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Abstract -In this work we present a class of recurrent fashion. For example, the axons of the granule cells become
networks which are asymptotically stable. For these networks, elongated and are arranged in parallel to each other forming the
we discuss their similarity with certain structures in the central Parallel Fibers. Neurons from all the classes but granule cells, re-
nervous system, and prove that if an interconnection pattern that ceive input from the Parallel Fibers. The absence of loops (e.g.
does not allow excitatory feedback is used, then the resulting re- granule cells to granule cells) contributes to the stability of the
current neural network is stable. We introduce a training meth- structure, as we shall prove subsequently. Additionally, the ar-
odology for networks belonging to this class, and use it to train borizations of both the dendrites and the axons are limited, and
networks that successfully identify a number nonlinear systems. thus neurons are affected by neurons which are in their immedi-

I INTR ate vicinity (microscopic connectivity principle).

.ODUCTION

Neurons and their interconnections constitute the Nervous
System in living organisms. The Nervous System by design and/
or training implements functionality that enables the organism to
survive in its environment. It is worth therefore studying this
functionality in relation to its structure and organization, in the
hope that artificial analogs could be devised possessing interest-
ing properties and perhaps mimicking some of the functionality
found in Nature.

In what follows, we shall present some general observations
regarding the organization and interconnection of neurons in the
Nervous System. We shall present the specialization of these
principles in the structure of a particular part of the Nervous Sys-
tem (the Cerebellum) and we shall see that such a structure guar-
antees the stability of the part. Further, we shall present artificial
analogs in the form of neural networks and a training method
that allows these analogs to learn the behavior of an arbitrary dy-
namical system. Again, structures which were found in Nature, Fig. I. The structure of the cerebellum. PC: Purkinje Cells, GrC:
shall prove crucial in training. Finally, we shall present examples Granule Cells, GC: Golgi Cells, BC: Basket Cells, PF: Parallel
where these artificial analogs have been applied. Fibers, MF: Mossy Fibers, CF: Climbing Fibers, pa: axons of the
A Ph . I . I P .. I Purkinje cells-

.yS1O oglca nnclp es

Examining the structure of Nervous Systems, we observe The connectivity in a neural network can be abstracted to that
that: of the composing neural classes. Important structural properties

Neurons belong to physiologically and morphologically dis- become apparent in such an abstraction. The interconnect for the
tinct groups. Neurons within a group have similar properties cerebellum is presented in Figure 2 One can verify the absence
( e.g. are all ihibitory, all are connected in a similar manner ). of any excitatory feedbacks.

Neuron~ are connected locally. (A ~euron does not normally II RECURRENT NEURAL NETWORKS
affect nor lS affected by every neuron In the network). .,

We understand the above general statements as the macro- STABILITY AND LEARNING

scopic microscopic connectivity principles [8]. A. Recurrent Neural Networks
An example structure, which has been studied extensively is. .

the cerebellum; it is found posterior to the cerebrum and it is be- .~eur~l n.etwor~s wIth struc~res whIch ~bey the two ~onnec-
lieved that it is used to make movement smooth. tlvlty pnnclples discussed earlIer are descnbed by the dlfferen-

A . fth b II be . F. 1Th .tial equation [8].
sectIon o e cere e urn can seen In 19ure IS struc-

ture includes neurons belonging to four different classes, namely () = -TO + Wf ( 0) + b (I)

Purkinje, Basket, Golgi and Granule cells. The three first classes. ..
comprise inhibitory neurons, while the only excitatory neurons In (I), there are N neurons dIvIded Into k classes, and

are the Granule cells. Input is provided via the Mossy and 0 = r 0 1
Climbing fibers, while the axons of the Purkinje cells are the LOl 02 ...kJ

only output pathways. - [ ~-o 0 ...oIt is noted that these neurons are connected in a particular 1 2 N is the state of the neural network,



