
2.g IEEE MEDITERRANEAN SYMPOSIUM ON

NEW DIRECTIONS IN CONTROL & AUTOMATION
M2 1 4JUNE 19- 22. ]994 -

.

MALEME-CHANlA.CRE1E. GREECE

Neural Networks in Fault Identification in Large Communication Networks

Nikitas J. Dimopoulos, Stephen Neville, Andrew Watkins, Kin F. Li, Eric. G. Manning

Department of Electrical and Computer Engineering,
University of Victoria,

PO BOX 3055, Victoria, BC, V8W 3P6
CANADA

Abstract -In this work, we present our efforts in devel-
oping techniques for detecting the onset and diagnosis of a fault.
The Diagnosis domain is that of large Cable Television Net-
works. We are using stable recurrent neural networks to model
the dynamic behavior of some of the measured parameters both
for normal operation and during a fault. Deviations from the
model indicate the onset of a fault, while the properties.of the
behavior during a fault are indicative of the fault modality.

I. INTRODUcrION

A. Structure of the Network

.A Cable Television Network incorporates a number of
high frequency amplifiers forming (for conventional net-

works) a tree. In more advanced networks the structure incor-

porates a double ring from which subscriber drops emanate.

In this work, we are focusing in conventibnally structured
tree networks. There are two categories of amplifiers, the

ones belonging to the main trunk and the ones forming sub- Fig. I. A typical Section of a Main Trunk (curtesy
scriber drops. Additionally, power supplies are located Roger's Victoria)

throughout the network, each one powering a limited number

(typically three) of amplifiers. The majority of the main trunk B D .. p bl...lagnosls ro em
amplIfiers are equipped with a status monitor which uses ~ .
reverse channel to report the status of the amplifier to the. There are several modalities of failure. Some are dis-

head office. Subscriber drops and power supplies are not nor- cussed below.
mally monitored. A . I lifi c .1 h th . al . ti'-..

smg e amp ier may 131 , w ereupon e Sign iS cu
Typical variables which are monitored include [2] through unamplified to the subsequent stage of the net-

work. The subsequent amplifiers, equipped with automatic

Forward Pilot level, Reverse Pilot level, Raw DC voltage gain control, will boost the signal back to its normal level
into the amplifier, Regulated voltage of amplifier power after two to three stages. Because of the failure, all ampli-
~upply, DC current into forward and reverse sections of fiers located between the failing amplifier and the stage at
the amplifier, Temperature inside the trunk station, Re- which the signal was boosted to its correct level, report
verse Switch status, and Trunk Lid status. alarms or failures. Because of the tree structure of the net-

The values of the monitored variables are allowed to vary work,. the reporting amplifiers are not typic~ly polled se-
within two intervals (warning and alarm) centered at nominal quen~ally. and the reports appear at seemmgly random

1 If ...locauons m the report.
va ues. a value iS outside these predefined mtervals then a

warning or an alarm is issued. Three consecutive alarms con- A power grid failure, will affect a number of amplifiers.
stitute a failure. A typical section of the main trunk is depict- The affected amplifiers fail to communicate, while the de-
ed in Figure I. Each amplifier in the network has a name, as teriorated signal, cause downstream nodes to report failure
well as a location, connectivity and functionality attributes until the signal is boosted again to its typical values.
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is the network connectivity matrix, T = diag ( 'ti) is the

diagonal matrix of neural relaxation constants, b is the in-

put to the neural network, and f ( 0) belongs to the class of

s0-<:alled neuromime functions, which are essentially po!:i.
tive and monotonically non-decreasing. The condition on
W thai guarantees asymptotic behavior is that it must con,
tain all of its positive entries on one side of the main diag-
onal [I]. This gives an easy way to check whether a neural
network is stable. For instance, the neural network shown

in Figure I is stable provided that the connection weights

in submatrices W 23 and W 34 are non-positive (i.e., inhibito-

ry). This result is extremely useful in the area of identifica-
tion and control. The most important feature of a controller
or model is that it must be stable. By starting with a model

as defined by (I), stability is ensured.

Fig. 2. S3;D1ple Neural Network

A. Parameter Adjustment In Stable Neural Networks

This section discusses a method for adjusting the

weights and other parameters of neural networks that are

stable in the sense described in Section 2. The general ap-
.proach that is used here is to define some a criterion and

then adjust the parameters in a direction that will decrease
this cost. In this sense the technique is similar to linear re-

cursive adaptive methods [4] and to classical back propa-
gation [5]. However, since the stable neural networks

described in section 2. have certain restrictions on the po-

larity of the connection of classes, a straightforward gradi-
ent adjustment is not possible. A solution for this is also

presented here.

