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Abstract --A training procedure for a class of neural net- neural network. and f( 0) belongs to the class of so-called

works that are asymptotically stable Is presented. The training neuromirne functions which are essentially positive and

procedure Is a gradient method which adapts the Interconnection. weIghts as well as the relaxation constants and the slopes of the ac- monotomcally ".on-decr~sl.ng. ~ condiuon <:>n W ~t guar-

tlvatlon functions used so as the error between the expected and antees asymptouc behavior IS that It must contaIn all of Its pos-

obtained responses Is miniMized. A method for assuring that sta- itive entries on one side of the main diagonal [I]. This gives an

bllity Is maintained throughout the training procedure Is also glv- easy way to check whether a neural network is stable. For in-

en. Such a network was used to Identify the dynamic behavior of stance. the neural network shown in Figure I is stable provided

a boat based on collected rudder/heading data. that the connection wei
g hts in submatrices Wand Ware

23 34

I. INTRODUC11ON non-positive (i.e.. inhibitory). This result is extremely useful in

This paper is a summary of some recent work done in the the area of identification and control. The most important fea-

area of identification of nonlinear systems using neural net- ture of a controller or model is that it must be stable. By start-

works. The main purpose of this work is to provide a way of ing with a model as defined by (I). stability is ensured.

establishing models of complex nonlinear systems that can be ~

used in controllers. Neural networks are selected as a potential- 34

Iy effective way of modeling these systems. since a trained

neural network is fast and easy to implement. properties that

are desirable in real controllers.

One problem with using a sysfem as complex as a nonlinear

neural network in a control or identification setting is that they

are often too complex to analyze fully; in particular. their sta-

bility can not be assured. When dealing with real systems. sta-

bility is the single most important property of a controller or

model. Fortunately. a class of neural networks exists which is

known to be asymptotically stable. This class of neural net-

works is used here. and the work done on identification per- Fig. 1. Sample Neural Network

tains to this class of dynamic neural networks.

III. PARAMETER ADJUSTMENT IN STABLE NEURAL
II. BACKGROUND NE1WORKS

It has been shown [I] that asymptotic stability is ensured for This section discusses a method for adjusting the weights

~eural networks which are described by the differential equa- and other parameters of neural networks that are stable in the

Uon sense described in Section 2. The general approach that is used

6 = -TO+ Wf(O) +b (I) here is to define some a criterion and then adjust the parameters

in a direction that will decrease this cost. In this sense the tech-
In (I). there are N neurons divided into k classes. and nique is similar to linear recursive adaptive methods [4] and to

classical back propagation [5]. However. since the stable neu-
0 = [ 0 I 0 2 ...o J ral networks described in section 2. have certain restrictions on

-r l the polarity of the connection of classes. a straightforward gra-
-L 01 02 ...°l!J (2) dient adjustment is not possible. A solution for this is also pre-

.sented here.
IS the state of the neural network.

A. Gradient of Cost Function

~ W W ...W j The general equation for calculating the behavior of the
W -: I 12 1 k class of neural networks of interest here is

-: (3) 6 = -TO + Wf(O) + b (4)

Wkl Wn ...Wkk

using the same notation introduced in section 2. One possible
is the network connectivity matrix. T = diag ('t.) is the diag- criterion for measuring the performance is the quadratic cost

I.
onal matrix of neural relaxation constants. b is the input to the functIon



J ( e) = 1/2 ( 0 -0 d) T A ( 0 -0 d) parameters of the activation function! ( ) .

= 1/2 T A B. Input Weight Adjustment
.e e .(~) Let e represent a connecting weight w ij which connects

where 0 d 15 the desIred state of the neural network. Matnx neuron i (input) to neuron j. Use the notation ~ ..= ao .1 Ow ...

A is us~ to eli;lnina~ from the C?st ~y neurons whose s~te is Differentiating (10) with respect to W.., the ditierenU:I eq:~-

not crucial. A 15 a diagonal matnx WIth ones correspondIng to. ..I'

output neurons and zero's elsewhere. As in other recursive tlon for ~ij IS obtaIned:

adaptive methods [2,4], parameters e in the neural network are .
adjusted along the negative gradient of this coSt, i.e., ~ij = -'ti~ij + !(oJ (12)

de aJ Using this equation and the results of the previous section,
--ai = -11 ae (6) equation (7) may now be written as

