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A Study of the Asymptotic Behavior of

N eural N etworks

NIKITAS J. DIMOPOULOS, MEMBER, IEEE

Abstract -The stability properties of neural networks modeled as a set was studied. In this work, we examine the stability proper-
of nonline.ar differential equations of the. form TX + X.= w. 1( X) + b ties of a generalized class of neural networks that contains
where X IS the neural membrane potential vector, W IS the network

t rk th t topolooicall y similar to the cerebellum. ... d 1( X) . th I .. ty ( ti.all .. d ne wo s a are 0-connectivity matrix, an IS e non mean an essen y slgmol S h k ed f d..
1 ffunction), are studied. UC networ s are compos o ~stinct c asses o ~eurons

This paper establishes topologies of neural networks that exhibit asymp- and the manner that these classes mterconnect proVIdes for
totic behavior. This behavior depends solely on the topology of the stability.
network. Moreover, the connectivity matrix W need not be symmetric.

Networks topologically similar to the cerebellum fall in this category and II. DESCRIPTION OF THE NETWORK
exhibit asymptotic behavior. ..

Simulated behavior of typical neural networks are also be presented. We are mterested m neural networks composed of k

classes of nyUrons, each class having ni; i=1,2,...,k

neurons and adhering to the microscopic and macroscopic
I. INTRODUCTION connectivity principles as discussed in [8]. The principles

N EURAL NETWORKS have been studied for several essentially state that a neural network is composed of a
decades now, with the recent flury of activity corre- distinct and limited number of classes of similar neurons,

sponding to the ability of constructing hardware analogs and that neurons from a given class interconnect with
capable of mimicking aspects of the behavior of the central neurons of other classes in a predetermined way that is
nervous system. Thus Mead [16] has constructed a 48 x 48 invariant across a species (macroscopic connectivity princi-
electronic analog of the retina that is capable of calculat- pIe). The strength of these interconnections vary from
ing time derivatives and hence model cells that look for member to member, and they are subject to learning.
motion. Psaltis et al. [19], [20], have implemented learning Neurons connect to a small percentage of neighboring
networks using holograms. Newcomb et al. [15], [14] have neurons, subject to the macroscopic connectivity principle
produced circuits that capture the temporal and spatial (microscopic connectivity principle).
activity of multi-input neural elements, while Moopenn Such neural networks are described by systems of differ-
et al. [22], [17] have constructed electronic analogs of ential equations of the form:
associative memory. TX+ X= W.f(X) + b (21)

Several studies have been undertaken in the past years .

attempting to analyze the behavior of systems comprising where
a large number of interrelated and interacting elementary T
neurons. Thus Morishita et al. [18], [23] have studied X = [ XI X2 ...Xk ]

networks of mutually inhibiting neurons. Hopfield [11]-[13] [has studied the collective properties of systems consisting = XIX2. ..Xnl' Xnl +1' ...Xnl +n2'

of neurons with binary or graded response. Properties such. ..x. ..x ] T
N-nk 1+1' , Nas absolute stability were proven for networks having -

symmetric interconnection matrices. Cohen and Grossberg (2.2)
[5] have also studied the absolute stability of global pattern . h al b .

1IS t e neur mem rane potentia vector
formation m competitive neural networks. AgaIn a prereq- ,

uisite of absolute stability for such systems is the symme- k
try of the interconnection matrix. In [6], [7], the stability of N= L ni (2.3)
neural networks topologically similar to the cerebellum i -I

is the total number of neurons in the network
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f(X) belongs to the class of the neuromime functions to Definition 3.2: The class K (the neuromime functions) is

be defined in Section III (c.f. Definition 3.2): defined as follows:

T= diag[ 'Ti]' i =1,2,. .., N (2.5) K = { III: RN-+ Rkj, I continuous, I monotonically
non-decreasing, satisfying a Lipschitz condition

IS the membrane tIme constant, a poSItIve matnx and and 3() E RN such that I«()) = 0}.
finally b is a constant vector.