B. Gradient of Cost Function

The general equation for calculating the behavior of the

class of neural networks of interest here is

O = -TO + Wf( 0) + b (3)

using the same notation introduced in section 2. One possi-
ble criterion for measuring the performance is the quadratic

cost function

Age may cause the amplifier to drift away from its opti-
mal operating point. This in turn results in some or all of the
measured parameters to have values which cause alarms or
warnings. Such a situation may exist for a large number of
amplifiers for long periods of time. This in turn result in a
multitude of warnings/alarms which make the interpreta-
tion of the status of the network extremely difficult.

we have developed an expert diagnosis environment [2]
which monitors the amplifier network, analyzes the failure
modalities and reports the location and cause of faults in
real time. This diagnosis environment has been successful
in locating and diagnosing fault modalities which involve
significant changes in the measurements. Examples are
ross of power, damage in the netWork.

There are several other modalities which manifest them-
selves as changes of behavior rather than significant chang-
es in the measurements.

The focus: of this work is in detecting the onset of such
behavior changes and providing a diagnosis based on the
properties of the ensuing behavior.

We use neural network techniques in our effort to classi-
.fY and:identify the behavior of the network of amplifiers.

This work is divided into the following sections.

Section II introduces a class of recurrent stable neural
networks which can be used to identify the behavior of dy-
namical systems in general and amplifiers used in transmit-
ting cable TV signals in particular. Section ill presents the
results of the application of the neural networks discussed
in section II to identify the dynamical behavior of moni-
tored parameters in main trunk amplifiers, detect the onset
of failures and provide a diagnosis Finally section V con-

cludes the work.

II. STABLE RECURRENT NEURAL

NETWORKS

It has been shown [5] that asymptotic stability is ensured
for neural networks which are described by the differential

equation
.() = -TO+ Wf(O) +b (I)

In ( I ), there are N neurons divided into k classes, and

0 = [01 02... oJ

= r01 02 ...o~
~ rl is the state of the neural network,

[WII Wl2 ...WI

JW = : (2)

Wkl Wu .:. Wkk
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.T
J(e) = 1/2(O-Od) A(O-Od) = 1/2eTAe (4)

c. Weight Adjustment

Let e represent a connecting weight w. .which connects}'
neuron i (input) to neuron j. Use the notation
c.j; = ()Oj/()Wj;. Differentiating (10) with respect to Wj;'

the differential equation for C.ji is obtained:

~j; = -~jC.j;+f(o) (10)

Using this equation and the results of the previous sec-
tion, equation (7) may now be written as

dw..}1 ):-= -T1Y.~.. (11)
dt } }1

with Yj calculated using (6) or (7) as appropriate.

D. Weight Clamping

Section II. describes a class of neural networks that are
asymptotically stable. This condition is guaranteed provid-
ed that the connectivity matrix W has all of its positive en-
tries on one side. of the diagonal [5]. However, (11) gives a
formula for adjusting the connection weights that may vio-.
late ~i$ condition. To combat this, it is necessary to check .

the polarity of certain crucial weights after each weight ad-
justrnent. For instance, as discussed in section 2, if the
weights labeled W 23 in Figure 1 are guaranteed to be non-

positive, then the neural network will be stable. Thus after
any weight in W 23 is adjusted using (13), the weight should

be checked to ensure that it is not positive. If it is, then it
should be clamped at 0. This ensures that inhibitory
weights stay inhibitory throughout the training procedure.

ill. IDENTIFICATION

The term identification is used in this section to refer to
the process of developing a model of an unknown system
by observing its input/output behavior [1],[6].

This section uses the results of the previous section to
identify some unknown systems. A suitable neural network
architecture is proposed and some mot;ivation for this con-
figuration is given.

A. Identification Architecture

Consider the simple nonlinear system described by the

I ..yreaUon y = u--

1 + 4 y2

If y remains relatively constant near some value y ss ' then

this system can be approximated by a first order linear sys-

tem that has a pole at ( 1 + 4y;s) -I. If y varies from this

value significantly, then the 'pole' can be thought of as rov-

ing in some sense. Although this is not an exact description

where O d is the desired state of the neural network. Matrix

A is used to eliminate from the cost any neurons whose
state is not crucial. A is a diagonal matrix with ones corre-

sponding to output neurons and zero's elsewhere. As in oth-

er recursive adaptive methods [1],[6], parameters e in the

neural network are adjusted along the negative gradient of

this cost, i.e., ~ = -11 ~ .The chain rule for differentia-
dt de

tion is used to allow for the calculation of this gradient for
parameters associated with neuronj:

aJ aJ aoj aoj
-= --= Y- (5)
ae do. de 1ae

J

The notation y. is used to denote the derivative of the cost
1

with respect to the activation of neuronj. If neuronj is an

output neuron, this derivative is simply

'\1. = O.-O
d .(6)

