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Abstract t sys ems conslstmg of neurons with bmary or graded
The asymptotic behavior of Neural Networks mod- response. Properties such as absolute stability were
eled as a set of nonlinear differential equations of the proven for networks having symmetric interconnec-
form T X + X = W .f(X) + b where X is the neural tion .matrices. Cohen and Grossberg [3] have also
membrane potential vector, W is the net\vork con- studied the absolute stability of global pattern for-
nectivity matrix, and f(X) is the nonlinearity (an mati.o~ in competitive ne';l~al networks. Again a pre-
essentially sigmoid function), has been studied in [4]. requISite of absol~te stabilIty for such systems is the

.This behavior depends solely on the topology of symmetry of the Interconnection matrix. In [5,4] the
the network.as expressed by the connectivity matrix beha~ior of a generalized class of neural networks was
W. examIned. Such networks are composed of distinct

In this \vork, we present some results of lIebbian classes of neurons and the manner that these classes
Learning by neural networks exhibiting asymptotic interconnect provides for stability.

behavior as stipulated by their connectivity matrices
W.We also present the simulator that has been devel- 2 Description of the Network

oped specifically for this type of neural net\vorks as W ..
II t . al 1 e are Interested m neural networks composed of k

we as yplc examp es. classes of neurons, each class having ni; i = 1, 2, ...k
1 I t d t .neurons and adhering to the microscopic and macro-

nrouclon . t I .
SCOplC connec Ivlty pnnclp es as discussed in [6].

Neural Networks have been studied for several .These principles essentially state that a neural net-
decades now, with the recent flurry of activity cor- work is composed of a distinct and limited num-
responding to the ability of constructing hardware ber of c~asses of s~milar neurons, and that neurons
analogs capable of mimicking aspects of the behavior fro~ a ~Iven class Interconnect with neurons of other
of the central nervous system. Thus Mead [12] has classes.1n a predeter~ned way that is invariant across
constructed a 48X48 electronic analog of the retina a species (macroscopic connectivity principle). The
that is capable of calculating time derivatives and strength of these interconnections vary from member
hence model cells that look for motion. Psaltis et to member, and they are subject to learning. Neurons
al [14], have implemented learning networks using con?ect to a small percen.tage of neighboring neurons,
holograms. Newcomb et al [11] have produced cir- subject to the macr~coplc connectivity principle (mi-

cuits th.~t capture the temporal and spatial activity croscopic connectivity principle).
of multlmput neural elements, while Moopenn et al Such neural networks are described by systems of
[15] have constructed electronic analogs of associative differential equations of the form
memory. .TX +X = W .f(X)+b

Several studies have been undertaken in the past where
years ~t~empting to analyze the behavior of systems X = [X IX 2. ..Xt]T
compnsmg a large number of interelated and inter-
acting elementary neurons. Thus Morishita et al[16] .= [XIX2 ...Xn"Xn,+l,. ..Xn,+n2' ...XN-n.-,+l. ..XN]T
have studied networks of mutually inhibiting neurons. IS the neural membrane potential vector ,

lIopfield [9,10] has studied the collective properties of -~
N -L.., ni
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[ Wll Wl2 W1k ] t!le uniqu~ness of solutions for the system of differen-
W = : tlal equatIons.

.W As it turns out, neural structures found in the cen-
Wkl Wk2 ..kk. tral nervous system of several species can be modelled

is the network cOnnectIvIty matrIX. ..effectively by networks as described above. One of
f(~) belong~ to the class of the neuromlme or actl- the goals of our analysis is to establish fundamental
vatlon f~nctlons. .properties of such structures that contribute to the
.T = dlag [Ti] .I = 1,2, ...~ ..asymptotic behavior. We were able to define a gen-

IS the membrane tIme constant, a positIve matrIX and eral class of such networks which we denote by p and
finally b is a constant vector. which exhibit asymptotic behavior. Neural networks

