DATA TRANSFER INTERFACE DESIGN IN DAME

B. Huber, K.F. Li, N.J. Dimopoulos and E.G. Manning

Department of Electrical & Computer Engineering
University of Victoria, Box 3055
Victoria, B.C., Canada V8W 3P6

ABSTRACT

This paper discusses the component model and interface
design procedure for data transfer in DAME (Design
Automation of Microprocessor based systems, using an
Expert system approach), a system in development that will
be capable of producing the complete design from original
system specification, such as the type of application, cost,
processing requirements, power consumption, etc.

Signals connecting microprocessor components are used
to transfer information between the components. Several
different types of information were found to be involved in
data transfer. The model developed for data transfer treats each
of the information exchange as a primitive. Each information
primitive consists of the timing information of signals
involved and the state information about the exact state of
these signals during the information exchange. In DAME,
design decisions are made by a set of rules that manipulates
the information exchange primitives to obtain the final
interface design.

1. INTRODUCTION

The rapid evolution of semiconductor technology allows a
system designer to build sophisticated microprocessor
systems using off-the-shelf components. New components,
which must be integrated into new systems, are introduced
regularly. There is strong motivation for the automation of
the design process since it is becoming increasingly difficult
for the designer to keep up-to-date with the ever changing
new components [1]. One of the goals of the DAME project is
an attempt to minimize the impact of the introduction of new
components on system design by automating the low level
design [2,3,4]. Thus, the system designer is relieved of
dealing with the complex signal interface protocols and
instead can concentrate on the higher level functionality
aspect of the design.

Another problem with the evermore sophisticated
systems is the increasingly difficult task of system
verification. As components become more complex, a proper
verification procedure for the resulting design becomes
necessary since it may be impossible for the human designer
to manually verify all the design parameters. By automating
the design process some formal hardware - verification
techniques can be employed to assure a correct design [S].

The lack of comprehensive theory of system integration
and design choices has led to a more or less empirical set of
rules for system design, which an experienced designer can

IEEE Pac Rim '93

~510 ~

draw upon to give an optimum solution to a problem. Many
efforts have been made to organize this empirical knowledge
so systems that are capable of automatic design can be
produced. For examples, R1 is an expert system capable of
configuring VAX computers [6], and VEXED is a VLSI circuit
design consultant {7]. In addition, several systems have been
specifically built to automate the microprocessor systems
design process such as KDMS [8], and Micon [9].

During the design process of microprocessor based
systems, the designer usually goes through a formal design
process incorporating the following phases:

1. The Design Specification phase that establishes the
system responsibilities and design constraints.

2. In the Configuration phase the gross system architecture is
established.

3. The Behaviour Description phase defines the capability of
the gross system components.

4. In the Functional Block Design phase, the functions of the
subsystems are mapped onto available components.

5. During the Integration phase the functional blocks are
connected together with missing parts synthesized.

6. In the Implementation phase an actual circuit
corresponding to the design is produced.

This paper discusses the approach taken to accomplish
the Integration phase which synthesizes the interface
between components.

2. DATA TRANSFER MODEL

Data transfer is one of the capabilities of microprocessor
components. Other capabilities include bus arbitration and
interrupt acknowledge. A model is needed to encapsulate
these information among others. The conceived
microprocessor component model has several levels of
abstraction from the general component properties to the
detailed timing of the individual signals. This model is
implemented in - the frame-based KnowledgeCraft™ M
development environment.

In the most general case, data transfer is the exchange of
information between two or more devices, accomplished over
signal wires that electrically connect these devices together.
Several types of information exchange involved in data
transfer have been identified. Aside from the data information
itself, the others are:

Request Events indicating the initiation and
' termination of the data transfer.
Address Specific location where the data information
can be found /stored (e.g., address 78F3).
0-7803-0971-5/93/$3.00 © 1993 IEEE

Type General information where the data
information space is (e.g., User, Supervisor,
10, Memory).

Word Size of the information transfer (e.g., 8, 16,
32 bits).

Direction The direction of data transfer (e.g., Read).

Width Which signals will be used to transfer the
data information (e.g., DO-D7).

Delay Informs the initiator how long to wait before

sending the terminate transition.

The device that initiates the data transfer is called a
master. The master may generate the Request, Address, Type,
Word and Direction information. The device receiving the
request is called a slave and it may generate the Width and
Delay information.

