
The Implementor Subsystem in DAME:

Using OASIS to Complete the Design Automation

of Microprocessor-based Systems

Marco A. Escalante, Nikitas J. Dimopoulos, D. Michael Miller,
.Kin F. Li and Eric G. Manning

Faculty of Engineering
P.O. Box 3055

University of Vic~oria
Victoria, B.C. V8W 3P6

Abstract this sense, adaptation to the constantly forthcoming
new technologies would be rather smooth. DAME

This paper discusses the implementor subsystem is capable of configuring and designing a customized
of DAME, a microprocessor-based-systems designer. microprocessor system from system specifications.
DAME produces designs from system specifications DAME h h f 1 d " £ 1..goes t roug a orma es1gn process o -

such as type of applicatlon, performance, process- ."
.. t t Th " . b . l . t f IOW1Og a top-down approach wh1ch traverses the fol-
1Og requ1remen s, e c. e main responsl 1 1 yo 1 " h 3
the implementor subsystem is to translate DAME's ow1Og p ases [I:

functional design specification of the necessary inter-
f 1 .. t VLSI . 1 t t . Th b .1. Design specification stage, \V here the system re-
ace oglc 10 o a Imp ellen a Ion. e asIC " " design steps followed by DAME as well as the imple- sponslblhtles, desIgn constraInts and system en-

1 d d 1 vironment are established.mentor methodo ogy are presente , an a protoco -

conversion interface example is used to illustrate the 2. Configuration phase, where the gross architec-

procedure. The implementor automatically converts ture (processor, memory, 1/0) is determined;

the design specification to Logicl11 and the OASIS
environment then carries out the VLSI design. 3. Behavioral description phase, which specifies the

capabilities of the subsy!'tem produced in the

1 I t d t .configuration phase;
n ro uc Ion

4. Functional block design phase, where the capa-
There is a strong motivation for the automation of the bilities of the subsystems are mapped into avail-

hard\vare design process [1, 21. Semiconductor tech- able components;

nology is evolving rapidly, producing high-end chips
that allow the designer to build highly sophisticated 5. Integration phase, in which the modules are

systems with off-the-shelf components. Designers are interconnected and the required interfaces de-

confronted with a proliferation of different and highly signed; and

complex components which must be integrated in the 6 I 1 " h h .
h fi al..mp ementatlon p ase, w IC creates a n

ne\v systems. The desIgner must keep up-to-date h d al " .

f h. h h . f h d 1 d h ..ar ware re lzatlon o t e system.
\Vlt t e eXIstence O SuC mo u es an t elr mter-

facing in order to design the stat(~-of-the-art products
tl k t d d DAME l (D . A t t " This paper presents DAME's implementor, a sub-

le mar e eman s. eslgn u oma Ion
of \licroprocessor-based systems using an Expert sys- system that transforms the behavioral description of
t h) tt t t ... th . t f an interface generated at the end of the integration
,em approac a emp s o m1OImlze e Impac o
the large number of available components and their p~ase .into a final yLSI layo~t. Thi~ work is di-

h " f t " al. t d .fi t . t th vlded mto fiv(~ sections. Sectlon 2 dlscusses some
everc ang1Og unc Ion I .y an specI ca IOns O e ..,

design process through reasoning based on technol- related work. SectIon 3 Illustrates DAMEs repre-

ogy (and function) independent characteristics. In sentation design methodology through an exam pIe ,

with emphasis on the integration stage. Section 4 de-

IThis research was supported by the Natural Sciences and scribes the implementor subsystem in more detail"

Engineering Council of Canada through a strategic grant. W~ have t.argeted the implementation towards the

OASIS2 (Open Architecture Silicon Implementation sign in the form of an EmF (Electronic Design Inter-
Software) environment. Finally in the last section we face Format) netlist file but also it writes the required
discuss some further work. control program using a retargetable compiler. The

component databa..'e adopts a frame structure orga-
2 Related Work. nized in a tree hierarchy in which the leaves represent

primitive functional units that map directly to phys-
Hardware synthesis is the process of mapping an in- ical components. KDMS top-down design methodol-
put specification of a hardware design into a hardware ogy transforms the original specification given as a
implementation using a set of hardware primitives [4). collection of top-Ievel frames in the database succes-