The chain rule for differentiation is used to allow for the calcu- ~ = -11Y.c. ..(13)
lation of this gradient for parameters associated with neuron j: dl I I'

aJ -aJ ao i with Y. calculated using (8) or (9) as appropriate.
I

ae aoi ae c. Adjustment 0! Structural Parameters

aoi The same analysis that was used to determine how to adjust
= Yiae the connection weights can also be used to obtain a formula for

(7) adjusting any of the other variables that parameterize the neu-

The notation Y. is used to denote the derivative of the cost with ral network. For instance, a formula for adjusting a parameter

the I. . f . If ..of the activation function!( ) or the neural relaxation con-

respect to actIvatIon o neuron J. neuron J IS an output. ..

neuron, this derivative is simply given by stants 'ti (analogous to tIme constants for a lInear system) In a

-- ( 8) way that will reduce the cost function can be obtained. Consid-
Y i -0 i 0 dj er an activation function of the form

In a manner analogous to traditional back propagation of the

error [5], this gradient may be calculated for units that are not t ~ if 0 ?: 0
output neurons by using the values of the gradient in all the {(0) = I + e-<Jo (14)

neurons k that have neuronj as inputs: 0 if 0 < 0

aotY. = LYta
I t °i The parameter 0" controls how much input causes the neu-

-~ A ron to saturate; the larger it is, the harsher the nonlinearity .
-~ Yt ti 9 ) Since there is no way of knowing a priori what an optimal or

( even appropriate value for this variable is, it makes sense to

Here, the notation Ati has been introduced to represent the adapt it while training the connection weights. Since the value

partial derivativeaot/aoi. To calculate Ati' it is necessary to Yi will already be availa~le during ,trainin~ of the weig~ts, ~e

use the differential equation which defines the behavior of the only further calculatIon required IS the denvatIve

neural network. Rewriting (4) specifically for neuron k, and us- v j = do j/da ..Using (10), it is seen that
ing the operator D to represent differentiation results in J

dj(oJ(tk + D) Ok = L wkf(Oj) + bk (10) ('ti+D) vi = ~Wij-ao:-:-

., I
J

D~ferentiating (10) Wi~ respect to 0 i results in = J ~ WjiO j (0.25- !( oJ 2) if Oj ?: 0

Akj = (-'tt)Akj+wt! (0) .(11) 1 0 if 0.<0

Note that unlike classical back propagation [5], the equation' (15)

governing the propagation of error from one class to the next is Using this formula to calculate the value for v i' the nonlin-

a differential equation. earity parameter may be adjusted using the relation

All the derivatives required in (7) to adjust a parameter e dO" .

have now been obtained, except for the derivative ao iiae. The df = -11Yiv i (16)

next section discusses the case when e is a connecting weight, and the section following that discusses the case of parameters UsIng the sam.e technIque, ~t IS possIble to. ~alculate

of the differential equation, such as the relaxation constant 't or ~ i = ao ii at i to adjust the relaxatIon constants. This IS useful

since it is not known beforehand how fast a system the neural



network will be trying to identify. The above technique yields
the differential equation for f3i: r S +

i:i.+2't.~.+f3. = -~W j .!{oJ (17) -Pj j j j 4-

.+and an update formula for 't i of I

5 = -Tl'Y.f3. (18)
dl j j

It is important here that the relaxation constant 'ti not be ad-

justed at too great a rate, or else (17) is not valid since 't i is Fig.2. An Arcl1itecture for System Identification

treated as a constant To take advantage of this type of nonlinearity, the architec-

D. Weight Clamping ture of Figure 2 is proposed for general sy~tem identification.
Section 2 describes a class of neural networks that are as- In this figure, the labels I and O refer to the Input and output of

ymptotically stable. This condition is. glla£a?~eed pro.vided that the system, and 90[1 and 90[2 refer to two classes of neural net-
the connectivity matrix W has all of Its ~sltlve entrIes on one works. The block marked S is a special connection of classes
side of the diagonal [1]. ~owever, (13) gl~es a fo~ula f~r.ad- called the 'scheduler class'. The idea of this class is that it con-
justing the connection weights that may VIOlate ~IS condltlo!1. trols or schedules which neurons will be active and when,
To c.omba~ this, it is necessarr to ch~k the polaritr of certaIn thereby emulating the movement of the 'po~e' f?r large ~aria-
CruCial weights after each weight adjUstment. For I.nsta.nce, as tions of the state variable or input The motivatiOn for thlS ar-
discussed in section 2, if the weights labeled W 23 In Figure 1 chitecture is most clearly understood by examining the case
are guaranteed to be non-positive, then the neural network will when the unknown system and the activation function f{ ) of
be stable. Thus after any weight in W 23 is adjusted using (13), the neurons are linear. In this case, equation (4) shows that the

the weight should be checked to ensure ~at it is !1ot positive. output 0 follows the weighted sum of the states in 90[1. Ignor-
If it is, then it should be clamped at 0. This technIque en~U!es ing for the moment the effects of the scheduler class, and mak-
that inhibitory weights stay inhibitory throughout the traInIng ing the time constant of 0 small, then the state equation of this
procedure. system takes on a familiar form:

IV .IDEN11FICA TION
The term identification is used in this section to refer to the [ONJ - ~-'tl wl j ~OA ~ rll process of developing a model of an unknown system by ob- .-O + Lojl

serving its input/output behaviour.[2,4]. ...ON W 21 -'t2 N2
This section uses the results of the previous section to Iden-

tify some unknown systems. A s~ita~le neural. network arc.hi-
tecture is proposed and some motivation for this ~on.fi~tlon

~o ~Jis given. A simple computer simulat~ s~stem IS Iden~fied, O = [1 0] O
and then the neural network is used to Identify the dynamic be- N2 (20)
haviour of a boat. This form can implement a general linear sys~m of any ?r-

A. Identific.ation.Architecture ...der by the proper selection of the connec~on matrIces and With
This section discusses a motivation for selectIng a neural a sufficient number of neurons. Neurons In the scheduler class

network architecture suitable for syste!11 identification: Con- have a peaked response as shown in Figure 4. (This class of
sider the simple nonlinear system descnbed by the relation neurons is not a single class as governed by ~4). Howe~er, .ti1e

response shown in Figure 4 was generated usIng a combInationi = u- -L, (19) of 4 standard classes in a configuration shown in Figure 3. For
1 + 4y clarity, the scheduler neurons are discussed as a single class).

If y remains relatively constant near some value Yss' then
this system can be approximated by a fIrst order linear system

that has a pOle at { 1 + 4 y;s) -1. If y varies from this value sig-
nificantly, then the 'pole' can be thought.of.as roving in so~e Input r/"-4 Outp sense. Although this is not an exact descnptlon of the behavior .

of the system, it does illustrate one of the more common types
of nonlinearity which is encountered in real systems such as + -
valve flows and airplanes cruising at various velocities. 52

Fig. 3. Architecture for Scheduler class



1 boat at this particular speed through the water, a longer run of
data was used. This consisted of approximately 12 minutes of

0.8 collected data. The weights which had been developed on the
~ shorter training run were used. Figure 7 shows that the neural
6 0.6 network had indeed developed a good model of the boat since

0.4 good tracking was obtained throughout the longer test run.

0.
0.2 :0- 0.7 ~~ \° .~ 0. I

p -ca J
Input § 0. .-~

Fig. 4. Response of Scheduler NeurlXls b 0.
bl)

Each neuron in the class has a peak p that occurs at a differ- ~ 0.
ent value. Figure 2 shows that the scheduler class receives in- ~ 0. Measured :
put from I and 0. Thus, depending on the value of the input and ~ 0.1 Neural Net: output, different neurons in 9.{:1 and 9.{:2 will be active. This °

allows the neural network to take advantage of the type of non- T.
linearity discussed above. The example described by (19) is ime

well suited to this kind of architecture since neurons with dif- Fig. 6. Measured and Trained Neural Net Response
ferent relaxation constants may be activated depending on the 1
level of the output. 11

B. Simulation Results,--. ° 8 f \ ,.,
An architecture similar to that shown in Figure 2 was used i. ~ I ~ ,.,

to identify various nonlinear systems including a robot. These ~ ,l
\ l' ' \ M rl

I \
results are reported in [6]. ~ 0.6 : .I: ; \ 1

§ ! .
i \ I \ I: \

C. Identification ofaBoat .~ \ f " : ~ j t \

A boat may be treated as a SISO system, With the rudder an- bO 0.4 \.. r.1 \ 'l
gle as the input and the heading as the output. Extensive work :6 ; ! ~ \ rhas been done to produce accurate models for marine craft[3]. ~ 0.2 W I

=r: ° ~=~et ~

'§' 0.8 Time -

.~
] 0.6 Fig, 7. Measured and Neural NetReslXXlse to 12 Minute Test Run
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