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Abstract

Recent research on timing verification of digital interface
circuits has implicitly assumed that the delays of different
signal transitions in the circuit are independent of one
another. However timing diagrams in data sheets clearly
specify correlation information. If timing correlation is
ignored the results of verification can be overly pessimistic.
In this paper we propose a probabilistic timed Petri net
capable of representing timing correlation. For the sub-
class of periodic nets with AND and OR causality we develop
a procedure that not only accurately checks if each one of
the given timing constraints is satisfied but if the check
fails also determines the probability that a particular tim-
ing constraint would be violated.

1. Introduction
Complex systems can be constructed hierarchically using
simpler modules. The integration of a system involves the
design of inter-module hardware interfaces which provide
connectivity and possibly protocol conversion. The auto-
mation of interface timing verification is important for the
design of reliable systems particularly due to the trend
towards increasingly high-reliable and high-performance
systems.

In order to design or verify an interface circuit, only the
external behavior of the components needs be specified.
Usually a component specification is given in the form of a
functional description of its pins accompanied with timing
diagrams which detail the temporal behavior of the inter-
facing signals. Signal transitions encode the events of a
protocol. In the sequel we use the terms event and signal
transition interchangeably.

Signal transition graphs or STG’s [6] have been used to
represent component protocols. Nodes in an STG corre-
spond to the protocol events while edges represent timing
relationships between events. There are two basic types of
timing information: circuit delays and timing constraints.
Circuit delays describe the intrinsic delays through the
gates that comprise the two components and the interface.
Timing constraints indicate the timing relationship that

must be observed between a pair of events for proper oper-
ation of the circuit. A delay or a timing constraint are usu-
ally represented as intervals [tmin, tmax] denoting the lower
and upper bounds. For a delay, the interval accounts for
differences in process fabrication, variations of tempera-
ture, etc. For a constraint, the interval the tolerance of the
circuits (e.g. a set up timing constraint). The objective of
timing verification is to determine whether all constraints
are satisfied for all possible values of the circuit delays.

In this paper we discuss the representation of time corre-
lation in component interface specifications. The next sec-
tion surveys previous work on interface timing verifica-
tion. Section 3 introduces timing correlation information.
Section 4 presents our probabilistic model which is based
on a probabilistic timed Petri net. Section 5 illustrates our
technique using an example. Finally section 6 discusses
future directions.

2. Related work

The timing verification problem has been formulated as
finding the solution of a set of linear/min/max delay
equations [1,2]. Because the general problem is NP-com-
plete, recent work has concentrated on finding efficient
solutions of the linear/max problem [cf. 3] which is more
tractable. In section 4.2 we show that such min/max timing
relationships can be derived from the AND/OR causalities
studied in the concurrent-systems literature [4]. We also
show that neglecting correlation information may result in
pessimistic estimates of event time separation between.

A major contribution of our approach is that we main-
tain a causal framework while being able to model as tim-
ing correlation seemingly “non-causal” phenomena pro-
vided in standard data sheets by chip manufacturers. An
additional benefit of our approach is that if a particular
constraint is not satisfied, our procedure then determines
the probability that such timing constraint would be vio-
lated.

Currently the procedure we have developed is applica-
ble to periodic systems. Note however that this is not a
serious limitation since standard interface protocols are
designed to function periodically (e.g. microprocessor
transfer cycles).



3. Timing correlation
To understand time correlation, consider the following
example taken from a microprocessor transfer cycle (see
Figure 1). The address lines add are used to select a partic-
ular device. In order to avoid incorrect selection while the
address lines are changing, a strobe signal as is used to
indicate when the add lines contain a valid address. A tim-
ing diagram describing this protocol is shown in Figure 1.
Typical values for the timing parameters are listed in
Table 1. The manufacturer guarantees that a chip will per-
form within the minimum and the maximum given times. 

Figure 2 shows the corresponding STG. One can identify
two clock events indexed by the corresponding clock
states, the address lines becoming valid add↑, and the
assertion of the address strobe signal as+. The timing
parameters of Table 1 label the edges of the graph. 

With the exception of tAVSA the other timing parameters
describe causal relationships between the corresponding
events. Timing tAVSA specifies that add↑ always precedes
as+ by at least 20ns. One may be tempted to add a causal
link from add↑ to as+ (the dotted edge in Figure 2). A
more appropriate modeling uses the concept of time corre-
lation. Note that both add and as are generated concur-
rently by two logic blocks from the clock edges. Let us call
d1 and d2 the delays from clk0 to add↑ and as+ respec-
tively. From the parameters in Table 1, it can be inferred
that d1 ∈ [0, 40] and d2 ∈ [35, 85] ignoring tAVSA. There
are some combinations of values of d1 and d2 for which
tAVSA is not satisfied. For example if d1 = 40 and d2 = 35.

Figure 1.  Timing relationship between add and as.

