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Abstract. k
In this paper, a VLSI design of a modulo-extractor based 2.1 Calculation of modulus (J

on the prin?iples of Residue A.rithmetic is disc~ssed. A method For k < n- 1, the number X and (X) k a.re written as
for computIng (X)m for specific values of m 18 analyzed and 13

the area-time complexity of the proposed structure is de. k-l
rived. The circuit has been implemented in 31' CMOS3DLM X = L:: (JiZi + (J1Zk + (JZk+l + ...+ (In-l-kzn-J

technology and simulation results have yielded a propagation i=O
delay of less than lOOns. k-l

(X)13k = (L:: (JiZi + {:J1Zk + {:JZk+l + ...(In-l-kZn-l])13k

1 Introduction i=O

k-l
The ra.pid a.dvancement in micro-electronics in recent years has = ~ (JiZi (1)

opened new a.venues in the field of Residue Number Systems (RNS). .=0

The RNS based processors which were so fa.r considered impra.ctical Therefore the number represented by the least significant k digits

are now being investiga.ted for implementa.tion in VLSI [6]. Residue of the representa.tion of X gives the modulus (X)13k.

N umber systems are cha.ra.cterized by a. high degree of pa.rallelis-

m, regula.rity a.nd modularity which can be exploited in VLSI to 2.2 Calculation of modulus fJk -1

build high speed digital circuits and RNS processors [7]-[9]. These

structures lend themselves to several a.pplica.tions in signal process- Before proceeding further, we sta.te the following rela.tions which

ing ( digital filters, FFT, DFT, convolution), in the ALU of digital are importa.nt in this a.nalysis.

computers, in high speed a.rithmetic units such as fast a.dders, mul- ((J1 = ((Jk -1 + 1)

tipliers, ra.ndom number genera.tors [10]-[13]. 13k-l 13k-l

Many real time systems which require high speed number crunch- = (((Jk- 1)13k-l + (1)13k-l)13k-l = 1 (2)

ing cannot a.fford to emula.te in softwa.re. By migra.ting the design. .
1 k hBy a. Slml ar to en we a.vefrom softwa.re to hardwa.re, system performance ca.n be enha.nced

provided the problem is via.ble for hardware implementa.tion. In ((Jn113k-l = ([(Jk]n)13k-l = (In)13k-l = 1 (3)

the context of VLSI, the special purpose processors/digital circuits

designed should ha.ve high throughput with reduced area.-time com- Let Yo denote the number represented by the k least significa.nt dig-

plexity. In this pa.per, the hardwa.re design of a. modulo-extractor its. Tha.t is yo = E~;;;J Zi{:Ji. Yl is denoted by the next k significant

based on RNS for computing the function X mod m for specific bits given by Yl = E~;;;J Zk+i{:Ji and so on. Then

values of m is discussed. The pa.per is organized as follows. Sec-

tion 2 introduces the basic definitions and terminology of residue (X)13k-l = (YO + {:Jkyl + {:J2ky2 + ...{:J(Po-l)kyPo-l)13k-l

arithmetic with respect to the a.pplica.tion a.t ha.nd. In section 3, = (yo + Yl + ...+ Y Po-l)13k-l ( 4)

the asymptotic a.rea.-time complexity of the proposed model is de-

rived. Finally, the VLSI implementa.tion of the modulo extractor where Po = rill. The number Po represents the number of k-bit

and conclusion are discussed in the end. numbers to be added in the first step of the algorithm. After the

...sum Z = E~Ol y; is determined in the first step, we a.pply the
2 ResIdue Arrt~metlc ..procedure recursively till the final result is less than {:Jk. The num-

Let X and m be any tV:O mtegers. wlth m ?: .0. Then we. can wnte ber of digits needed to represent Z is given by Z = rlog13 Zl. Since

X = mq + r where q IS the quotlent and r IS the rema.lnder such
Z r n l ak h b d th di . t t t . f z . .< I IJ t e upper oun on e gl represen a. IOn 0 IS

tha.t 0 ~ r < m. The rema-inder r, called the resIdue of X mod m -,

is designated by r = (X)m. The solution to (X)m is obta-ined given by Zub = r 10g13 ril + k 1.

from the rema-inder of the integer division X/m. However division The problem therefore reduces to evalua.ting the much simpler

is very expensive and does not lend itself to easy implementa.tion, (Z)13k-l due to a drastic reduction in its digit representa.tion. The

We are utilizing residue arithmetic to design a. modulo extra.ctor number of blocks PI required for addition in the second step is

with reduced area.-time complexity. upper bound by

The modulo extractor discussed in this paper is capable of com-
r no rnl kl 1puting the moduli of the forms (In,(Jn-l,(Jn+l. In a.ddition the mod- PI = ,.ugj!ltl+~1 (5)

uli of other composite numbers which can be expressed as a product, of prime factors can be determined through the a.pplica.tion of the The procedur~ IS repea.~ed till Pi IS eq~al to k + 1 ~hlch l~plles

Ch - R . d TL (CRT) I th " II . t . th that ( X )2 k 1 IS determmed at that pomt. A decodmg logic has

Inese emaln er ,.eorem .n e 10 owmg sec IOns, e -.

th b h . d th f 'd .th t ., th d I xt a.ctor to incorpora.ted in the final sta.ge in order to decIpher the case

eory e m e use 0 resl ue a.n me IC In e mo u o-e r k

r and its formula.tion a.re discussed. ((J -l)13k-l = 0.