Of particular importance in formulating the system modeling the cerebellum is but one element of this
of differential equations are the connectivity matrix class.
Wand the set of neuromime functions. In [4] we have proven the following theorem that

The connectivity matrix W, reflects the topology establishes this class of Neural Networks exhibiting
of the neural network m question. Each one of the asymptotic behavior .
submatrices Wij may be either positive, negati~e or Theorem The system
z~ro ~ep~n.ding on whethe~ neurons from class J ex- X + TX = Wf(X} + K
cite, Inh~bit or ~ave no dIrect effect whatsoever on with f(x) E N. and where the connectivity matrix
neurons In class I. ..W has all its positive entries located above the main

As an example to clarIfy the pOInt, take the case diagonal belongs to class p.
of networks topologically similar to the cerebellum
[712]. Such networks are comprised of four neural H bb . L . I , d . P k 3 e Ian earnmgclasses Nl' N2' N3 and N4 correspon Ing to ur -

inje, basket, Golgi and granule cells. Nl' N2 and N3 Hebbian Learning was postulated by D. 0. Hebb [13]
are classes of il:lhibitory neurons while N4 is a class who observed th~t changes happen to natural net-
of excitatory ones. works as they learn, and that these changes depend

The connectivity matrix of such a network can be on the firing patterns of the neurons involved. The
easily established from the organization of the cere- Hebb postulate is "When the axon of cell A is near
bellum [7] and has the form enough to excite a cell B and repeatedly or persis-[ 0 Wl2 0 Wl4 ] tently takes part in firing it, some growth process

W -0 0 0 W24 takes place in one or both cells such that A's effi-
-0 0 0 W34 ciency as one of the cells firing B increases" .One

0 0 W 43 0 can write the following general rule of modifying the
with Wl2, W43 < 0 and W14, W24, W34 > 0. synaptic weights in response to the activity patterns

This reflects the fact that, for example, the basket developing in the network.
cells inhibit the Purkinje cells (W12 < 0) and that
there is no connection between basket and Golgi cells ~ = K .f(xj} .[-E .Wij + h(xi)]
(W23 = W32 = 0). at

The neuromime or activation functions, on the where K and E are constants, Xi is the state of neuron
other hand, describe the frequency behavior of the i f(x .) is the valuation function for neuron j (the
spike train on the axon as a function of the hillok ;ffere~t neuron) and h(xi) is the suprathreshold value
potential. Generally speaking, spikes appear on for neuron i (the efferent neuron) and is defined thus
the axon once the hillok potential exceeds a certain
threshold [8], and their frequency increases with the { 0 if Xi < tipotential. The neuromime functions, as defined be- h(xi) = Xi -ti otherwise

low incorporate these properties, namely they are
positive non-decreasing functions with a threshold. and ti is the threshold for neuron i. Observe that
Definition 1. The class N (the neuromime functions) functions f(Xi) and h(xi) are different. This is ex-
is defined as follows plained if one observes that at the synapse, the only

N = {flf : RN -Rtt ' f continuous, f monotoni- information from the afferent neuron is its firing fre-
cally non-decreasing, satisfying a Lipschitz condition quency which is given by the valuation function f(Xi),
and 3 O E RN such that f(O) = 0}. while the membrane potential is the only information

The postulation of Lipschitzian behavior for the available from the efferent neuron, and this is given
neuromime functions, according to Def. 1, guarantees by the suprathreshold function h(xi).