.Of pa~ticular i~portance in formulating. t?e syste~ of The postulation of Lipschitzian behavior for the neu-
dIfferentIal equatIOns ~2.1), are .the connectIVity matnx W romime functions, according to Definition 3.2, guarantees
and the set of neurOffilme functIons. the uniqueness of solutions for the system of differential

The connecti~ty mat~ W, reflects the topology of :he equations (2.1).
neural network m questIon. Each one of the submatnces Definition 3.3: Given a vector in RN, X =
W;j may be either positive, negative or zero depending on [XI' X2'. ..,XN]T, we define R~3IXI = [lxJ, Ix21,. .., Ixnl]T,
whether neurons from class j excite, inhibit or have no as the vector absolute value of the vector X.
direct effect whatsoever on neurons in class i. Definition 3.4: Given the vector polynomial:

As an example to clarify the point, take the case of k
networks topologically similar to the cerebellum [9], [1]-[3]. P ( t ) = ~ a.ti-1. a E RN t E R

.£... , , , , +

Such networks are compnsed of four neural classes K1' K2, i-l
K 3 and K 4 corresponding to Purkiuje, basket, Golgi and. .

1 11 u u d u 1 f .nhib .t we defme the vector absolute value of the polynoffilal P(t)
granu e ce s. .'1' .'2' an .'3 are c asses o I lOry
neurons while K 4 is a class of excitatory ones. as

The connectivity matrix of such a network can be easily IP( ) I = t I .lti-1
established from the organization of the cerebellum [9] and t i -1 a, .

has the form [ ] Definition 3.5: A function RN 3 I(t, X) belongs to class
0 W12 0 W14 "' if for every fixed t E R and all X, Y E RN such that

0 0 0 W24
W= 0 0 0 W34 (2.6) Xj~Yj'Xj=Yj, j=1,2,...,N;i*j

0 0 W43 0 the following inequality is satisfied:

withW12' W43<OandW14' W24' W34>0.This reflects the fi(t,X)~fi(t,Y) "Ui=1,2,...,N.
fact that, for example, the basket cells inhibit the Purkiuje .
cells (~ < 0) and that there is no connection between Definition 3.6: We will say that a system X= F(X, t)
basket ~d Golgi cells ( W = W = 0). exhibits a poly-exponential behavior or equivalently be-

The neuromime functi;~s, o~\he other hand, describe longs to class ';) iff its solutions X( t; Xo, to) are bounded
the frequency behavior of the spike train on the axon as a in the following way:

function of the hillock potential. <:,enerally spe~king, spikes K + e-A.,p ( t ) ~ X( to X t ) ~ e-A.tp*( t ) + K*
appear on the axon once the hillock potential exceeds a * * "" , 0' °

certain threshold [10], and their frequency increases with where A , A* are positive diagonal matrices, p *, P* vector
the .potenti~. The neuromime func~ions, as defined in polynon:als, K*, K* constant vectors, and t E R +.
SectIon III mcorporate these propertIes, namely they are Definition 3.7: We define the class K* of the separable
positive non-decreasing functions with a threshold. neuromime functions as

In the following, we shall examine the stability proper-
ties of neural networks described by (2.1). As it turns out, K* = { III E K and
neural structures, such as the cerebellum, found in the T
central nervous system of several species, can be modelled I(X) = [f1(X1)' f2(X2) ...fN(xN )] } .

effectively by such networks. One of the goals of our. h h
analysis is to establish fundamental properties of such Lemma 3.1: For every functIon g( t ) suc t at

structures that contribute to the asymptotic behavior. We e-A.tp *( t ) + K* ~ g( t ) ~ e-A.tp*( t) + K* (3.1.1)
were able to define a general class of such networks which
we denote by ';) and which exhibit asymptotic behavior. then