Symbol Timing parameter Min Max Unit

tCHAV Clock high to Address valid 0 40 ns

tCLSA Clock low to as asserted 0 40 ns

tAVSA Address valid to as asserted 20 - ns

tCHCL Clock high to Clock low 35 45 ns

Table 1: Timing specifications (Motorola MC68030)

Figure 2.  Signal transition graph.
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However the sources of delay variation (e.g. process
fabrication tolerances, temperature effects, etc.) are likely
to affect both delays in the same direction, making the
above choice of values of the delays improbable. We say
that d1 and d2 are not independent of each other but are
correlated. Figure 3 shows a joint probability density func-
tion of two variables. Note that the values that y can take
are restricted by the value of x. A similar behavior is to be
expected between d1 and d2. 

In Figure 4a the shaded area describes the projection of
the probability distribution function fd1,d2(d1,d2) which
better expresses the intention of parameter tAVSA, namely
that add↑ precedes as+ by at least 20ns. Note that if d1 and
d2 were independent, the projection would be the rectangle
bounded by a dashed line. The boundary of the projection
in Figure 4a can be described by linear expressions on d1
and d2. Although arbitrary boundaries can be used, linear
boundaries have a clear computational advantage, and lend
themselves to a concise description. 

The output of our verification analysis is a probability
density function of the time separation between two con-
strained events. Thus it is possible to find out the probabil-
ity that the constraint would be violated.

Consider for example the probability distribution func-
tion fd of the time separation d between two events shown
in Figure 4b. The function fd is non-zero for d ∈ [0, 60]. If
there is a constraint ∆ = [20,40] between the events, con-
ventional verification techniques can only determine that
the constraint is violated by 20 ns on each side. A reliabil-
ity analysis can determine that ∆ is violated in, say, only
1% of the cases. This information can be invaluable to
designers.

Figure 3.  Probability density distribution.

Figure 4.  (a) Projection of the pdf of delays d1 and d2; 
(b) pdf of time separation d between two events.
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4. Probabilistic interface timing verification
To represent circuit delays we use a probabilistic signal
transition graph, which is a Petri net whose transitions are
interpreted as events of the interfacing protocols. A set of
constraint rules on selected transitions of the net specifies
the timing constraints. Firstly we introduce a probabilistic
Petri net which can accommodate random variables with
arbitrary probability functions.

4.1 Stochastic Petri net mode
A probabilistic Petri net is a quintuple N = 〈P, T, F, M0, Γ〉
where P is a non-empty set of places, T is a non-empty set
of transitions, F ⊆ (P × T) ∪ (T × P) is the flow relation,
M: P → ℵ is the marking function (where ℵ is the set of
non-negative integers), and Γ: P → τ is the delay labeling
function that assigns to each place pi ∈ P a random vari-
able (r.v.) τ(pi) [5].

The preset (postset) of a transition t is the set of incom-
ing places to (outgoing places from) t and is denoted •t (t•).
Random variables τi’s are used to represent circuit delays:

Firing rule .
1. A transition t ∈ T is enabled when every place p ∈ • t

contains a visible token.
2. An enabled transition fires immediately. When it

fires, the transition consumes the tokens in every p ∈ •t
and sends tokens to every place p ∈ t•.

3. A place p upon receiving a token at time τ makes it
visible to transitions t ∈ p• at time τ + τi, where τi is a ran-
dom variable with distribution fτi(τi).

For causality it is required that the probability of any
random variable τi taking a negative value be zero. The set
of random variables τi, i = 1..M, assigned to the places of
the net are fully described by the probability density func-
tion (in short pdf) fτ1 …τM(τ1, … τM). In practice, most of
the r.v. are independent, so that f can have a more compact
form. For example, if all τi are independent then:

fτ1 … τM(τ1, …, τM) = fτ1(τ1) … fτM(τM) [Eq. 1]
A constraint rule associated to net N = 〈P, T, F, M0, Γ〉 is

a triple cij = 〈ti, tj, ∆ij〉 where ti, tj ∈ T is a pair of transitions
of the net, and ∆ij  is a compact real interval. The set of con-
straint rules CN = {cij} specifies the timing constraints of
net N.

A probabilistic STG is defined as a tuple 〈N, CN, Y, λ〉
where N is a probabilistic Petri net, CN is the net’s associ-
ated set of constraint rules, Y is a set of signals, and
λ: T → E is a labelling function which assigns transitions
of N with events e ∈  Y × D × D (D is the signal domain).

Definition.- A probabilistic STG is said to be time-con-
sistent if for every constraint rule cij ∈ CN, the time separa-
tion between events ti and tj is within the bounds of ∆ij  over
all possible executions of the STG.

Determining if an STG is time-consistent for an arbitrary
net topology is an open problem. In this paper we solve the
time-consistency problem for a sub-class of Petri nets with
AND and OR causality.

4.2 AND and OR causality
An event t is said to be AND-caused by a set S of events if t

occurs after all the events in S in all occurrence sequences.
Similarly, an event t is said to be OR-caused by a set S of
events if t occurs after the first event in S occurs. For exam-
ple in Figure 5a event c occurs only after a and b occur,
and in Figure 5b c occurs as soon as a or b occurs.
Figures 5c and d show the corresponding Petri net con-
structs. For the sake of clarity from now on we adopt the
more compact representation shown in Figures 5a and b. 