Most of the effort in digital hardware design has fo- sively into children frames using frame construction
cused on High-Level synthesis, which takes a register- in~or~.ation until.a final logica! design in terms. of
transfer level specification in the behavioral domain pnmltIve frames IS reached. KMDS solves the m-
to produce a structure [5]. However some work has ~erface problem by placi~g the inte~face informa~ion
been done that addresses the hardware design process mto the frame construction slots. Fmally the logIcal
from the system level as discussed in the subsequent. design is bound to physical devices with information

contained in two device libraries.
MAPLE (Microprocessor ApPLications Expert) is D ...

an expert system prototype which takes the role of AME (3] vlews the final desIgn as a collectIon of

an expert consultant in the field of hardware de- com~unic~tingmodules which imple.ment the ~esired
sign (6]. A MAPLE consultation consists of an inter- functlo~allty. .Modules, most .0! .whlch map dlre~tly
view in which the user is asked for the system hard- to physical ChlpS, have capabIhtIes whose beha,'lors
ware requirements and constraints a design stage in follow a limited number of standard protocols. The
which MAPLE uses its knowledge ~o build up a sys- prese.nce of a particular protocol dictates the .design
tem fulfilling the requirements and constraints, and solutIon as produced ~y DA~E. In contrast wIth the
a report stage in which the design documentation is other systems, DAME s atomlc elements are the pro-
generated. MAPLE follows the case-based reasoning tocols that rule the communication between modules
paradigm [7]. and not the modules themselves. In this sense DAME

.reasons about the design at a deeper level. Conse-
The MIcon system (Microcomputer CONfigurer) quently only a few powerful rules that recognize pro-

is ~ integrated ~ollectio~ of programs which auto- tocols, as opposed to rules addressing specific mod-
matIcally sy.nthe~IZes a .smgle-board co.mputer from ules, are necessary to create a working design. In
system specifications usmg standard mlcroprocessor addition, the introduction of new components does
technology (8). The designer subsystem MI accepts not re

quire the alteration of the design rul s as I gh . fi . (.e on

t e system specI canon m the form of processor and as their behavior can be described in terms of the

memory type, number and type of 110 devices, and stored protocols.

system constraints such as cost and performance),
selects the closest components in the database that
match the specifications, and makes the interconnec- 3 A Design Example.
tion to build up the system. Components are embod-
ied in templates which may comprise several chips but In order to illustrate DAME's methodology we shall
possess a common interconnnection structure. The fi- use the problem of designing a bus-based system
nal implenlentation is completed by a group of CAD comprising a number of devices sharing a common
tools that perform placement, routing, and PCB fab- bus [10) as sho,vn in Figure 1.
rication. Micon solves the interface problem by defin- A protocol specifies the sequence of actions that
ing templates with a common interface structure so assures the correct ,intercommunication between de-
that no extra glue logic needs to be added3. vices. Devices can be classified according to their role

KDMS [9] is a hybrid system which uses a as masters and slaves. A master is the module that
knowledge-based expert system together with algo- can initiate a transaction. \vhile the slaves only par-
rithmic procedures to implement. a microprocessor- ticipate in the t.ransaction after being requested to do
based digital system starting from a system specifica- so. A bus normally includes an arbitration protocol
tion. Not only does KDMS produce t.he hardware de- through which a single master can be determined at

ally given time.2 Developed by the Microelectronics Center of North
Altl h th I . I "

I (11)Carolina. lOUg ere are re anve y lew protoco s ,
3 Actually, the glue logic is integrated {hardwired) into th{, their instantiations differ depending on the compo-

templates. nents chosen. In this example we shall use kno\vl-

edge pertaining to the protocols used by the bus and (a, b) E p iff b occurs after a. A protocol can be de-
individual devices to design the arbiter and the ap- scribed by a labelled digraph (A, P, t), where A is the
propriate interfaces. We shall restrict our example to set of vertices, p is the set of edges, and t is a labelling
the arbitration part of the design. The arbiter must function that assigns to each edge a pair (tmin , tmaz)
guarantee that at most one master will be in control corresponding to the minimum and maximum times
of the bus at any time. between the actions connected by the edge.