1 Let N be a. number system defined in radix (J. Then a.ny number I r%l: The smallest integer that is greater than or equal to x

.X (N can be represented as a.n n-digit tuple Zn-l , Zn-2, ..., Zl, Zo

[- such tha.t X = E:';;;OI {:J'Zi.



A recurrence relation for the time complexity can be defined as such that GCD (Mi, mi) = 1. We can find numbers Ni such that
follo\vs. {NiMi)m; = I and

~ T(rIogrIl+kl)+t(rIl) ifn>k+l (X}.. = (r,N,M,+r2N2M2+r3N3M3+...+r.N.M.}.. (9}

T(n) = 2t(2)+c ifn=k+l (6) ( ) .
h.If we take the modulus of eqn. 9 with respect to ml t en

c If n < k + I
{{X)M)m, = {X)m, = {rlNIMI)m, (10)

where t( n) is the time taken to add n k- bit numbers. When n = k + 1,

the number of levels of reduction needed is two at the most. The The other terms in equation(9) will be zero as they contain ml.
term c represents the constant time needed for decoding the zero Since {NiMi)m; = 1, we get {X)m, = {rl)m,. From the above
condition given by {{3k -1)13.-1 = 0. relation, it can be concluded that {X)m; = ri. By determining the

We can summarize the above discussion to compute {X)13.-1 as coefficients Ni and Mi, {X)M can be computed in terms of moduli

follows. mi. When the miS are not mutually prime, the above procedure
can be used to determine X mod M rather than X mod M and M

~rocedure: 2.2.1 {X)13.-1 can be determined through the follow- is represented by the least common multiple of ml, m2, ...mk.

mg procedure; The inherent disadvantage of mapping the CRT directly in hard-

1. Represent the n-digit number as a weighted sum of powers of ware is the additional overhead incurred in the form of multipliers,
{3k as per eqn.(4'). decoders and residue converters. To circumvent this problem, a

, residue mapping function (RMF) given by F(x) : P -+ Q is defined

e. Compute the sum of the rIl k-digit factors; as follows.

3. Evaluate the modulus of the resultant sum represented by P = {The set of all residue classes generated by {X) M }

rlo~rIl+k1 digitswithrespectto{3k-l. Q = {nl,n2,...,nrlnl,n2,...,nkisak-tuplestringand

I .. h . 1 dl d dbl ni=xmodmi,Vx:O<x<M-l,i=I...k, n situations t at warrant a simp er, mo u ar an expan a e --

structure from the design point of view, a variant of the recursive ml.m2, ...mk = M}

approach termed as the bit-sliced method can be used. In this F = {(x,nl,n2,...,nk) I x£P,nl,n2,...,nk £ Q} (11)

method, the bit-slice s is chosen in such a manner that s divides
n and the given number X can be partitioned into ~ blocks such It can be shown that the.RMF is hom~morphically related to the
that the following relation is valid. CRT. For the sake of brevity. the proof IS not presented here. From

the implementation and hardware complexity point of view, the
{X)m = {Yo :1: {3'Yl :1: ...:1: {3'<r~l-l)yr"-l)m RMF is a better candidate than eqn.(9) since the required boolean

= {{YO)m :1: {Yl)m :1: ...:i: {1'1 " )~)m (7) logic for ~omputing the modu~us of ~ can ~e derived easily from
r. 1 the mappIng tables of the resIdues of Its prIme factors. The need

The residues of each of the!!. sub-blocks are evaluated using the for multipliers and other residue decoders can therefore be avoided
recursive approach outlined :arlier and the outputs are passed to in the RMF .

a cluster of residue adders. As shown in Fig. 1, the residues of
the s-bit sub-blocks form the input to the residue adders which are 3 Area-time complexity
arranged as a tree. Details on the structure of the residue adder
is explained in the later section. This method is practical in cases In this section, the modulo-extractor is evaluated as an asymptotic
where m is a small number. VLSI design, that is the order of complexity in terms of silicon

area A and the response time T of the circuit. Expressions are
2.3 Calculation of modulus {3k + 1 derived for both the recursive and bit-sliced methods. To analyze

k k the area-time complexity of the circuit, we consider the cases when
Making use of the properties that -I = {3 mod{3 + 1 and m = 2k -1, 2A: + 1.
-In = {3nk mod {3k + I , we get