MASTER SLAVE
INITIATOR .
Address DOy,
Type info__>
|—————Direction info e
Word info —_—p]

| __Request info__>

{g——Width info
j——~-Delay inf0 e |

P

(Data info)

x4

Information transferred between Master and Slave

Information can be carried on the signal wires in the
forms of the states and the timings of the transitions of the
signals. This natural division was incorporated into the
component model where each information type is represented
by state and timing separately.

has-spec

STATE-
TIMING-
SPEC

uses-timing uses-state

TIMING STATE

The request can be represented by a signal that has
transitions for the initiate event and the terminate event.
Every information timing will be constrained to this request
signal. The specification of this constraint is called a timing.
This type of organization allows the timing of all signals to
be treated the same, be it the timing of an address signal, or
the timing of an acknowledge signal that controls the delay.
For more information on the timing aspect, refer to the
accompanying paper on modeling data transfer signal
timings [10].

The component model must represent information for the
data transfer in a structured and consistent way for efficient
manipulation. In KnowledgeCraft™ this is accomplished
using schemata and relations. Inheritance can be used for
instances of schemata to inherit properties from their parents
automatically. A method for a structured and flexible way for

entering components into a component library is provided.
This was done by organizing the components structure as
shown in Figure 1. .

Every component has capabilities represented by
capability - schemata. The data transfer capability has
different types of information transfer associated with it.
Each information transfer is associated with a state-timing
specification that is linked to the capability schema through
different types of has-spec relations. Each state-timing
specification consists in turn of a timing schema and a state
schema. All the instances of the schemata just discussed are
related through a is-a relation to a prototype schema that
contains information that is common to all schemata of this
type. Each of the prototype schema has a model schema that
gives the allowed and recommended slot values for each of the
slots of the prototype schema. The model schema is used to
assist in the entry of components into the component
library.

3. INTERFACE DESIGN

Interface design concerns with how data transfer signals
representing similar types of information are connected. All
devices have a request signal and all information transfers are
synchronized to this request signal. In order for all
information transfers to proceed properly between the
devices, the request signals will have to be connected
together. Connecting the request signal directly makes it
possible to synchronize the timing of one type of
information signal between the two devices without
considering other information signals. In practice the request
signal will usually have a delay associated with it which must
be taken into account when finalizing the timing design. The
detailed timing design procedure is discussed in the
accompanying paper [10].

In most cases all the information sent from the master
will be received by the slave and vice versa. However, quite
frequently both the slave and master do not have receptors or
transmitters for some of the information. The only
information absolutely required is the request information
from both the master and the slave. Therefore, to accomplish
device connection, any missing information must be
generated and any extra information must be used in a
consistent way by the interface logic. For example, often the
master has more address information than the slave can
handle, such as the master may produce 20 address lines while
the slave only requires 12. In this case, a hardware decoder
uses the extra master address signals to produce a ‘select’
signal.

During the interface design process, similar information
signals are connected after converting the states to
compatible states and the timings to compatible timings.
State connection is accomplished by translation circuitry. If
the translation involves only asserted or negated signal
states, combinatorial logic can be used (the state translation
usually involves an n-input to m-output decoder). If other
states must be obtained, such as tristate, specialized hardware
must be utilized. How to use extra or generate missing
information signals is a design choice. Many variations are
possible with tradeoffs in complexity, speed, cost and power
consumption.

3.1 Interface blocks
In our design approach, all information transfer signals are

~511 -~

connected using interface blocks. An interface block is a
hardware circuit that generates the proper states and the
proper timing required by the slave’s information input, from
the specification of the master’s information output. For
example, the figure 2 shows interface blocks that could be
generated to connect a master and a slave. Note that this is
one implementation of many.

MASTER L o SLAVE
Direction info *QL.’: Mm_mmon info g
L Word info g B 28— 3l 2—Wond info |
L Request info __pf B el 5 35Request info_y, |

Address info -

Access
info_ [T Select info e

Typical Master-Slave Connect Interface Blocks
Figure 2

In general, information signals are connected using

interface block to accomplish the following tasks:

i. Information signals from different sources are combined
to generate internal signals for information transfer.

ii. Internal signals are decoded to generate the correct output
states.

iii Information input signals are supplied with the correct
timing.
A typical interface block is organized as follows:

Infot S
5 st
Info
- . N ».1Signal ss in

Info2 $3 | Network Expander s6
oul S4 Timing
Converter

Interface Block Contents block

INT-BLK-1-RW-CONNECT

#INT-SUB-BLK~51-DELAY-INT

The timings of the individual signals entering an interface
block are adjusted using timing converters (e.g., buffers,
delays or latches). The states are matched using a
combinatorial network. The signal expander supplies signals
to several input information locations and connector blocks
are used to obtain the final implementation constraints (e.g.,
propagation delay).