Neural networks modeling the cerebellum is but one ele- e-A.t!:(t)+IS~ I(g(t)] ~e-A.tp(t)+K (3.1.2)
ment of this class.

where A*, A* are positive diagonal matrices p*(t), P*(t),
III. NEURAL NETWORKS EXHIBITING !:(t), P(t) vector polynomials K*, K*, IS, K constant vec-

ASYMPTOTiC BEHAVIOR tors and f E K.
Definition 3.1: For every (X, Y) E RN X RN with Xi ~ Yi Proof Certainly there exists an M E RN such that

we say that vector X is less than or equal to vector Y and
( )write X ~ Y. g(t) ~ M "Ut E R+ 3.1.3
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Then for every function f E K we have Case ii); If there exist some i E [1,. .., N] such that

HX + K if X ~ M } k; ~ 0;, then we can write for (3.2.2)--, .~ f(X)

f(X), OthefWlse- -O~I(t)~e-AI~'eASf{e-BSIP(s)I+K*)ds (3.2.6)

{ HX+K, ifX~M (314)~ ...k if k ~ 0
f(X), otherwIse k *= { i' ir i. K *= [k * k* ...k* ] T

; 0 . f k 0 ' I , 2, , N .
with !1, H~ 0. i' I i < i

Then from (3.1.1), (3.1.3), and (3.1.4), we have (3.2.7)

!1 [ e-A.tp*( t ) + K*] + K ~ f [g( t ) ] Then for every DKo that includes 0 there exists a To ~ 0 so

~H[e-AOtp*(t)+K*]+K (3.1.5) that

or e-BtIP(t)l+ K* E DKo ~t ~ To.

e-A.lf(t) + IS ~ f [g(t)] ~ e-A.tp(t) + K (3.1.6) Accordingly, the integral in (3.2.6) can be broken down as
--follows:where P(t) = HP*(t), P(t) = HP*(t)

-IS ~ !1K*+ K and K = HK* + K. Q.E.D. I(t) ~ e-At[ 1 Toe Asf{ e-BSIP(s )1+ K*) ds

Lemma 3.2; For every function f E K, every vector o

polynomial P(t), vector K, and all positive diagon~ ma- fI As -Bs *
]tri~~ A ~d B there.exi~t a vector polyIlomial P(t), a +JToe 1{e IP(s)I+K )ds .(3.2.8)

pOSltlve diagonal matnx A, and a vector K such that the
following is true: The first integral in (3.2.8) is bounded by a non-negative

vector Po, and taking into account (3.2.1) we have for
0 ~ e-At [eAsf [ e-Bsp(s ) + K] ds = I(t) ~ e-Atp(t) + K. (3.2.8)

o

Proof' For a given 0 E RN: I(t) ~ e-At
[ ~ + fleAs{ H. { e-BSIP(s )1+ K*) + A} ds ](1) Definition dl 3.2.1: R~9= {XIXERN and X<O}; o JTo

(2) Definition dI3.2.2: R~9 = { XIX E RN and X~ 0}; (3.2.9)

(3) Definition dl 3.2.3: For a K E R~9 we symbolize by
DK a connected bounded subset of R~9 such that K E DK. or

Then ~D9 ~ R~9' ~f E K, there exists an H> 0 and a ( -AlA ) -1 -Bt- ( )AERNsuch that I t)~e Po+H.(A-B e p t

{ 0 ifXERN +A-1(H.K*+A) (3.2.10)

O~f{X)~ HX+A ifXED9-9 (3.2.1) where

f( X) otherwise.
f e(A-B)SIP(s )Ids = {A -B)-le(A-B)Sp{s ).

