconnect which has a reconfiguration delay d (d
= 25, 10,5, 1 Ils).

For the calculations that quantify the latency hiding
capabilities of our heuristics, we use the lower bound of the
inter-send computation times [2]. This allows us to com-
pute the lower bound of the time that can be hidden. For the
application speedup computations though, we use the full
benchmark trace obtained and the inter-send time includes



overhead associated with the waiting on receive [2]. The
algorithm to obtain the time spent in reconfiguring the
interconnect with and without the prediction heuristics is
given by the following pseudocode.

total-new-reconfiguration = 0.0;
total-original-reconfiguration = 0.0;

for each inter -send computation time {
if (hit) then

if (inter -send-computation < reconfiguration-delay) then
total-new-reconfiguration += reconfiguration-delay -

inter -send-computation;
else total-new-reconfiguration += reconfiguration-delay;
total-original-reconfiguration + = reconfiguration-delay;

Figure 8, illustrates the average ratio of the total new
reconfiguration delay over the total original reconfiguration
delay for each benchmark under two different CPU speeds
and four different reconfiguration delays for some of the
heuristics [2]. It is clear that the tag-based heuristics have
the best performance enhancements. For the CG, LU, and
PSTSWM benchmarks, almost all of the reconfiguration
delay can be hidden under tag-based heuristics. These
results are still preliminary. We are in the process ofusing a
larger system to obtain more realistic traces.

FIGURE 8. The total reconfiguration time obtained while
employing the prediction heuristics as a percentage of the total
configuration time when no prediction heuristics were employed.
Benchmarks assumed a current generation and a 10 times faster
CPU when d = l' 5, 10, and 25 microseconds, and N = 4 under

single-port modeling

In Table 2, we present the maximum application
speedup that we can obtain by applying the heuristics. The
application speedup has been computed for node 0. The
results are consistent with the fact that the total communi-
cation time is much smaller than the total computation
time. This is because the granularity of the benchmarks on
a four node machine is quite large. It is interesting to see
what would be the application speedup with a larger
machine size and problem size.

TABLE 2. Speedup of the benchmarks when n=4 and
d=25 ~s

Benchmark Speedup Benchmark Speedup

BT 1.0005 ca 1.004

SP 1.0003 PSTSWM 1.0001

LU 1.002 QCDMPI 1.0001

Ma 1.006

4.0 Conclusion

In the first part of this work, we presented a number of
heuristics that can be used to "predict" the target of a com-
munication request before the actual request is issued.
These heuristics use the pattern of communications and are
designed to extract dependencies which are embedded in
these patterns. For these studies, we used the publicly
available NAS suite, the PSTSWM and the QCDMPI par-
allel benchmarks. The heuristics proposed are only possi-
ble because of the existence of communications locality
and can be used to establish a communications pathway
between a source and a destination before this pathway is
to be used. This is a very desirable property since it allows
us to effectively hide the cost of establishing such commu-
nications links, providing thus the application with the raw
power of the underlying hardware.

In the second part of our work, we presented the execu-
tion times of the computation phases of these parallel
benchmarks on an IBM SP2 using its high performance
switch under the user space when we had exclusive access
to the system. In measuring the execution times of the com-
putation phases we ensured that any system and communi-
cation overheads were excluded. In essence, the reported
times are the lower bounds of the execution times of the
inter-send computation phases. The results show that we
can use most of this time to hide the reconfiguration delay
if we use one of the proposed high hit-ratio heuristics.

We also presented the performance enhancements of the
proposed heuristics on the total reconfiguration time. For
this, we used the obtained computation/communication
traces and heuristics hitlmiss profiles to determine the total
reconfiguration time under different reconfiguration costs~
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