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SUMMARY Hypercycles is a class of multidimensional graphs obtained by allowing each di-
mension to incorporate more than two elements and a cyclic interconnection. Hypercycles. offer
simple routing, and the ability, given afIXed degree, to chose among a number of alternative
size graphs. These graphs can be used in the design of interconnection networks for distributed
systems tailored specifically to the topology of a particular application. We present and prove
a deadlock preventing routing strategy for a subset of hypercycles and a VLSI Hypercycle rout-
er component which implements the deadlock preventing routing .
KEYWORDS: Interconnection Networks, Routing, Deadlock Prevention, Routing Engine. Cir-
cuit Switching .

I. Introduction

Message passing concurrent computers such as the Hypercube [11], Cosmic Cube

[16], MAX [12,13], iPSC [9] J-Machine [6] consist of several processing nodes that

interact via messages exchanged over communication channels linking these nodes

into one functional entity.

There are many ways of interconnecting the computational nodes, the Hypercube,

iPSC and Cosmic Cube, have adopted a regular interconnection pattern corresponding

to a binary n-dimensional cube, while MAX adopts an unstructured topology.

Hypercycles [7,13] are products [15] of circulants. The set of circulants used range

in complexity from simple rings to fully connected graphs. Hypercycles are generali-

zations of many popular interconnection networks. Binary n-cubes, k-ary n-cubes [4],

generalized hypercubes, rings, toruses, etc. are examples of hypercycles.

Many properties and algorithms used for example in routing and processor alloca-

tion can be extended to the entire class of hypercycles making it possible to choose a



topology that best suits the system requirements of a specific class of applications.

A number of different routing policies have been introduced for a variety of inter-

connection networks. Thus in hypercubes e-cube routing [5] prevents deadlocks by or-

dering the resources (i.e. channels or virtual channels) comprising a path thus

guaranteeing that no circular dependencies exist for any paths formed. Similar ap-

proaches have been devised for toruses and k-ary n-cubes [5, 10] where virtual chan-

nels are introduced in order to break any circular dependencies. A different approach

of deadlock avoidance has been introduced with the Hyperswitch [3] and the various

backtracking strategies for hypercycles [7]. There, deadlocks are avoided by forcing a

forming path to backtrack and try again. These strategies appear to have excellent

throughput because they tend to utilize more available paths leading to the destination,

but they suffer from thrashing at high offered loads.

In this work, we present a deadlock preventing routing algorithm for certain hy-

percycles. This routing does not make use of virtual channels and thus it is well suited

for circuit switching environments.

This work is divided into the following parts. Section 2. introduces the Hypercy-

cles and discusses their properties. Section 3. presents a deadlock preventing routing

strategy for a class of Hypercycles. Section 4 discusses the router component which

has been designed and fabricated and finally we conclude with Section 5.

2. Introduction to Hypercycles

2.1 Mixed Radix Number System

The mixed radix representation [1], is a positional number representation, and it is

a generalization of the standard b-base representation, in that it allows each position

to follow its own base independently of the other.

Given a number Mfactored asM = mn xmn-l x...x ml, any numberO 5X5M-1 can

be represented as (X) = x x - 1 ...X li where 05x.:s:(m. -1 );
m m 1...m l II II m m m I I..- 1... 1..-

II
i = 1.2 n and the x 's are chosen so that X = ~ x.w and w. = ~

.£01 , .,I i=l m"m"-l...m;

2.1 Hypercycles.

An n- dimensional Hypercycle. is a regular undirected graph: c;: = { ~, ~~}



where ~ is the set of nodes, ~~ is the set of edges, m =mn ' mn-i ,..., m i a mixed ra-

dix, p =Pn ' Pn-i ,..., Pi; pj ~ mj/ 2 the connectivity vector, determining the connec-

tivity in each dimension ranging from a ring (p .=1 ) to fully connected (p .=lmj /2 J),
I I

and ~ = {0,1,2,...,M-1 }. Given a, {3e ~ then (a, /3) e ~ if and only if there

exists l.s-j.S-n such that {3. = (a.::t ;)modm. with 1 ~;. ~p. and a. ={3.; i *j
i if i i i I I

II
t 2p if 2p < m .

Hypercycles degree d = Lf(mi' Pi) wheref(mi' pJ = I -' I

- 1 m. -1 If 2p .=mI = I I ,

and diameter k = i I ~ 1 have been derived in [7].

i= 11 Pi I

The n-cube is a Hypercycle, with M = 2 x2 x-..x2 = ~ and p =1,1,1,...,1.