'1 J j

In a manner analogous to traditional back propagation of
the error [5], this gradient may be calculated for units that

are not output neurons by using the values of the gradient

in all the neurons k that have neuronj as inputs:

aokYj = LYk- a = LYk£\kj (7)
k °j k

Here, the notation £\kj has been introduced to represent

the partial derivativeaoklaoj. To calculate £\kj' it is neces-

sary to use the differential equation which defines the be-
havior of the neural network. Rewriting (4) specifically for
neuron k, and using the operator D to represent differentia-
tion results in

('tk+D)ok = Lwkj(o) +bk (8)

j

Differentiating (8) with respect to 0. results inJ

tikj = (-'tk)£\kj+wk!'(o) .(9)

All the derivatives required in (5) to adjust a parameter

e have now been obtained, except for the derivative

aoj/ae. The next section discusses the case when e is a

connecting weight. A similar technique can be used to ob-
tain a formulae for adjusting any of the other variables that

parameterize the neural network such as the relaxation con-

stant 't or parameters of the activation function f( )

[3],[4].
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of the behavior of the system, it does illustrate one of the B. ldenlification and Diagnosis of the Pilot Measurements
more common types of nonlinearity which is encountered
in real systems. In this section, we are describing our attempts to accu-

rately determine the onset of a .'fault' and to diagnose iL
Our diagnosis domain is a large cable television network

r S + comprising several hundred main trunk high frequency am-

plifiers and described in section I.

+ Eventhough, the amplifiers are temperature compensat-
I ed, it has been observed that all the measurements vary

with the temperature.

Fig. 3. An Architecture for System 42 1 de
Identification 41:1d8

40.2d8
.39.2dB

To take advantage of this type of nonlinearity, the aichi- ~~:~:
tecture of Figure 3. is proposed for general system identifi- 36.3dB

cation. Labels I and O refer to the input and output of the ;;.~:

system, and ~ and 90£2 refer to two classes of neural net- 33.4dB
2/10 3/10 4110 5/10

works. The block marked S is a special connection of class-
es called the 'scheduler class'. The idea of this class is that E17(XX)5

it controls or schedules which neurons will be active and ~ CProPlrtl.s...) ~ COupliat8) ~~

when, thereby emulating the movement of the 'pole' for Amp: ~ F1.Id: @ T 93/10/0200:00 to 93110/0723:59
large variations of the state variable or inpuL Neurons in 76.3"C
the scheduler class have a peaked response as shown in 73.3"C

Figure 4. Each neuron in the class has a peak p that occurs ~~:~
at a different value. Figure 3-shows that the scheduler class 64.TC

receives input from I and 0- Thus, depending on the value ~~:~

of the input and output, different neurons in ~ and 90£2 ~~: ::~

will be active. 49.1-C
2/1 3/10 4/10 5/10

Fig. 5. Pilot and Temperature data over several days in
-0.8 October 1993. The shaded regions in the pilot data indi-
§. 0.6 cate alarms (i.e. measurements outside preset limits).

8 Observe the fault initiation on October 3d.
0.4

0.2 Of course the typical variation is small when the ampli-
fier is properly adjusted. Because of drifts or malfunctions,

O p the amplifiers evolve to a "faulty" state where they exhibit

lnIX1t an altered pattern of behavior. A typical example is pre-

sented in Figure 5. The behavior pattern depicted during
Fig.4. Response of Scheduler Neurons th fi d ( .I O be 3d t 21 40) . ta.e lfSt two ays unU cto r a: IS represen -

tive of a well tuned high-pilot amplifier. Observe the small,
This allows the neural network to take advantage of the temperature correlatedcvariations of the pilot level around

type of nonlinearity discussed above. The example de- the nominal value of 39 db. Suddenly, on October 3d at
scribed by (19) is well suited to this kind of architecture 21:40, a significant change in the pattern of behavior oc-
since neurons with different relaxation constants may be curs. The standard fault detection techniques which are
activated depending on the level of the output. normally in use, alert the user only if the values of a mea-
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sured parameter exceed some preset limits. In this case the --(0 NN,,-
pilot level did not exceed its threshold until the following
day, some eighteen hours after the starlofthe new behavior ,.

in the evening of October 3d, and then it stayed outside its ,~
nominal range for only a limited duration.

'7
Such a belated reporting in conjunction with the short !,.

duration of the time during which a measurement stays out- f
side its nominal range, makes an accurate diagnosis very I "

difficult. ~"

'3

NN -, .,.000,8~-

,
,

'-,, -(-,
, / Fig, 7, The absolute error between the acmal response for

, the pilot of E 170005 and that of the trained Neural Net-

I' work. Observe the sizeable increase after the fault

i' NN",",,( ,.,.--

i,
i ,

,
, "

-,
, \ ,~(

" J ,-'

, ~'
, ", '-, 3' " ~

-(-, i'
Fig, 6, Actual and Neural Network (dashed line) response j,
for the pilot of E 170005. The training set is delineated by ~

the vertical line at day I '3

'2
One may observe therefore that establishing a nominal

range of values, is not the best way of detecting the onset
of a "faulty" behavior pattern, In addition it does not accu- " '-, "

rately identify perioda during which the behavior is F. 8 Filtered d N ural- N(-' k (d h d I '
)"f I " d th akes d f th Ig. .lane etwor as e me re.

au ty , an us tt m an accurate lagnosls o e &
thl t f E170005.sponse ,or e pI o o

fault problemauc.