4. STATUS

In DAME’s design hierarchy, once components are chosen in
the Functional Block Design phase, an interface between the
components is to be produced during the Integration phase.
This interface can then be fed to the Implementation phase
using various existing VLSI and PLD tools to produce the
actual hardware. To accomplish the interface design
effectively, a component model and rules for the design
procedure must be developed. The model for data transfer
treats each of the information exchange as a primitive,
consisting of both timing and state information. The design
procedure must assure that the correct states and -timing
relationships among the signals are maintained. It must also
be able to handle missing or extra information provided by a
device.

The component model has been developed and integrated
into the KnowledgeCraftT™ environment. Several
components have been entered into the component library
including MC68000, MC68020, Z80, and 8088
microprocessors, and several static RAMs and EPROM:s.
Rules have been written for the design of data transfer
interface. This interface design process is initiated by a
higher level connection request that also specifies the
components chosen. The interface designer currently
produces a network of schemata representing the interface
circuit. Such a design describing the control signal
connection for a MK6116 2k*8 static RAM and a MC68000
microprocessor is shown in Figure 3.

»INT-SUB-BLK-61-HK6116~WR-INT ~SIGNAL ——————8——ss s INT ~SUB-BLK~61 -MK6116—WR-INT-TIMING
*INT-SUB-BLK-59-MK6116-CE-INT-STEHAL ——— 65— «INT-SUB-BLK-59-MK611 6-CE-INT-TIMING
*INT-SUB-~BLK~57-MK6116~0E-INT ~SIGNAL ~———————s— o INT -SUB-BLK-57-MK6116-0E-INT-TIMING
*INT-SUB-BLK-55-MC68000-DTACK-INT-SIGNAL - ¢ INT -SUB~BLK-55-MC68000-DTACK-INT-TIMING
*INT-SUB~BLK-48~ACC-DEL~INT-SIGNAL -S-1 —————=5-=> « INT-SUB-BLK-51 -DELARY-INT-TIMING-S-2
“INT-SUB-BLK-51 -DELAY~INT =S GNAL ————— 8 » INT - SUB-BLK~51 -DELAY - INT~TIMING
*INT-SUB-BLK-48-ACC-DEL - INT-SIGNAL — &> » [NT -SUB-BLK-48~-ACC-DEL -INT-TIMING
*INT-SUB-BLK-42-ACCESS-INT~SIGNAL ~mo——————5— o INT -SUB-BLK-42-ACCESS-INT-TIMING
©INT-SUB-BLK-37-TYPE-INT-SIGNAL ————— & 3 ¢ INT -SUB-BLK~37-TYPE~INT-TIMING
*INT-SUB-BLK-31-READ~INT-SIGNMAL — 5% < INT-SUB-BLK-31-READ-I NT-TIMING
*INT-SUB-BLK-2B8-WRITE-INT ~SIGNAL ———————&—— e INT -SUB-BLK-28-WRITE-INT~TIMING
*INT-SUB~BLK-24-BLOCK-AND-INT -SIGHAL ———&——» ¢ INT ~SUB-BLK-24-BLOCK-ADD-INT -T IMING
*INT-SUB-BLK-15-ADD-INT-SIGNAL ——————————8 & < INT-SUB-BLK~3 S-ADD-INT-TIMING
*INT-SUB-BLX-9-WORD-INT~SIGNAL ————————8 2 « INT-SUB-BLK-9-WORD-INT-TIMING

#XNT -SUB-BLK-4-REQUEST -INT~SIGNAL ——rree—e—8—p- o] NT-SUB~BLK-4-REQUEST-INT-TIMING

*CONNECTION-SUB-REQUEST-4
~CONNECTION-REGUEST-1 %Zﬁﬁ:ﬁgiﬂ:ﬁﬁﬁsﬁﬂj
*CONNECTION-SUB-REQUEST~1

*INT-SUB-BLK-61-MK6116—WR=INT ————————ee 3 « INT ~SUB-BLK-74-CONV-SS
*INT-SUB-BLK-59-MK6116~CE~INT — g ¢ INT -SUB-BLK-75-CONV-$S
*INT-SUB-BLK-571K6116-0E~INT ————e g ¢ [NT-SUB-BLK-76-CONV-SS
*INT-SUB~BLK -55-HC68000-DTACK-INT ———————g—m— o INT-SUB-BLK~77-CONV-~$§