The above equation describes accurately the learn- One input feeds the class of the excitatory neurons
ing behavior in case of excitatory afferent neurons. and carries patterns from the training set. The other
Indeed, if f(Xi) = 0, then feeds the class of the inhibitory neurons and is used

as an association input so that the response patterns
~ = 0 correspond with the desired output. The topology of

at the network used is given in Fig. 1. \vhile its connec-

and there is no change in the weight Wiji presum- tivity matrix is as follows:

ably any activity in the efferent neuron does not, at [0 0 ]this moment, depend on the afferent neuron. On the W = W W i W12 > 0, W22 < 0
other hand if f(Xi) 10, then depending on whether 12 22

the efferent neuron is active or not, one obtains two As it can be seen, such a network conforms with The-
different behaviors for the weight. Indeed, if the ef- orem 1. and therefore exhibits asymptotic behavior .
ferent neuron is not active, i.e. h(Xi) = 0 then Also because the learning rules, introduces earlier,

preserve the polarity of the weights, it is guaranteed
~ = -KE .f(xj) .Wij tha~ the trained network will exhibit asymptotic be-

at havlor .

with a solution that tends to zero with time. This Figures 2. gives the training sets used. Figures
agrees with the fact that if the efferent neuron is not 3, 4,.and.5 give the r~P?nse of the ~rained network
active while the afferent is then the influence of the to stlmuh from the trammg class of mputs ( class I),
afferent to the efferent sho~ld diminish. On the other while the association class of inputs ( class J) is silent.
hand if the efferent is firing, i.e. h(Xi) > 0, then As it can be see~, we have used an X:OR problem,

where when both mput patterns are actIve the output
~ h x. is silenced, while ~it~er single ~attern.elici~s the same

at -K f(xJ) [ E WaJ + ( a)] response. The trammg was quIte efficIent, It took 100

iterations for the weights to stabilize, and a run time
and the weIght tends to mcrease wIth tIme towards of less than 90 seconds on a SUN 3/60 machine.
I{ .f(xj) .h(xi)in accordance with the Hebbian pos-
tulate. 4 Simulator

The discussion above applies well to the case where
the afferent neuron is an excitatory one (Wij > 0). In As we mentioned earlier, we have constructed a simu-
case where the afferent neuron is an inhibitory one, lator. that provides us with a useful tool for studying
the weight adaptation equation is modified to con- the effect of the structure on the behavior of neural
form with the learning where the magnitude of the networks, and allows us to experiment with learn-
weight decreses if the efferent neuron is firing while ing. The simulator is written in FORTRAN with an
it increases (i.e. the synapse becomes stronger) if it X-windows user friendly interface that can be used
is is silent. to define the topology of the net\vork, define the in-

put patterns run and graphically observe the results
~ = K .f(xj ) .[-E .Wij + h-(Xi)] of both the training and the trained network. Our

at simulator runs currently on a SUN environment, but

\V here I{ and E are constants Xi is the state of neuron we are in the process of porting it to an IBM (3090
i I f( x j ) is the valuation fu~ction for neuron j ( the / R~) environment. Figure 6 gives a sample of the
afferent neuron) and h-(Xi) is the subthreshold value user mterface.

for neuron i (the efferent neuron) and is defined thus
5 Discussion

{ 0 if x. > t.h-(Xi) = h ~ a In this work, we presented some recent results of our

x. -t. ot erwlse . d I .r I fa a attempts to mtro uce earnIng lor a c ass o neu-

We have incorporated the above Hebbian Learning ral networks that has been proven to be asymptot-
in our simulator, discussed in more detail in Section ically stable, and can be used to model several ex-
4 below, and we have trained successfully some sim- isting structures in the Central Nervous System (e.g.
pIe networks. Specifically, the network that we used cerebellum). Specifically, we discussed the structure
comprises two classes of neurons, one is excitatory of this class of asymptotically behaving neural net-
and the other inhibitory. The excitatory class feeds works, introduced a hebbian learning rule that can
the inhibitory one while the neurons in the inhibitory be used to modify both the inhibitory and excitatory
class have lateral connections. Two inputs are used. synapses, and used this rule to train a simple network
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Figure 5. The response of the trained network to inputs on both the left and right hand side of input class L Input
class J is silent. Observe the eventual silencing of the output class.
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Figure 6. (a) XEditNet: editing window depicting topology. and save menu.
(b) XRunNet: Input signal defmition window.