The action graph that prototypes the two-signal
bus arbitration protocol is shown in Figure 3. There
are three pairs of actions:

(r, f) corresponds to the request and
release of the bus

(a,a) corresponds to the grant of the
bus and acknowledge of the end

Figure 1: Multi-master system of the transaction
(b, b) corresponds to the start and end

There are several arbitration protocols. Two of of the use of the bus

the most commonly used are the two-signal and the Actions are represented in terms of transitions of
three-signal arbitration protocols. A timing diagram the participating signals [13].
of a two-signal bus arbitration protocol is shown in
Figure 2. It exhibits a fully-responsive handshake be-
tween REQ* and ACK*4. A potential master asserts r ""

its REQ* signal whenever it needs to transfer data ~
through the bus, and negates REQ* at the end of a

the transaction. On the other side, the arbiter as- /serts ACK* to signal the availability of the bus, and
releases ACK* to acknowledge the end of the trans- b

action. +

RE -
b

AC /
r

Data Transfer b a
us

Figure 2: Timing diagram of the two-signal bus arbi-
tration protocol Figure 3: Action graph for the two-signal bus arbi-

tration protocol

In a three-signal arbitration protocol, an additional
signal is used to indicate the current status of the bus. Components are characterized by their capabilities
This makes it possible to overlap the arbitration cycle and arf' represented as networks of frames. Figure 4
with the last bus utilization cycle, with a consequent shows a partial network describing the MC68000 em-
increase of efficiency [10]. phasizing the bus arbitration capability. Components

In DAME, protocols are represented by act.ion a.re described in terms of ~heir interfacing ~apa~ili-
graphs. Actions are the elementary operations whose tles, such as data transfer, rnterrupt, bus arbltratlon,
sequence defines the protocol [12]. Let. A be the set etc.. Capabil~ties are described by standard.protocols.
of actions in the protocol. We define the relation p Action slots m the protocol sub trees contain the par-
(precedes) between two actions a, b E A such that ticular information about the signals that. implement

the protocol. The bus arbit.ration designer submod-
4We follow the convention that a negative-logic or asserted- ul(' uses this information to instantiate the design. as

low signal is denoted by suffixing "*,, to its nam... discussed in th(' following.

I~mpo-, bitration protocols of the participating components.

U\ After the interface block is configured, the implemen-
~~ ,-- ~ .; r ~' ~or modul: implements the specified functionality us-

~ ~ 0..- '.pabi;OY mg a partIcular technology.7' Qpobility lone example of a designed interface between the

Qpability ~ :-;:..,~~.. Intel 8257 DMA chi p and the VMEbus is shown inp 1
"--",.tloa- -I/Figure 6.
'.po".;OY..1 protocd f / ;.-.~ ""-.lsnoJ. .-.

..m- " p...~.. ~ ~N;EBWCK
pro-d "'«~..

"--""' ".~ , ~...,. 1 ~P" HlI)Apro-1-11 pro..~1-1. ~ / i~ dlDO IDO-

~.., /':'!;-.., "1.~ "~ -, BG e-BR3.

BBSYO
Figure 4: Partial semantic network of the MC68000

vme-

One possible configuration of the arbiter in a multi-
master system is a daisy chain structure, shown in
Figure 5. The arbiter generates a unique grant to- Figure 6: Block diagram of DAME's bus arbitration
ken that propagates through the requesters. The designed interface between the Intel 8257 DMA de-
closest requester to the arbiter with a pending re- vice and the VMEbus
quest has the highest priority and it is allowed to
capture the token. In this example, the arbiter fol- The primitive blocks that comprise the interface
lows a three-signal bus arbitration protocol while the can be classified into:
requesters may use a two-signal or a three-signal pro- Block Type Examples
tocol. Therefore an interface for protocol conversion Combinational Connect blocks (C)
may be required. blocks

-r Finite state Detect blocks (D),
bue-"°"!, machines (FSM) Two-state machines
w--ack0- (TWO), Mutual

exclusiu:l blocks
..! ~ ~ ...! ~ f t (ME), Special blocks

pat antin grant-.ot -in srant-ool (Bus observer (0))
(-88... 1 ~
p- ID These primitive blocks are represented as networks

of frames whose slots contain the signal informa-
M tion particular to the specific design. Frames are
.s~.." ~ structured in a hierarchy similar to the component

--I -ea database, in which templates at the top level encap-

I~ (th.=~.. sulate the general information of the blocks (e.g., its
functionality) while instances contain the specifics of

Figure 5: Daisy-chain bus arbitration structure the blocks (e.g. signal names).