«INT-SUB-BLK~42-RCCESS-INT
*INT-SUB-BLK-37-TYPE-INT
«INT-SUB-BLK-31-READ~INT
*INT-SUB-BLK-28-WRITE-INT

*INT-SUB-BLK-17-USE-IN-ADD
*INT-SUB-BLK-15-ADD~INT

=« INT~SUB-BLK-9-WORD-INT
*INT-SUB-BLK-4-REQUEST-INT
*INT -SUB-BLK~2-TIM-CNSTRNT-
*INT-SUB-BLK-1-DEL-STOR

#INT-SUB-BLK-24-BLOCK-RDD-INT

*INT-SUB-BLK-11-USE-IN-WORD

+ INT~SUB-BLK-53-CONV-SS

Figure 3
MC68000 to Mk6116 Interface Block

Relation Keys: (3) CONNECTION-REQ {6) HAS-SUB-REQUEST

€1) INSTANCE+INV (4) CONTAINS-SUB-BLOCK
(2) HAS-INTERNAL-SIGNAL (S) USES-TIMING

~512 ~

(1]
(2]

(3]

(4]

(51

device-level instance-evel
prototype lavel modet level prototype level modef level instance of
is-a 1—4 is-a
Col ent TOCESSOr MC68000
has-signat has-model has-nstr-size has-model
, has capability , has capability
Component
-model
has-instr-size has capability
has capablllty has capability
DATA-XFER-CAP- is-a { DATA-XFER-CAP-
DATA-XFER-CAP MICRO 1 MICRO-11
uses has-model Xfer-type has-model
uses
sub-capability protocol
i DATA-XFER-CAP| (Master) DATA-XFER-CAP
-model MICRO-model uses
sub-capability

uses uses
sub-capability sub-capability y
OT READ / is-a
SUB-CAP
has-model
has—del -spec
OT READ
SUB-CAP-
model

has-del—sbec

STATE-
TIMING-SPEC

uses-| hmlng has-model

N

STATE-
TIMING-SPEC:
model

uses-timing

uses-timing

HANDSHAKE
-timing-
model

A 1
sigl eventt

= B E

REFERENCES
A.C. Parker, “Automated Synthesis of Digital Systems”,
IEEE Design & Test, pp. 75-81, Nov 1984.
M. Escalante, N.J. Dimopoulos, B. Huber, K.F. Li, &
E.G. Manning, “Generic Design Rules for the Design of
Microprocessor Based Systems in DAME: Bus
Arbitration Sub-systems”, Proc. of the 1991 IEEE Intl.
Symp. on Cir. and Sys., Singapore, pp. 3166-3169.
N.J. Dimopoulos, K.F. Li, & E.G. Manning, “DAME: A
Rule Based Designer of Microprocessor Based Systems”,
Proc. of the 2nd Intl. Con. on Industrial & Engineering
Applications of Artificial Intelligence and Expert
Systems, Tennessee, pp. 486-492, 1989.
B. Huber et. al.,, “Microprocessor Components and
Signal Behaviour Modeling in DAME”, Proc. of the Can.
Conf. on Elec. and Comp. Engineering, pp. 19.4.1-
19.4.4, Sep 1990.

M. Yoeli, Formal Verification of Hardware Design, /EEE
Comp. Soc. Press, Los Almitos, CA, 1990.

~513 ~

Figure 1

Component Hierarchy

[6] J. McDermott,

“R1:
Computer Systems”,
39-88, Sep 1982.
T.M. Mitchell et al.,
Design,”, IEEE Trans. Pattern Analysis and Mach.
Intelligence, vol. 7, no. 5, pp. 502-510, Sep 198S.

A Rule Based Configurer of
Artificial Intelligence, vol. 19, pp.

[7] “A Knowledge Based Approach to

[8] Y.H. Kuo et al., “KDMS: An Expert System for the
Integrated Hardware/Software Design of Micro-
processor-based Digital Systems”, IEEE Micro. vol. 11,
pp- 32-92, Aug 1991.

W.P. Birmingham, A.P. Gupta, & D.P. Siewiorek, “The

Micon System for Computer Design”, I[EEE Micro. vol.

9, pp. 32-92, Aug 1991.

[10] B. Huber, K.F. Li, N.J. Dimopoulos, M. Escalante &
E.G. Manning, “Modeling Data Transfer Signal Timings
in DAME", Proc. of the IEEE Pac. Rim Conf. on Comm.,
Comp. & Signal Processing, 1993.

ACKNOWLEDGEMENT
This research was supported in part by an NSERC Strategic
Grant. B. Huber was supported in part by an NSERC post-
graduate scholarship.

(9]