Let us consider the multiple AND join shown in Figure 6.
Places are associated with random variables τi with distri-
butions fτi(τi). After the firing of an event, say a, at time τa,
a token is made visible to event d at time τa + τ1, with pdf
fτi(τ1). According to the firing rule, d fires when all tokens
in a, b, and c are visible, which occurs at:

τd = max(τa + τ1, τb + τ2, τc + τ3) [Eq. 2]

Similarly for a multiple OR join, event d will fire as soon
as the first of a or b or c occurs, which occurs at:

τd = min (τa + τ1, τb + τ2, τc + τ3) [Eq. 3]

Thus AND/OR causality generates the max/min delay
equations respectively of interface timing verification.

4.3 Functions of random variables
In this section we state some results from probability the-
ory needed to compute time separation between events. Let
x and y be two random variables with joint pdf fxy(x,y). The
pdf of the random variable z is given by [5]:

if z = x + y [Eq. 4]

if z = x − y [Eq. 5]

Figure 5.  Causality classes: (a) AND causality; (b) OR 
causality; (c) and (d) Petri net constructs.

Figure 6.  Distribution of the firing time of an event.
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if z = max(x, y) [Eq. 6]

if z = min (x, y) [Eq. 7]
where  is the cumulative joint distribution func-
tion of x and y.

4.4 Verifying time-consistency
The timing verification procedure for a periodic STG with
AND and OR causality can be stated as follows:

1. For every constraint rule ci with associated interval
∆ij  from event ti to event tj, find the pdf fz(z) of the con-
straint equation z = τtj − τti (using Eqs. 4-7 and Eq. 9).

2. The STG is time-consistent if

[Eq. 8]

for every constraint rule ci.
In [6] it is shown how to write constraint equations for a

periodic STG with AND and OR causality. Constraint equa-
tions only contain the operators described in section 4.3. To
determine the joint pdf of a constraint equation we use the
following procedure based on point conditional
probability [5]. Let fba(b,a) be the joint pdf of two r.v. a
and b, which are functions of two vectors of r.v. τa and τb
respectively, where the elements of τa and τb are subsets of
the set of r.v. τi. Denote a = a(τa), b = bτb), and τ∩ the vec-
tor of r.v. τi common to both τa and τb. The distribution of
fba|τ∩(b,a,τ∩) is just fb|τ∩(b,τ∩) fa|τ∩(a,τ∩) for a given
fixed τ∩. Furthermore, the joint pdf of a and b is given by:

[Eq. 9]

where

[Eq. 10]

5. Example
Consider for example the partial unfolded graph [6] shown
in Figure 7. Event d will occur as soon as the first of c or d
occurs (OR causality). Suppose the delays are as follows: τ1
and τ2 in [0,20]; τ3 in [10,50]; τ4 in [0,60]; and τ5 in
[10,30]. Moreover τ1 and τ2 are correlated by ρ1 which is
[-5,5]. Correlation ρ1 states that for all possible values of
τ1 and τ2, τ1 − τ2 ∈ ρ1, or -5≤ τ1 − τ2 ≤ 5. Note that non-
causality is not implied by ρ1, as events b and c always
occur after event a. In the absence of additional probabilis-
tic data, we assume that the pdf’s are uniformly distributed.

The joint probability distribution fτ1τ2(τ1,τ2) is shown in
Figure 4. To check constraint ∆ one must find the time sep-
aration z = τd − τe from e to d, where τd = min (τ1+τ3,
τ2+τ4), and τe = τ2 + τ5, relative to the fork event a.
Figure 8 shows the pdf of z which was obtained using the
verification procedure stated in the previous section. 

The bounds on z are given by [-45,30]. Therefore any
constraint ∆ such that [-45,30]⊆ ∆ would be satisfied.
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Suppose that ∆ = [-30,30]; then using Eq. 8, I = 0.9703,
that is ∆ would be violated in about 3% of the executions.
If correlation ρ1 is not taken into consideration, by apply-
ing conventional timing verification techniques which can
handle min delays (e.g. [2 ,1]) it can be found that the
bounds on z are [-50,40] thus yielding pessimistic results.

6. Conclusions
In this paper we considered the timing verification of digi-
tal interface circuits. Previous research has implicitly
assumed that circuit delays are independent of one another.
However in the timing diagrams provided by manufactur-
ers it is common to find timing correlation information. If
correlation information is not taken into account the verifi-
cation procedure may produce pessimistic results. In order
to cope with correlation data we have proposed a probabi-
listic timing verification which can handle AND/OR causal-
ity. In unbounded delay situations (e.g. due to metastable
condition), it is unrealistic to demand 100% constraint sat-
isfaction. As future work we are planning to extend the
constraint rules to include a reliability factor that expresses
less strict conditions on the constraint satisfaction.
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Figure 7.  Example: (a) Partial unfolded graph; (b) joint 
probability density function of delays τ1 and τ2.

Figure 8.  Pdf of z = τd − τe with correlation.
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