.
[ j The solution can be written as Wll W12 ...Wl k III W = -T;: t -T;: t -T;: s -1

...01 = e °10+e 'e TI /1 [02(s)]ds

Wkl Wk2 ...Wkk I I I-12 t -12 t r -12 s 1
is the network connectivity matrix, T = diag('tJ isthematrix 02 = e °20+e Joe T; /2[01 (s)]ds

of neural relaxation constants, b is the input to the neural net-
IIwork, and I ( 0) belongs to the class of so-called neuromime Thus 01:?; e-T;: t 010 and 02 ~ e-r;: t 020.

functions, which are positive monotonically non-decreasing sat- Substituting in the original,

isfying a Lipschitz condition and 39 (39 e RN) such that -T;:lt -T;:lt r -T;:ls -1 [ -r;:IS ]01 ~ e 010 + e J( e T 1 lIe 020 ds

I (9) = O. 0

.Since /1 ( .) is non-negative and non-decreasing
...

~ ~. ,4 - -I " -T;: t -ft -

01 ~e °10+e PI (t) or

Tt 1-
1°1~e- {1°101+ Pl(t) }

W12 -1 -
where T = min(T 1 ' 1)

A similar procedure is followed for 02 and for the general case.

~"' This gives an easy way to check whether a neural network is
.,\ " stable. For instance, the neural network shown in Figure 2 is sta-

ble provided that the connection weights in submatrices W 23
Fig. 2. The structure of the cerebellum.

!Ni Purkinje (Inhibitory) ~Basket (Inhibitory) and W 34 are non-positive (i.e. inhibitory).

?{3 G?lgi .(Inhibitory) ~ granule (Excitatory) This result is extremely useful in the area of identification and
el Climbrng fibers ~ mossy fibers control. A most important feature of a controller or model is that

it must be stable. This is accomplished by ensuring that the struc-
The functions I ( 0) represent the nonlinearity of the hill- tural condition on the connectivity matrix W that guarantees sta-

ock, and define how the membrane excitation is translated to a bility is maintained.train of action potentials. A commonly used function is the sig- ,

moid, while the class of neuromime functions is more general C. Parameter Adjustment In Stable Neural Networks
and includes in addition to the sigmoids, piecewise linear and This section discusses a method for adjusting the weights and
continuous functions for example. other parameters of neural networks that are stable in the sense
The structure of the network is reflected in the structure of the described in Section B. The general approach that is used here is
connectivity matrix W. Each submatrix W. .represents the inter- to define some a criterion and then adjust the parameters in a di-

I} rection that will decrease this cost. In this sense the technique is
connection weights between class i and classj. similar to linear recursive adaptive methods [4] and to classical
B A .11 S bl R t M I N tw k back propagation [5]. However, since the stable neural networks

.symptotlca y ta e ecurren eura e O~ s have certain restrictions on the polarity of the connection of

The condition on W that guarantees asymptotic behavior is classes, a straightforward gradient adjustment is not possible. A
that it must contain all of its positive entries on one side of the solution for this is also presented here.
main diagonal. In the subsequent, we analyze the stability of an ..
example structure, the complete analysis can be found in [8]. D. Grad,ent 01 Cost Functlon

The system The general equation for calculating the behavior of the class
of neural networks of interest here is

T161+o1 = /1(02) O = -TO+WI(O) +b (3)

T 262 + 02 = -I f01) (2) One possible criterion for measuring the performance is the qua-

dratic cost function
with T 1 and T 2 diagonal positive matrices and I fO) = O , is

J(e) = 1/2(0-0 )TA(O-O ) = 1/2eTAe (4)
asymptotically stable in the large with solutions which are d d

bounded from above and below by functions of the form where ° d is the desired state of the neural network. Matrix A is

e-At p ( t) where p ( t) is a vector polynomial in t. The connec- used to eliminate from the cost any neurons whose state is not
tivity matrix corresponding to (2) is crucial. A is a diagonal matrix with ones corresponding to output

neurons and zero's elsewhere. As in other recursive adaptive

W = r O 11 and it obeys the condition of having all its positive methods [3],[9], parameters 9 in the neural network are adjusted