{X)13.+1 = {yo + {3kyl + {32ky2 + ...{3Pok)13.+1 3.! Recursive Method

= {YO-Yl+Y2-Y3+...:i:YPo)13.+1 (8) 3.1.1 Area

Evaluation of {X)13"+1 is effectively reduced to addition and The recurrence relation for the recursive method given by eqn.(6)
subtraction and the recursive method can be used to determine the suggests that maximum complexity occurs when the addition of

result. {rIl) k-bit numbers is performed in the first stage of the algorithm.
Having explained the principles for evaluating the modulus for The subsequent steps are, by and large, less involved since the

a number system defined in radix-{3, we consider the special case of representative size of the number is reduced logarithmically given
the binary system for which {3 = 2 which is a tenable proposition for by eqn.(5). It can be stated that the area and time complexity of
digital implementation. In the following sections, the application the circuit is therefore dominated by the addition in the first step.
of the Chinese Remainder Theorem to the X mod m problem and Assuming that each k- bit adder has an area 0( k log k) [2], the
the theory of Relational Calculus will be elucidated. number of adders needed in the first step of the algorithm is rIl.

The area complexity of the circuit is given by

2.4 Calculation of modulus of composite numbers
r 1 r flolrtl+kl 1AI = klogk I + klogk ~ +

The CRT provides an elegant method to evaluate {X)M when M
is a composite number [3,4]. IfMcan be expressed as a product +O(klogkloglogr I1) {12)
of mutually prime2 numbers ml, m2, ..., mk for which the mod-

r 1 r 1uli are known, then X mod M can be generated in terms of the ~ klogk I + logklog I

prime ~umbers. L~t M = n7=1 mi an~ {X)m; = ri where ri is = 0( r n
1 ) if n > k (13)

the residue of X wIth respect to mi. SInce the miS are mutually 1"

prime, we can write Mi = M/ml, M2 = M/m2,. .., Mk = M/mk

2Two nnmbers x,y are laid to be mutually prime if x and y have no common
divisors. GOD (x, y) = 1



3.1.2 Time We get the required solution by adding the carry bit to the least

.significant k-bits after the first addition is performed. In effect,
If the adders are arranged In the form of a tree the number of t 1 1 f dd .t' ." d Th .d dd (RA) . " .." wo eve s o a lion IS per/orme .e resl ue a er IS

steps to add r r 1 k-blt numbers IS logr r 1. If each k-bit adder has a d f t add th fi t " add . th t k b.tK K compose o wo ers, e rs one lor Ing e wo I
time complexity O(log k) [2], then the total time complexity of the numbers and the second for absorbin

g the resultant carry if any..t. .b ' ,CIrCUI IS given y to the previous sum. The adders can be constructed to have a area

Ti = logklo r " 1 + logklo r [locr~l+kl 1 + and time ~omp~exi~y of O(klogk) and.~(logk) respectively \vhile9 I 9 ~ the decodIng CIrcUIt for the zero COndItion can be taken to have

+0 (logkloglog r r 1) (14) constant delay. A similar structure is used for the case m = 2k + 1
but with subtractors instead of adders.

When n > k, we have The area of the circuit using the bit-sliced approach is composed
of two parts, namely, the area occupied by the bit-sliced stages and

Ti = O (log r r 1) = O(po) (15) the residue adder tree. Since there are'; mod m blocks, the area

for the bit-sliced stage is given by
Hence the area-time complexity for the structure is obtained by

combining eqns. (13) and (15) to get At = (;) [klogk r f 1 + klogk r ~ 1 +

ATI = O(r r llog r r 1) = O(Pologpo) (16) +O(klogkloglog r f 1)] (18)

where Po = rIl => At < ; rklogk r f 1] < 1'klogk; (~ + 1 )

3.2 Bit-sliced Method => At < 1'klogk (i + ;) < 1'klogk (r r 1 + ;)

3.2.1 Area (r 1 n )=> At < ° I + -(19)
As was explained earlier, the crux of the bit-sliced method lies in 8
evaluating mod m for each bit-slice of length of 8 using the recur- and l' is a constant.
sive method and the output is processed through the tree of residue The area for the residue adder tree is given by
adders as given in Fig.l. The residue adders are improvised ver-
sions of conventional adders in that they accept the residues from Ar = ( ~ -1) k log k (20)
the previous blocks and compute the resultant modulus. In other 8

n-..'inp"' When n > k, the total area (As) of the bit-sliced approach is
L ~ ~ rill ~ I I I j obtained from eqns.(19) and (20) and on simplification we get

r.!!-l Rcsid~ As = ° (rr1+~ ) =0(MAX(Po,N» (21)
1-.-1 Block. 8

~ ... I:fJ CfJ l:f!1:fJ..t ~... ~ ' ~ .. ~ ...where N = ';. Thus the areaofthebit-slicedapproach is dominated
by either po or N which ever IS greater of the two.