The template corresponding to the two-state asyn-
An mItIally empty mterface ?lock IS created ~e- chronous sequential machines (ASyI) described by

tween the bus and each potentIal master. The l1l- the TWO blocks in figure 6 is presented below. This
terface blocks implement the token propagation and template contains not only the empty slots corre-
capture required by the daisy chain, as well as the ef- spondillg to the essential information required to fully
fect of conversion between the two- and three-signal characterize an instance but also a functional descrip-
protocols involved. tion of the blo(.k. In the case of a state machine. the

DAME recognizes several bus arbitration struc- functional des(Tiption consists of the set of inputs I,
tures such as daisy-chain, independent request, etc. the set of outputs 0, the set of states S, the output
For each structure, a group of rules is activated which relation OT : S x I -+ 0, the next state relation
configures the interface block according to the ar- TT : S x I -+ S, and the initial state So. For these

machines the input and output sets are comprised of that this design can be implemented using a particu-

signal events [14]. The blank slots, such as the input lar technology. The implementor subsystem accepts

and output events, must be filled out in an instance a functional description of the design and creates the

with the corresponding particular information. final layout. The block diagram of the implemen-

tor is presented in Figure 7. We can see two stages.

{{ TWO-STATE-ASH Firstly the semantic network representing the design

IS-A: ASH is taken by the translator to produce a description

INPUTS: RESET- INPUT SET- INPUT suitable for a VLSI CAD tool. Finally the VLSI tool

OUTPUTS: RESET-OUTPUT SET-OUTPUT goes through the logic design, placement, and routing

STATES: STATEO STATEl to complete the design process.

INITIAL-STATE: STATEO B ~LSIOUTPUT -T ABLE: DAME nIe.r... Tr oASm ..-,

(((STATEO) RESET-OUTPUT) ~n p~nn ..~~

«STATE1) SET-OUTPUT»

TRANSITION-TABLE:
(«STATEO RESET-INPUT) STATE1) Figure 7: Block diagram of the implementor subsys-

«STATEl SET-INPUT) STATEO» tem

FUNCTION: OASIS has been chosen as the VLSI tool while OA-

RESET- INPUT : SIS's scmos2.0 is the target technology. The Logic III

SET- INPUT : language is used to describe the structure and func-

RESET-OUTPUT: tionality of synchronous digital designs in OASIS [15].

SET-OUTPUT: We have written a translator module which trans-

} } forms DAME's functional specifications into Logic III

programs.
The frame shown below forms part of the designed In the sequel, we shall describe the translation pro-

interface in Figure 6, corresponding to the TWO3 ess using connector blocks and two-state ASM's as

asynchronous sequential machine (ASM), an instance :xamples of both combinational blocks and finite-

of the generic TWO-STATE-ASM block. The input state machines to illustrate our approach.

and output slots contain event expressions [13] that

need to be converted into signals by the translator as 4.1 Connector blocks.

discussed later . C bl k . 1 . t .
1 t tonnector oc s are slOg e-InpU SIng e-ou pu com-

binational blocks which precoI'dition an input signal
{ { TWO-STATE-ASH-3 or buffer an output signal. The implementor takes

INSTANCE: TWO-STATE-ASH into account the attributes of the input and output

FUNCTION: GRANT-ACK signals and selects the appropriate connector block in

RESET- INPUT: LogicIII, i.e. an inverter or a buffer .

(- (! NEGATED INTERFACE-BLOCK-l-REQ-IN) ..
(! NEGATED INTERFACE-BLOCK-l-GRANT» An example o~ the functlo~al descriptIon of a

SET- INPUT : connector block IS presented In the frame below.