2.2 Routing

Hypercycles, have routing properties that are similar to those of the n-cube. Given

nodes (a.) = a. a. 1...a a.1 and
"' "'

1---"'1 II 11- I..-

(a.* ) "'."'.-1..."'1 = a.lla.l1-l...I:;...a.1 a walk, from a to a*, is formed as follows:

a.lla.l1-l...a.i...a.1,a.lla.l1-l...I:;I...a.l' a.lla.l1-l...1:;2...a.l' ..., a.lla.l1-l...I:;...a.1.

such that

(l:;j;+Pi)modmi if (1:;-l:;j!modmi=lC;j;'C;1 >Pi [a]

(C;j;+IC;ji'l:;lmodPi)modmi if (C;-~j!mOdmi=l~ji'~1 >Pi [b]

and I I:;j;' 1:;1 mod p i * 0

C; - + 1 = ( ~ --p .) mod m if ( I:; .-~) mod m .= I~ ., C; I > p- [ c ]~i ~i I' ~i I li I

(~- - 1~-, ~Imod p) mod m. if (I:;. -I:;) modm-= I~., C;I > p. [d]
.,. '. , , '. I I. I'0 '0 '0 I

and I ~ji' ~I mod p i * 0

I:; if Il:;ji'~I~Pi [e]

;0 = a. ;max = ; [I]

Equation I defines all the minimum-length paths from a source to a destination in



a single dimension. Parts (a), and (c) constitute a greedy strategy where the maximum

step towards the destination is taken. Parts (b) and ( d) form alternate paths by allowing

the step described in part (e) to be taken earlier. Observe that there is only one step of

length smaller than the maximum, and when it is taken it is guaranteed that the remain-

ing steps will be maximal.

Given an origin (a.) = a. a. 1 ...a a. 1 and a destination
m m t ...m l n n- I..-

(13)m.m.-t...ml = 13n13n-1...13j...131 then distinct walks of minimum length thatcon-

nect them are constructed by sequentially modifying the source address, each time

substituting a source digit by an intermediate walk digit determined according to equa-

tion I, until the destination is formed. The following walk connects source to desti-

nation.

source = a.na.n-1...a.3a.2a.1, a.lla.n-1...a.3f;1a.1, a.lla.I1-1...'1'lf;1a.1

a.lla.I1-1...'1'2f;1a.1' ...a.lla.I1-1...133f;1a.1, ...13111311-1...133132131 = destination

If only the greedy strategy is followed, it results to a total of

1 = ( q ) = q! paths of minimum length that connect

qn' qll-1' ...q1 qll! qll-1! ...q1!
them with q i being the distance along dimension i. The total distance between sour~e

II
and destination is given as dis (a, b) = q = L qj. We call such paths greedy paths.

j= 1

As an example, inFig. la both walks 011110 20 and 01 00 10 20.have the same

minimum length and connect source 01 to destination 20.

3. Deadlock-Preventing Routing in Hypercycles

In section 2.2 above, we presented a routing function that establishes at least one

path of minimum length from a source to a destination node. In this part, we are con-

cerned with optimally choosing one of the paths. Routing must be efficient and dead-

lock free.Deadlocks must be prevented, avoided or detected and broken. Deadlocks

occur when resources (in this case node to node communication segments) are allocat-

ed so that the completion of a partial path requires a segment already allocated to a

different partial path which in turn waits for a segment in the first partial path. It is ob-

vious that no messages can propagate over the deadlocked paths, and the only remedy

is to break the already established and deadlocked partial paths and try again.

Deadlock may occur easily in cases where the segments that form the paths are

chosen at random. Certain routing algorithms prevent deadlocks by ordering the re-~
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Figure I. Examples of Hypercycles
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sources (channels) to be allocated. Thus a lower order resource cannot be committed

if a needed higher order resource cannot be obtained. It has been proven that the e-

cube routing [5] prevents deadlocks in the case of the hypercube,

In this section, we introduce a deadlock-preventing routing for certain Hypercy-

cles and prove that it indeed is deadlock-preventing.

Definition I. Given a graph (j on which a circuit switching routing is used, we denote

by P j the partially completed path between a source Si and a destination Di, by Ij the

last node of the partial path Pj, and by Li the set of all legal outgoing links from node

Ij which can be used in order to complete the partial path to the destination D j'

Observe that if Li = 0, then I i =Di i.e, the path is complete, while if P i = 0, then I i

=Si, and the path has not commenced yet,



Definition 2. With reference to a graph <; on which circuit switching routing is used,

we define the corresponding dependence graph p = {~'E} .where ?{is the set of par-

tially completed paths. and (Pi' Pj) E 'Eiff3l E Li such that l E Pj.