L-1 OJ 1 h . di f th ..de aJ
Tha ong t e negatIve gra ent o IS cost, l.e.,-d = -1lse .e

entries on the same side of the diagonal. t u



~ chain rule for differentiation is used to allow for the calculation weights labeled Wand W in Figure 2 are guaranteed to be

f h . di " . ed . h .12 43

O t IS gra ent lor parameters assocIat WIt neuronj: ' t ' th th al t k .
11 b t bl Th atita a non-posI Ive, en e neur ne wor WI e s a e. us er

~ = ~..:!..1 = y ,..:!..1 (5) any weight in W 12 and W 43 is adjusted using (11), it should be

ae ao,ae }ae h ked th ., ..
If th .. } c ec to ensure at It IS not posItive. It IS posItive, en It IS

, clamped at 0. This ensures that inhibitory connections remain in-

The notatIon y j IS used to denote the denvative of the cost wIth hibitory throughout the training procedure.

respect to the activation ofneuronj. Ifneuronj is an output neu- ill Ith . d .., .
I .DENTIFICATION ron, IS envative IS sImp y

The term identification is used in this section to refer to the

y j = 0 j -o dj .(6) process of developing a model of an unknown system by observ-

In a manner analogous to traditional back propagation of the ing its input/output behavior [3],[9].

error [9], this gradient may be calculated for units that are not This section uses the results of the previous section to identify

output neurons by using the values of the gradient in all the neu- some unknown systems. A suitable neural network architecture

rons k that have neuronj as inputs: is proposed and some motivation for this configuration is given.

aok A. Identification Architecture

y, = Lyk- a = Lyk~k' (7)

} k o j k J Consider the simple nonlinear system

Here, the notation ~kj has been introduced to represent the y = u -~ (12)

partial derivativeaok/ao ' .To calculate ~k. , it is necessary to 1 + 4y

use the differential equa~on which defines J the behavior of the If y remains relati vely constant near some value y ss ' then this

neural network. Rewriting (4) specifically for neuron k, and us- system can be approximated by a first order linear system that

ing the operator D to represent differentiation results in 2 -I

has a pole at ( 1 + 4y ss) .If y varies from this value signifi-

('tk+D)ok = 4.Wk!(O) +bk (8) cantly, then the 'pole' can be thought of as "roving". Although

} this is not an exact description of the behavior of the system, it

Differentiating (8) with respect to 0 j results in does illustrate one of the common types of nonlinearity which is

encountered in real systems.

i:"kj = ( -'tk) ~kj + wkjf (0) .(9) To take advantage of this type of nonlinearity, the architecture

All th d . ti.. ed . (5) t d . t t e of Figure 3 is proposed for general system identification. Labels
e enva ves reqUlr In o a Jus a parame er

h b bt . ed t " th d ' ti . a /ae Th I and O refer to the input and output of the system, and ~ and

ave now een o aIn , excep lor e enva ve 0 j .e

~ to two classes of neural networks.

next section discusses the case when e is a connecting weight.

A similar technique can be used to obtain a formulae for adjust-

r~ing any of the other variables that parameterize the neural net- +

work such as the relaxation constant 't or parameters of the -

activation function f ( ) [6],[7].

~ro I 9{1 E. WeightAdjustment f

Let e represent a connecting weight w ji which connects -\ +

neuron i (input) to neuronj. Use the notation f,ji = aoj/aw ji .9.{?