(! ASSERTED INTERFACE-BLOCK-l-GRANT) U7;BG3IN .and INTERFACE-BLOCK--r1-GRANT-

RESET-OUTPUT: IN are the Input and the output of CONNECTOR-

(! NEGATED INTERFACE-BLOCK-l-GRANT-ACK) BLOCK-1 respectively.

SET-OUTPUT:

(! ASSERTED INTERFACE-BLOCK-l-GRANT-ACK) {{ CONNECT-BLOCK-l

}} INSTANCE: CONNECT-BLOCK

HAS-BLOCK+INV: INTERFACE-BLOCK-l

INPUT: U7-BG3IN4 Implementor. OUTPUT: INTERFACE-BLOCK-l-GRANT-IN }}

As discussed in the previous section, DAME gener-

ates a functional description of the desigl1 consisting The implied behavior ~n a co~nector blo~k is t~at

of semantic networks specifying the required interface tht' output follows the Input s~gna:I (poSSlb!y wIth

blocks in terms of instantiations of templates. These a delay). CONNECT-BLOCK-1 1S recognIzed by

instantiations correspond to combinational logic and 51NTERFACE-BLOCK-I-GRt\NT -IN is an signal internal

sequential machines. A further step is required sl1ch to the interface.

the translator as an inverter because internal signals TWO-STA TE-ASM
(e.g., INTERFACE-BLOCK-I-GRANT-IN) use pos-
itive logic while U7-BG3IN is an active-low signal as
it can be seen from the frame shown below. s

1WO o{{ U7-BG3IN r
IS-A: SIGNAL
HAS-SIGNAL+INV: VME-BUS
ACTIVE: LOW
TYPE: BINARY Figure 8: Implementation of the two-state ASM.
NAME: BG3IN
PIN-NUMBER: 24
I -0 : OUTPUT } } to drive the two-state ASM. The TWO block and

the event detectors are implemented as finite state
The translator takes this information and instan- machines.

ti~tes the c~rresponding inverter module in LogicIII The LogicIII module corresponding to the TWO
WIth values m = U7-BG3IN and out = INTERFACE- core is described using by the following LOGIC mod-

BLOCK-I-GRANT-IN: ule.

NET-MODULE inverter
(in: INPUT; out: OUTPUT;); LOGIC MODULE two state asm

BEGIN (se~-in, reset=in : INPUT; out: OUTPUT;);

il(in, out); VAR
END. St : ARRAY [0..0] of STATE;

stateO, statel : INTEGER;
LogicIII defines structural or NET modules and BEGIN

functional or LOGIC modules. NET modules are (* State Definition *)
used to describe circuits as interconnections of sim- stateO : = 0 ;
pIer modules. For example the inverter NET mod- statel := 1.
ule consists only of the OASIS inverter primitive il. (* Transition Table *)
LOGIC modules allow us to describe a circuit not CASE
by its topology but by its behavior. It is important St = stateO : BEGIN
to note that there is no one-to-one correspondance IF set in THEN
between the complexity of DAME's functional de- BEGIN St : = state 1. out: = 1. END
scription and the resulting OASIS representation. A ELSE' ,

Pascal-Iike language is used to express module behav- BEGIN St : = stateO; out: = 0; END
ior as shown in the next section. END .

,
4.2 Two-state ASM. St = state1 : BEGIN

IF reset-in THEN
Two-state asynchronous sequential machines were BEGIN St : = stateO; out: = 0; END
used in the specification of the interface block de- ELSE
scribed in section 3. Such machines have two inputs, BEGIN St : = state 1; out: = 1 ; END ;
set and reset, and one output, initially set to zero. END .

,The transition table was shown in section 3. The END (*CASE*) ;
rationale behind the use of the two-state ASM's as
design primitives lies in the fact that they are struc-
tured to formulate the onset and the negation of the State variables are used to describe the internal
various control signals that govern the protocol. stat.es of a finite state machine, and are implemented

The two-state ASM primitive block is expanded as au array of D fiip-fiops. In thi~ LogicIII description
in the implementation as a two-state core (TWO) of the TWO block t.here are two states corresponding
and two event detectors (D) at its inputs, as depicted to t.he two binary values of the state variable Bt. The
in Figure 8. Event detectors are the circuits which transition t.able is defined in the CASE statement.
condition and synchronize t.he signals which represent. Similar LOGIC modules exist for the event detectors
the sett.ing and resetting events which in turn are used and other sequential machines.