Definition 3. We say that a set of source-destination pairs (Si' D);i=I,2, u is dead-

lockedif\flE Lj 3} suchthat lE Pi;i = 1,2, ...,I.J..

Lemma 1. If a set of source-destination pairs (Si' D);i=I,2, u is deadlocked, then the

corresponding dependence graph contains at least one cycle.

Proof. If there are no cycles in the dependence graph, then it possesses at least one

terminal node P. If P is a terminal node, there does not exist a succeeding partial path

connected to P, i.e. \fl E L ~} such that l E P. But this contradicts definition 3.

Q.E.D.
In order to achieve deadlock preventing routing, we introduce asymmetry in the

1
way each node routes messages. Take as an example the 4-node hypercycle <;4 as de-

picted in Fig. I. Node 2 can be reached from node ° travelling either clockwise or

counter clockwise. Similarly, node 3 can be reached from node I traversing the hyper-

cycle in two directions. If the directionality is chosen at random, or identically for ;11

nodes, deadlock can occur. If on the other hand, the directionality alternates, as we

shall prove, deadlocks are prevented.

O

0

3 1 6 2

4

1 2
Figure 2. 4-node Hypercycle <;4 Figure 3. 8-node Hypercycle <;8

In a similar fashion, one can impose asymmetry in the routing for larger graphs

2
such as the <;8 as depicted in Fig. 2, where if nodes 0, 1,4, and 5, route on a clockwise

orientation and nodes 2,3,6 and 7 on a counterclockwise orientation, deadlocks do not

occur .



We shall name this type of asymmetric routing the odd/even preference routing.

Definition 4. In one dimensional hypercycles ifm where a destination can be reached

through two alternate routes i.e. when (a- [3) modm = ([3 -a) modm = la, [31,

where a is the source and [3 is the destination, we define the odd/even preference rout-

ing so as in the greedy mode, routes originating at source nodes with an even p- quo-

tient proceed in the clockwise (counterclockwise) direction, while routes originating

at nodes with an odd p- quotient, proceed in the opposite direction. If a* denotes the

next intermediate node, then a* = J ( a + p) mod m if L a/ p j is even

1 (a-p)modm if La/pj isodd

Example I. To illustrate the definitions stated above, we present the dependence
1

graph for the odd/even routing in (j4. To make the representation of the dependence

graph legible, we have omitted the nodes corresponding to paths 012, 103 230 and
321. These nodes are terminal nodes and as such do not contribute to any possible
loops. As it can be verified, this dependence graph is devoid of loops and thus the odd/

1
even routing in (j4 is deadlock free. If arbitrary routing was permitted, then edges

such as the one depicted by the dashed line in the diagram would be permitted, giving
rise to loops and therefore possible deadlocks during routing.

01

, -
1

Figure 4. Dependence graphfor (j4

1
Lemma 2. In (j4 with the odd/even preference routing, the corresponding depen-

dence graph includes at most two distinct partial paths Pj and P2 with Pj, P2 # 0,

andLj,L2 # 0

Proof. Assume that there was a third node PJ, PJ # 0, LJ #0, in the dependence

1
graph. Observe that, because the hypercycle in question is the (j4' each of the

Pi;i=1.2 ,3. contains exactly one link, and all are different from each other. Let



/i= (ai'!3i) E Pi ;i=I,2,3.

Since there are only two even nodes in the hypercycle, assume without loss of gener-

ality that a 1 and a2 are even while a3 is odd. Then, because of the odd/even routing,

!31 = (al + 1) mod4 [2]

!32 = (a2+ 1) mod 4 [3]

!33 = (~ -1) mod 4 [4]

Since a3 is assumed to be odd 4 above implies that !33 is even. Thus, !33 can only be

either a lor a2 .Assume, without loss of generality, that

!33 = al [5]

Then 4 becomes al = ( a3 -1) mod 4 and substituting in 2 we obtain

!31 = «a3-1)mod4+1)mod4 = a3 [6]

Thus 5,6 imply that /3 = /la contradiction, since the paths are assumed to be distinct.

In a similar manner, one can prove that there cannot exist four distinct paths.

Q.E.D.

I
Theorem 1.In (j4 the odd/even preference routing is deadlock preventing.