Differentiating (10) with respect to w ji ' the differential equation Fig. 3. An Architecture for System Identification

for f, " is obtained:

}1 The block marked S is a special connection of classes called

~ " --f, f ( ) (10) the "scheduler class". The idea of this class is that it schedules

}' -'t j ji + °i which neurons will be active and when, thereby emulating the

Using this equation and the results of the previous section, movement of the "pole" for large variations of the state variable

equation (7) may now be written as or input. Neurons in the scheduler class have a "peaked" re-

dw ' .sponse as shown in Figure 4 Each neuron in the class has a peak

-1! = -t1y ,f, ., (11) at p that occurs at a different value. Figure 3 shows that the

dt } }1 scheduler class receives input from I and 0. Depending on the

with y j calculated using (6) or (7) as appropriate. values of the input and output, different neurons in ~ and ~

will be active. This allows the neural network to take advantage

F. Weight Clamping of the type of nonlinearity discussed above. The example de-

Section B describes a class of neural networks that are asymp- scribed by (12) is well suited to this kind of architecture since

totically stable. This condition is guaranteed provided that the neurons with different relaxation constants may be activated de-

connectivity matrix W has all of its positive entries on one side pending on the level of the output.

of the diagonal. However, (II) gives a formula for adjusting the This behavior can be obtained by a network of neurons where

connection weights that may violate this condition. To combat both inhibitory and excitatory paths emanating from a common

this, it is necessary to check the polarity of certain crucial origin drive the same output class. An example of a four neuron-

weights after each weight adjustment. For instance, if the network as depicted in Figure 5 This network is asymptotically



~ stable and it was trained to have the "peaked" response depicted the first link makes with the vertical. Both v (t) and v (t)
in Figure 4 Similar structures exist in the cerebellum. The gran- .I 2
ule-Purkinje and granule-Basket-Purkinje paths (c.f. Figure 2) (the actuator control voltages) w.ere used ~s ~nputs to the syste~.
are the excitatory/inhibitory paths emanating from the same The neural network had an architecture sImIlar to that shown rn

common origin and affecting the same target output class. Figure 3, except that ~ was not included. Class ~ contained 5

I neurons while the scheduler class had 10 neurons.
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Fig. 5. A network of neurons exhibiting "peaked" response.
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IV. APPLICA TlONS i
~ 0.4

We have used the neural networks described above to suc- -;:I
cessfully identify a number of nonlinear dynamical systems. !
These include a robot arm, the dynamics of boat under rudder in- 0. --'-- Neural Network

put and the influence of the temperature on the magnitude of the actual
pilot signal obtained from a network of high-frequency cable-
television-distribution amplifiers. In the following sections, we
shall present these identification experiments, together with con-
vergence measurements. -0.20 10 20 30 40 50 60

1ime
A. Identification of a PUMA 560 Robot Fig. 7. Measured and Neural Net Response for a PUMA 560

A two-link robot arm is known to have its dynamic response
governed by the differential equation Convergence of the response was rapid at the start and then
H (q) ij + h (q, q) q + Fq + 9 (q) = <l>v (13) slowed down. Typically, a run of 10000 epochs would yield an

error of less than 5%. After training was completed, the neural
where the state q contains the angle 91 that the first link makes network followed the actual response of the robot closely. The

response is shown in Figure 7.
with the vertical and the angle 92 that is formed between the two Th fun ti. f th tr .. h . d . ted . e error as a c on 0 e almng epoc IS eplc rn

links;H (q) is the 2x2 inertial matrix; h (q, q) models the Co- Figure 8. This figure depicts 20 training runs, each one being
. li d . 1" F . h f ... ( ) preceded by 10 short exploratory runs as we shall discuss in Sec-

no s an centnpeta lorces; IS t e nction matnx; 9 q rep- tion B below.

resents the gravitational torque; and <I> is the voltage-to-torque B R d h . d th t .. an om tec nlques to spee e rammg convergence.