An accurate detection of a "fault" initialization and de- The neur31 network was trained with data from October

tection requires a model of the behavior of the measure- I. and this period is delineated by the vertical line on day I
ment in time and its dependencies. Any deviation from the in the plot. Figure 7. presents the difference between the re-

model, would denote the onset of a "fault". while the model sponse of the trained neural network and the acmal mea-
of the "faulty" bebavior pattern, if it could be established, surements. Observe the abrupt increase of the error at the

would contribute to the diagnosis. fault.

We have used recurrent neural networks, as presented in Our assumption that the pilot level is affected by the

sections II and III above. to model bebavior of the pilot temperature of the enclosure. has been verified through by
measurement and its dependence on the temperature of the the measurements taken from a model amplifier in a tem-

enclosure. Figure 6. presents the response of the trained perature chamber. Figure 9. presents the pilot measure-
neural network (incorporating consisting of two classes ments of the model amplifier together with the response of

each comprising 10 neurons, one being a scheduler class) the trained neural network. as discussed above, on the same

together with the actual readings for the pilot. temperature data. The differences in behavior are attributed
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to the fact that the model amplifier was not driving any through which we shall be able to accurately detect and di-

load. agnosed of "faults".

As it can be seen in Figure 5. the pilot measurements

contain a sizeable noise comIK>nent. comprising thennal NN 0u1PUI..' Ad18 FOIW8nI ~ SiIP\8
and roundoff. We have used wavelet filters [7] to remove ,.

this noise comIK>nent. Wavelet filters are ideal for this pur-
fK>se since they easily preserve the discontinuities which 1.2 ~ ~ :: I~

!. d.. fh f .L-~ .,!." , I 11'1..
are In Icatlve o t e onset o ujz "lault". Figure 8. presents, rl It !Ii.. III \ I :'

the thus filtered pilot measurement.
! 0.

NN (Irained on Oct. I) 0uIIKIt Iran T 0Ia1t0 Test I Data j

i 0.

0.9 ,., j 0. I : :

0.8 ' , , :
I I

0.2 I, ,
0. .II

-1 \ -
3 \ ° .

10. '~
~ 0. I 00.2
!1 I ° 4 8 8 10 12 14
1 I -(days)
z 0. , Fig. 10. Neural Network u"ained after the onset of the fault

0. , .
I
,

0 'I.
~ ./ ' NN 0u1PUI -Ad18 ~ PIto! Signal

0 ' I 1.4
., I I

\ I \ .
0 ...1.2 'I "

\0 'II'234 587 ;i 11,1 'II
-(days) i. ~II",I:\1

Fig. 9. Neural Network trained with data from E170005 I I, II " I' I, I' I ~ .

compared with measurements from a model amplifier tak- !
en in a temperawre chamber. j 0.8 \

i 0.8
C. FaultDiagnosis ~

After detecting the onset of'the "fault", we attempted to ~ 0.4

characterize the new behavior pattern. The same neural net- 0.2
work was retrained with data from the fault behavior pat-
tern. Figure 10. and Figure 11. show the result of the °

training. t is obvious that the neural network learned the be- 00.2havior of the training set. but then as time progressed, the ° 2 4 6- (d8yo)8 10 12 14

behavior changed and the Neural Network was not able to Fig. 11. Neural Network trained several days after the
accurately track the measurements. This behavior is consis- onset of the fault

tent with that of a nonstationary process. and it is in turn
consistent with behavior of extribited by an amplifier which We have used stable recurrent neural networks which

has lost its agc (automatic gain control) section. were trained to model the behavior of certain measured pa-
.rameters. Deviations from the modelled behavior indicate

.We were abl~ to confmn that .this diagnos~s is the most the onset of a "fault". The characteristics of the behavior

likely e~planatlon of the behavior o~ the pIlot measure- pattern after the fault are indicative of the .'fault" modality .
ments with the manufacturer of the saId amplifier. We are
planning to perfonn a "postmortem" analysis of the affect- We are currently proceeding with the verification of our
ed amplifier to fully quantify the diagnosis. diagnosis procedures. To this end, we have enlisted the

help of domain experts from both the equipment manufac-

IV .CONa..USIONS AND DISCUSSION turer and the operator.

In this work we have presented our efforts in modelling ACKNOWLEDGEMENT
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