Proof By lemma 2 there are at most two partial paths P, and P, with P " P 'i: 0, and
I J I J

L., L .'i: 0 in the dependence graph. Then the only possible cycle comprises P, and P '.
I J I J

I
Since (j4 has diameter 2, the two partial paths P, and P include one link each. Name

I J

these links )., and )., respectively. Obviously, ).. 'i: ).. Name by 1, and / the requested
I J I J t J

links for the continuation of the partial paths P. and P ., and suppose that P. and P , con-I J I J

stitute a cycle. Then

l.=).,andl.=).. [7]
J I I J.

Denote now the links explicitly as pairs of source and destination nodes as:
).i = (ai,!3i), ~ = (aj,!3j) and

/i = (!3i,Yi) ./j = (!3j,Yj)

Then because of 7, !3i = !3j = !3. Therefore,

Ai = (ai'!3) ~ = (aj,!3)



Assume, without loss of generality, that 13 is odd. Then, one distinguishes two cases.

(1) Both ai and aj are even. Then from the definition of the odd/even routing,

13 = (ai +1)mod 4 and

13 = (aj + l)mod 4.

Thus(ai + l)mod 4 = (aj + l)mod 4. => (aj)mod 4 = (aj)mod 4. => aj = aj, a con-

tradiction.

(2) One of the aj, aj is odd, the other is even. Assume, without loss of generality, that

ai is odd and aj is even. Then from the definition of the routing, we have

13 = (ai -1)mod 4 and

13 = (aj+l)mod 4

Thus(aj -1)mod 4 = (aj +1)mod 4. This implies that either

aj -1=aj +1=> ai =aj +2, a contradiction since ai is odd and aj is even, or

(aj + I -ai + 1) = 4k => (aj -aj +2) = 4k [8]

1
Since in 1:4 ' la.-a. 1<3 then from 8 above, we have la.-a. 1 = 2=>a. = a.:t2':1 J I J I I J

a contradiction since aj is odd and aj is even.

Q.E.D.
In the subsequent treatment, we make use of the terms maximum links and link

length. One-dimensional hypercycles can be visualized as rings with chords. Thus,

any node will have links connecting it to its two immediate neighbors lying to its left

and right (i.e. to nodes (a:t l)modm ) but also to more distant nodes through the

chords (i.e. to nodes (a :t x)modm. x ~ ). Links therefore can be differentiated as to

whether they correspond to the chords or not, as well as to the length of the chord.

Definition 5. The length of a link connecting nodes a and (a :t x )modm in a one-di-

mensional hypercycle (j: is defined to be x. If x =p then it is called a maximum link.

Theorem 2. One-dimensional hypercycles (j: of diameter two and L m/2 J < 2p

have greedy routing as outlined in section 3.1, which is deadlock preventing.

Proof Since L m/2 J < 2p it means that any two-link path from a source to a destina-

tion, consists of a maximum link of length p followed by a link of length less than p.

Thus, in the dependence graph, all the partially completed paths p i such that p i :t: 0,

and Li :t: 0 consist of maximum links while all the requested links in the sets Li are not

maximum links. Thus Vlj E Lj 10' such that lj E p a. Therefore, a cycle cannot



exist in such a dependency graph, and the routing is deadlock preventing.

Q.E.D.

Theorem 3. One-dimensional hypercycles (j: with m = 4p -k; k = 1,2,3 are deadlock

free under the greedy routing.

Proof Since L m/2j = L ( 4p -k) /2j < 2p then theorem 2 applies.

Q.E.D.

Theorem 4. One dimensional Hypercycles t!m with m = 4p have a deadlock prevent-

ing odd/even preference routing.
Proof Since m = 4p, one can number the nodes of this hypercycle as {0, l,...,p -1, p

, p + 1,..., 2p -1, 2p , 2p +1,..., 4p -1}.

Partition now these nodes into p groups of four nodes each as follows.

9 = {kp+a;k=0,1,2,3}a=0,1,2,...,p-l
a

Observe that {kp + a + p} mod4p = { (k + 1) p + a} mod4p E 9 .
a

Thus, every node in each group ga can be reached from any other node in the same J

group, with a path that consists entirely of nodes in ga.

p
Therefore, for routing purposes, (j m can be partitioned in p groups, each of which is

1
closed under the hypercycle routing, and each can be mapped onto (j4 (kp + a H k),

for which, it has been proven (Thm. 1) that the odd/even routing is deadlock prevent-

ing.

Q.E.D.

Theorem S. Fully connected graphs are deadlock free.