4.3 Translator. Finally each of these modules is substituted by a

, ...logic module in LogicIII. For example, the OASIS-
Although DAME s prImitives (e.go the two-state ma- TWO STA' TE-ASM 3 f . d .

th f 1...0 -fi -rame iS converte mto e o -

chrne descrIbed m section 3) are not bound to a par- 1 .0 t to t . f h LOGIC d 1 d . dowmg ills an ia ion o t e mo u e iscusse

ticular implementation diSCipline, at the implemen- . t .
4 2.m sec ion. .

tation stage it is necessary to select one discipline6.

Because Logic III supports a synchronous method- tYo-state-asm(
ology, we have identified the set of implementa- DETECTOR 3 OUTPUT

--,
tion primitives necessary in a synchronous realization AND DETECTOR 1 OUTPUT

---,(some of which were discussed in previous subsec- INTERFACE-BLOCK-1-GRANT-ACK) ;
tions) and have written the corresponding LogicIII
modules. The translator's responsibility is to convert OASIS t th L . III d . t .

daccep s e OgIC escrlp ion an pro-
t~e interf~e blocks instan~iate.d during th~ inte~ra- ceeds to carry out logic minimization, factoriza-

tion phase rnto the approprIate implementation prlm- tion/ decomposition, cell allocation, placement and
itives and their corresponding LogicIII modules (see routing, to produce a VLSI layout. Figure 9 shows

figure 7). the layout obtained from the interface depicted in

One block in DAME's interface description may Figure 6.
be expanded into several implementation primitives.
As discussed earlier, the TWO-STATE-ASM's are de- 5 Conclusions.
composed into input event detectors and core sequen-
tial blocks. For example, the TWO-STATE-ASM-3 Currently, DAME is an experimental system which
frame presented in section 3 is decomposed into the incorporates the models, rules and protocols pertain-
following implementation primitives: one two-state ing to arbitration and data transfer. DAME is imple-
core block, two inverters and two event detectors. mented in KNOWLEDGE CRAFTTM7. KNOWLEDGE

CRAFT was chosen because of its versatility in defin-
ing relations, its use of frames, and its user interface-

{{ OASIS-TWO-STATE-ASM-3 .0
We have used DAME to produce bus arbitratIon de-

INSTANCE: OASIS-TWO-STATE-ASM ...
signs for systems mcorporatmg a standard bus (e.g.

SET IN: OASIS-SINGLE-DETECTOR-3-OUTPUT V ME) d al d . h . d t 'IT h-an sever aisy-c arne mas ers. vve ave

RESET IN: OASIS-AND-DETECTOR-1-OUTPUT ..-
}} also produced memory subsystem designs for dlffer-

OUT: INTERFACE-BLOCK-1-GRANT-ACK ..

ent types of processors (rncludmg the MC680xO and
{{ Intel 80x86 families).OASIS-INVERTER-1

INSTANCE: OASIS-INVERTER DAME, as it has been developed, is a proof of
IN: INTERFACE-BLOCK-1-REQ-IN concept and an experimental vehicle for testing our
OUT: NOT-INTERFACE-BLOCK-1-REQ-IN }} ideas. Interfacing DAME's output to existing VLSI

CAD tools is of paramount importance to show that
{ { OASIS- INVERTER-2 DAME's designs can be easily fabricated and simu-

INSTANCE : OASIS- INVERTER lated. Up to this moment the OASIS environment has
IN: INTERF ACE-BLOCK -!-GRANT provided us with a stable environment through which
OUT: NOT-INTERFACE-BLOCK-1-GRANT }} we have been able to implement DAME's designs. In

addition, we are currently considering VHDL [161 as
{ { OASIS-SINGLE-DETECTOR-3 a means to enlarge the number of implementation en-

INSTANCE: OASIS-SINGLE-DETECTOR vironments DAME could use.
IN: INTERFACE-BLOCK-1-GRANT
OUT : OASIS-SINGLE-DETECTOR-3-OUTPUT } } References

{{ OASIS-AND-DETECTOR-1 [1] W. M. van Cleemput and H. Ofek, "Design
INSTANCE: OASIS-AND-DETECTOR automation for digital systems," Computer,
IN1: NOT-INTERFACE-BLOCK-1-REQ-IN pp. 114-122, Oct. 1984.