3.2.2 Time

The time complexity for the bit-sliced approach is dictated by the
delay of the 8-bit modulo blocks and the delay of the residue adder
tree. The delay of the s-bit blocks, Tt follows eqn.(14) except that
n is substituted by s. That is

T. = logklog r f 1 +logklog r ~ 1 +

+O(logkloglogr f 1) (22)

The residue adder tree has a delay given by
n

Tr = logklog- (23)
8

Figure 1: Hierarchical diagram of bit-sliced modulo extractor Thus the time complexity, Ts, of the bit-sliced approach is given

by combining eqns.(22) and (23) to get
words, if (XI)m and (X2)m are known, then the residue adder can
determine ((XJm + (X2)m)m. For example, when m = 2k- 1, Ts = logklog r r 1 + logklog r ~ 1
the r~idue adder determines the result according to the following ° (10 k 10 10 r t 1) (24)COnditions. + 9 g 9 I

k ...When n > k and for small 8, we have1. U (XJ2.-1 + (X2)2.-1 < 2 -1, then the solutIon IS gIven
by the result (X1)2.-1 + (X2)2.-1. Ts = ° (Iog r r 1) (25)

2. u (X1)2.-1 + (X2)2.-1 = 2k -1, then we have a string of k The above equation suggests that the time complexity of both
1 's and the result is decoded to be zero since (2k -1)2.-1 = 0. methods considered in this analysis are comparable. U we take

into account the second order terms, the bit-sliced approach will
3. U (X1)2.-1 + (X2)2.-1 > 2k -1, then the addition will result be faster than the normal recursive method depending on the ratio

in a k + 1 bit number, then n/8,

«X ) + (X » - (2 " + «X ) + (X ) ) ) The area-time complexity of the bit-sliced approach is given by1 2'-1 2 2'-1 -1 2'-1 2 2'-1 2' 2'-1
= 1+«X,)2'-I+(X2)2'-1)2' (17) ATB = °(rI110grI1,;logrI1)

= O(MAX(Pologpo,NlogPo» (26)



mentation of RNS. The technological advantages of VLSI has made
Table 1: Chip statistics of the implemented 16-bit modulo extractor RNS a.viable ~ropositi~n in terms of speed, cost, power dissipation

and Chip density. In thIs pa.per, a structure for the VLSI design of
16-bit Modulo Extractor (X)m o~eration built using residue arithmetic has been discussed.

Technology 3 NTE CMOS3DLM ExpressIons .ror the asymptotic area-time complexity of the model
Area. of the chip ~545.1X4545.1 1S2m has be~n derIved. Technology scaling should provide a. qua.ntum in-

Area. of the core 3681.1x3681.1 1S2m ~rease In performance a.nd throughput. The circuit was simula.ted
No. of active pins 38 In the 1.2 IS CMOS technology and it yielded a. worst case propa.ga.-
No. of sta.nda.rd cells 1392 tion dela.y of less tha.n 20 ns. The a.bove modulo-extra.ctor has been
No. of tra.nsistors 5156 used in the design of of a. 16-bit mixed congruential ra.ndom num-
Propa.ga.tion dela.y (worst case) 95ns ber genera.tor. It also constitutes a.n integral part the Hypercycle

Area.*time 1.2873e09 nslS2m routing engine [14] which has been implemented in 1.21S CMOS4S

technology.
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Figure 2: VLSI layout of implemented l6-bit modulo extractor

(3IJ CMOS3DLM)

5 Discussion

The proposed structure has significant advantages in terms of speed
and area over the model proposed in (7). It has been claimed that
the VLSI structure for computing ..y mod m has a response time of
less than 200 ns for 32-bit numbers. In our model, the propagation
delay for 16-bit operands is less than lOOns for the 3Jl CMOS3DLM

technology. It has been shown that the increase in time complexity
for the bit sliced method is proportional to log2 po as the operand

length increases. The implemented model is totally devoid of any
multipliers and uses only high speed adders. This accounts for a
drastic reduction in silicon real estate and propagation delay. The
area-time complexity of the circuit is shown to be O(po logpo). Be-
sides the structure proposed is amenable to pipeline implementa-
tion. The demerits of our model is that it cannot be used for prime
numbers \vhich are not of the form 2k-l or 2k+l and the mapping of
CRT through RMF for higher order moduli could be complicated.

6 Conclusion

The regular, modular structure of residue arithmetic coupled with
the silicon revolution has given a vibrant dimension to the imple-
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