Proof. Since the graph is fully connected, all partial paths between any source-desti-

nation pair have lengths of at most one. Therefore, the corresponding dependence

graph is devoid of cycles since if (Pj, Pj) is an edge in the dependence graph, Pj =0,

and thus, according to definition 2, there cannot be another edge of the form (P ;t, PJ.

Q.E.D.

Theorem 6. Generalized e-cube routing is deadlock preventing on a graph that is the

product of fully connected graphs.

Proof. Assume that there is a cycle present in the dependence graph. Name the se-

quence of partial paths which form the cycle as Pj;i =0,1,2,...k. such that Pj, Lj * 0.

Since this sequence of partial paths forms a cycle, then



\ii 31i eLi such that li e P(i+l)modk. Observe now that because of the general-

ized e-cube routing, a link of a higher dimension cannot be allocated unless all the

lower dimensioned links required have been allocated.

ThUs,li-<l(i+l)modk;i = 0,1, ..., k. But this is a contradiction because of the transi-

tivity and strict ordering of the relation -<.

Q.E.D.

We are ready now to define a deadlock preventing routing for multidimensional

product graphs. In the generalized e-cube routing, a link cannot be reserved unless all

the necessary links at higher dimensions have been allocated to the path forming.

Theorem 7. Generalized e-cube routing is deadlock preventing on a graph that is the

product of graphs each of which possesses deadlock preventing routing.

Proof. In a similar manner as in Thm. 5,assume that there is a cycle in the correspond-
ing dependence graph. Then, there will be a sequence of partial paths Pi;i = 0,1,2,...k.

such thatPi,Li~0and \ii 3lieLi such that lie P(i+l)modk

Observe now that because of the generalized e-cube routing, one cannot allocate a

link to a partial path unless all the required links at a lower or equal dimension have

been allocated. Thus,.li~l (i + I) mod k;i = 0, I, ..., k This implies that all the requested

links must lie at the same dimension. Thus, one can form a cycle in the dependence

graph, consisting of portions of the partial paths relevant to this dimension. But this is

not possible, since we assumed that each of the component graphs in the product graph

possesses a deadlock preventing routing.

Q.E.D.

4. Router Implementation Status

A VLSI component implementing the deadlock preventing routing, as discussed

above, has been designed and fabricated. Fig. 5 gives a block diagram of an n-dimen-

sional Hypercycle router. It comprises two distinct parts. The Decoder and Next Port

Generators and the Port Selector and Validator. The Decoders and Next Port Genera-

tors establish whether the deadlock preventing routing can be used on the Hypercycle

configured. The next port generator implements the greedy and odd-even preference

routing. The Port Selector and Validator selects the highest dimension if it is free, oth-

erwise a No-Ports-Available is generated which will cause the routing to stop and

wait until the required port is freed.

The router is programmable in that the Hypercycle Network on which the routing

is performed is described through its mixed radix m and connectivity p vectors.
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Figure 5. Block Diagram of the Deadlock Preventing Router.

These vectors together with the node address, available ports and destination ad-

dress are stored in registers. The designed router is configurable for hypercycles of up

to dimension 4, and degree 16. It incorporates in excess of 20000 transistors and it is

designed to perform in excess of 16 million routing decisions a second. This router is

part of a programmable routing engine for Hypercycles which will incorporate in ad-

dition to deadlock preventing routing deadlock avoiding routing and be capable of

adopting the most suitable routing.

A micrograph of the designed deadlock preventing router is given in Fig. 6, while

a deadlock avoiding router is discussed in [14]
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5. Conclusions and Discussion

In this work, we presented the Hypercycles, a class of multidimensional graphs,

which are essentially generalizations of several well known graphs including the n-

cube, toruses, k-ary n-cubes, rings etc.

Although these graphs are not the densest possible, they are attractive, because of

their simple routing. Since the node addresses are represented in a mixed radix as a

sequence of n-digits, each one of these digits is processed independently and in paral-

lel with the remaining digits. Thus the hardware involved in the routing can be made

fast (because of the parallelism) and simple (since each module need only handle

arithmetic modmj, as compared to arithmetic modmJm2...mr needed when all the ad-

dress digits are necessary as is the case with such networks as the chordal rings [8], or

the cube connected cycles [2]).

We have established a deadlock preventing routing strategy for a subclass of the

hypercycles and presented a deadlock preventing router which has been fabricated.

We are currently developing a programmable routing engine for hypercycles which

will incorporate a variety of routing strategies and be configured for a large class of

hypercycle topologies.
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