conversIon matrIx [5]. All of these vanables rely on many ma- C . h. d .dl th .. honvergence IS ac leve rapl y once e tralmng as

chrne-specIfic factors, such as dImensIons, weIghts, rnertla, and hed th . f " ttr ti." f ti.. t F. direac e regIon 0 a ac on 0 an op mum porn .rn ng
Jornt frictIon. :0 obtaIn an ~ccurate.model, one measures dlrect- the regions of "attraction" is considerably slow. We are using
ly as many vanables as possIble. This was done for a PUMA-560 random perturbance during training to force the state to be dis-
robot. Lengths, masses, and inertias were obtained through di- lodged from non interesting regions.
rect measurement [2]. Variables which could not be easily di- The technique we use is that of exploratory searches. Several

rectly measured were the matrices F and <I> representing four random disturbances to the weights are offered, and each is fol-
unknown scalars in total. Classical RLS parameter estimation lowed for a short number of epochs. The one that has reduced the
can be used to identify these variables [5]. error the most is chosen for a longer search. This technique can

be applied at any point during the training, currently we have im-
A neural network with an architecture as presented above was plemented it only at the start.

trained to identify the dynamic response for 91 ' the angle that Figure 12 and Figure 12, show the evolution of the error for



20 runs each. Each run consists of 10 initial short exploratory runs. At the end of each of these exploratory runs, the attained

error is recorded, and then the run with the minimum error is
chosen for further training. Each exploratory run comprised 100
epochs for the experiment shown in Figure 12 and 300 epochs
for the experiment in Figure 12. 42.1 de

41.1de
neural networt< training errorvs U1O number of epochs 40.2dB

25 39.2de

3e.2de
37.3de
36.3de
35.3de

I t5 34.4 de
"5 33.4 de
I 1 2/1 3/10 4/10 5/10 6/10 7/10

'0 E170005

~~ Q:!!!:::?) ( Properties", ) ~ ( Duplicate ) ~ ~
8' 0.5

...Amp: E170005 fIeld: [2) T 93/10/0200:00 to 93/10/0723:59

o 76,3'C
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70,3",

~.50 2000 4(XX) 6(XX) ~ 10000 12000 14(XX) 67.TC
epodIB 64,2"C

Fig.8. The training error for the PUMA 560 experiment, as a 61,TC
function of the training epochs. 58.TC

55,1.C
52,1.C

As it is evident from Figure 12 and Figure 12, the error de- 49.1"C
creases rapidly at the beginning and then much more slowly af- 2/1 3/10 4/10 5/10

terwards. This is typical of steepest descent algorithms. It is also. .,
interesting that the choice of starting point is crucial and that a Ig.9. Pilot and Temper~ture,data °,:er sever~1 d~ys III Octo-
training that "looks good" in the beginning (i.e. at the end of the ~er 1993. The shaded r7g1°ns III ~e ~llot data Illdicate al~~
short exploratory runs) usually converges to a low error config- (I.e. measurements °~ts~de preset liflllts)d Observe the fault Im-

uration. This can be seen in Figure 12 and Figure 12. Figure 12 tlation on October 3 .

shows the error of 20 runs with random start points but no initial
exploratory searches, contrary to the situation depicted in Figure Although, the amplifiers are temperature compensated, it has
12. been observed that all the measurements vary with the tempera-

I 'f al It f ' I d. tu ' h t ., ture. The typical variation is small when the amplifier is properly

ill, I resu s 0 IllC u Ill~ a momen m term III t e ralillng adjusted. Because of drifts or malfunctions, the amplifiers

algonth~ m:e. very encouraglllg. The momentum term seems to evolve to a "faulty" state where they exhibit an altered pattern of
greatly dlflllillsh the number of epochs necessary for conver- b h . A t ' al I . ted . F'

9 Th behe avlor. yplC examp e IS presen III 19ure e av-
gence. For example, for the robot, we have been to able to. ...d
achieve accurate tracking after about 4000 epochs as opposed to lor patt~rn depicted d~nng the first two days .(unti~ October ~ at
more than 10000 needed with the non-momentum case. 21:40) IS representative of a well tuned hlgh-pllot amplifier.