IN2: NOT-INTERFACE-BLOCK-1-GRANT (21 A. C. Parker. "AQtomated synthesis of digital
OUT: OASIS-AND-DETECTOR-1-OUTPUT }} systems," IEEE Design fj Test, pp. 75-81, Nov.

1984.6The most common choices are: synchronous, self-timed,
speed-independent, or asynchronous designs. i Knowlt"lge ('raft i" a tra,iemark of Carnegie (;roup Inc.

[3] N. J. Dimopoulos, K. F. Li, and E. G. Manning, [14] T.-A. Chu, "On the models for designing
"DAME: A rule based designer of microprocessor VLSI asynchronous digital systems," INTE-
based systems," in Proc. of the 2nd IntI. Conf. GRATION, the VLSI journal, no.4, pp. 99-113,
on Industrial & Engineering Applications of Ar- 1986.
tificial Intelligence and Expert Systems, (Tulla-
homa, Tennessee), pp. 486-492,1989. [15] Microelectronics Center of North Carolina, OA-

SIS Users' Reference Guide, 1989. Chapter 2.

[4] A. C. Parker, "Automated synthesis of digital [16] J R A t Ch " I I d I "th" ...rms rong, zp- eve mo e zng wz

systems, IEEE Deszgn & Test, pp. 75-81, Nov. VHDL E 1 1
d Cl .ff . p t .

Hall 19891984. .ng e\\oo I s. ren Ice, .

[5] R. Camposano, "From behavior to structure:
High-Ievel synthesis," IEEE Design 8 Test of
Computers, pp. 8-19, Oct. 1990.

[6] M. F. Smith and J. A. Bowen, "Knowledge and
experience-based systems for analysis and de-
sign of microprocessor applications," Micropro-
cessors and Microsystems, vol. 6, pp. 515-518,
Dec.1982.

[7] J. L. Kolodner and C. K. Riesbeck, Experi-
ence, Memory, and Reasoning. Hillsdale, NJ:
Lawrence Erlbaurn Assoc., Inc., 1986.

[8] W. P. Birmingham, A. P. Gupta, and D. P.
Siewiorek, "The Micon system for computer de-
sign," IEEE Micro, vol. 9, pp. 61-67, Oct. 1989.

[9] Y.-H. Kuo, L. Kung, C.-C. Tzeng, G.-H. Jeng,
and W.-K. Chia, "KMDS: An expert sys-
tem for integrated hardware/software design
of microprocessor-based digital systems," IEEE
Micro, vol. 11, pp. 32-92, Aug. 1991.

[10] M. Escalante, N. J. Dimopoulos, B. Huber, K. F.
Li, D. Li, and E. G. Manning, "Generic design
rules for the design of microprocessor based sys-
tems in DAME: Bus arbitration subsystem," in
Proc. of the 1991 IEEE Inti. Symp. on Circuit
and Systems, (Singapore), pp. 3166-3169.

[11] H. S. Stone, Microcomputer Interfacing. Read-
ing, Massachussetts: Addison- Wesley, 1982.

[12] D. del Corso, H. Kirmann, and J. D. Nicoud, Mi-
crocomputer buses and links. London: Acadelllic
Press, 1986.

{13] B. Huber, M. Escalante, D. Caughey, N. J. Di-
mopoulos, K. F. Li, D. Li, and E. G. Manning,
"Microprocessor components and signal behav-
ior modelling in DAME," in Proc. of the Cana-
dian Conference on Electrical and Computer E7!,-
gineering, pp. 19.4.1-19.4.4, Sept. 1990.

Figure 9: The VLSI layout of the designed interface