Suddenly, on October 3d at 21:40, a significant change in the pat-
C. Identificaflon of the Puot Measurements In a Cable- tern of behavior occurs.

Television Network of High-Frequency Amplifiers

A Cable Television Network incorporates a number of high ,
frequency amplifiers forming a tree. There are two categories of ~
amplifiers, the ones belonging to the main trunk and the ones 0.85 ;\ j
forming subscriber drops. Additionally, power supplies are 10- ::i
cated throughout the network, each one powering a limited num- -0.9 i ~;
ber .of amp~fiers. The majo?ty of ~e main trunk amplifiers are ~ 0 j i' I J
eqUipped with a status moilltor which uses a reverse channel to I .85 ~ : ~
report the status of the amplifier to the head office. Subscriber i 0.8 ' !!-

drops and power supplies are not monitored. ~ , -.i
~ " ,

The values of the monitored variables are allowed to vary 1°.75 ~

within two intervals (warning and alarm) centered at nominal ., ...I.107 I, I ,. I , IIvalues. If a value is outside these predefined intervals then a. -.!: " warning or an alarm is issued. ~ Neural Network

o.~ I I
There are several other modalities which manifest themselves actua

as changes of behavior rather than significant changes in the 0.60 50 100 150 200 250
-measurements. Fig.10. Actual and Neural Network (dashed line) response for

In order to detect the onset of such behavior changes and pro- the pilot of EI70005. The training set is delineated by the verti-
viding a diagnosis based on the properties of the ensuing behav- calline at day 1.
ior we have used recurrent neural networks identify the
behavior, and we present examples of identification of pilot
measurements. The standard fault detection techniques which are normally in



...use, alert the user only if the values of a measured parameter ex- V. CONCLUSIONS AND DISCUSSION
ceed some preset limits. In this case the pilot level did not exceed
its threshold until the following day, some eighteen hours after In this work we have presented a class of recurrent networks
the start of the new behavior in the evening of October 3d, and which are asymptotically stable. ~e have.introduced a trai~ng
then it stayed outside its nominal range for only a limited dura- methodology for networks belongIng to this class, and used It to
tion. train networks that successfully identified a number nonlinear

systems.
Such a belated reporting in conjunction with the short dura- .., , , .

tion of the time during which a measurement stays outside its The systems which were us~d In our Identification expen-
nonnal range, makes a diagnosis very difficult. ments were actual. syst:ms and Included a robot and the de~n-

dence of the pllot-slgnal measurements on the ambient
One may observe therefore that establishing a nominal range temperature of the enclosure of a high-frequency trunk amplifi-

of values, is not the best way of detecting the onset of a "faulty" er .
behavior pattern. In addition it does not accurately identify peri- Th f th t ' ed t k " II I I th t fd d .h. h th beh .."" I " d th . ak e response 0 e rain ne wor s 10 ows c ose y a 0
0 s unng; w IC , e avlor IS lau ty , ' an us It m es an the actual system, confirming the ability of these structures to ac-
accurate diagnosIs of the fault problematic. t I d I th t d . cura e y mo e e sys em ynarntCs.

A~ accurate detection of a ,"fault" initialization an? d~tection Finally, we are currently using the model obtained for the de-
:equlres a mo~el of the beh,av~or of the measurement In tIme and pendence of the pilot-signal on the temperature to establish the
Its dependencl~s. An;,Y de~lation from the m~;I, wO~ld den<:>te onset of a "fault" by establishing the moment at which measure-
the onset of a fault, ' whIle the ~odel <:>f the faulty behavIor ments start deviating from the values predicted by the model.
pattern, would contnbute to the diagnosIs. The characteristics of the behavior pattern after the fault are in-

neural network training errorvs the n.."berof epochs dicative of the "fault" modality.
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