We have for t ~ 0

1t p(s) a vector polynomial in s and
O~I{t)~e-At eAsf{e-BSIP(s)I+K)ds. (3.2.2)

o Po=lpo-H.{A-B)-le(A-B)ToP{To)

We recognize now two cases.
Case i): If K < 0 then there exists a to > 0 such that -A -leATo{H.K* + A) I. {3.2.11)

e-BtIP{t)l+ K E R~9 ~t ~ to. {3.2.3) Choosing now .8 = min[A, B] with the meaning

Therefore, the integral in (3.2.2) can be broken down as A -.
[ ]follows: B;j- mm Aij' B;j (3.2.12)

I{t) ~ e-AI [1 toe Asf{ e-BSIP(s )1+ K) ds ] P(t ~ = po + IH. (A -B)-l p{t )I and

o K = A-1{H.K* + A) (3.2.13)

+e-AI[f~eASf{e-BSIP(S)I+K)ds]. {3.2.4) we have .A A

I(t)~e-Btp(t)+K. {3.2.14)But the first integral in (3.2.4) is bounded by a non-nega-
tive vector po while the second, because of (3.2.3) and Relations (3.2.5) and (3.2.14) prove the lemma. Q.E.D.
(3.2.1) is identically zero. Thus 3.2.4 gives Remark R3.1; Observe that if K = 0 and the threshold

( ) -Al- 0 > 0 then Case i). holds and therefore, I(t) goes asymp-
I t ~ e Po. (3.2.5) totically to 0 as t ~ 00.
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Lemma 3.3: The system passing through the point (Xo, to). Integrating (3.3.12), we

X + TX= -f(X) + K(t)+ K (3.3.1) have

exhibits poly-exponential behavior (i.e., belongs to the ,,=e-T'Xo-e-Tt[eTSf[e-Asf>(s)+i]ds
class ~) when f(x) E N, o

K.+ e-A.Ip.(t) ~K(t) ~ e-A.IP.(t)+ K. (3.3.2) + e-TilleTS[e-A.SP.(s)+ A.] ds.
o

and T, A., A. diagonal positive matrices p.(t), p.(t) vec- Designating by
tor polynomials and K, K., K. constant vectors.

Proof In this proof we make use of the comparison [l(t) = -e-T'lteTSf[e-Asf>(s)+i] ds (3.3.13)
principle [21] and of Lemma 3.2. Since f( x) E N then, by o
using (3.3.2) we have for (3.3.1): and

X + TX~ g(t) + K ~ e-A.tp.(t) + K + K.. (3.3.3) [2(t) = e-Tt lteTs [ e-A.sp.(s ) + A.] ds (3.3.14)

Hence, by the comparison principle, the solution of (3.3.1) o
satisfies the following inequality: we have from (3.3.12)

X(t; Xo, to) ~ p(t; Xo, to) (3.3.4) " = e-TtXo + [l(t) + [2(t). (3.3.15)

where p(t; Xo, to) is the solution of But by Lemma 3.2:

p+Tp=e-A.tp.(t)+A. (3.3.5) [l(t)~-e-.At.p(t)+.K ~3.3A.16)
..where .A, .P(t), and .K are calculated for T, A, P(t),

passmg through the pomt (Xo, to) and A. = K + K.. But and i following the procedure outlined in Lemma 3.2.
then from (3.3.5) we have Carrying out the integration in (3.3.14) we have

p(t; Xo, to) = e-TtXo + e-Tt lteTS[ e-A.sp.(s ) + A.] ds [2(t) = e-A.tp.(t) -e-Tt[P.(O) + T-1A.] + T-1A.
o (3.3.17)

(3.3.6)
where

or carrying on the integration in (3.3.6) we have

j e(T-A.}SP ( s ) ds -e(T-A.}sp ( s )p(t;Xo,to)=e-Tt(Xo-P(0)-T-1A.) .-.

+ e-A.IP(t)+ T-1.A. (3.3.7) and p.(s) a vector polynomial in s or

where [2(t) ~ -e-A.tIP.(t)l- e-TtIP.(O) + T-1A.I+ T-1A..

(3.3.18)
j e(T-A}Sp. ( s ) ds = e(T-A}Sp ( s ) B d .

y enotmg

and p(s) a vector polynomial or A = max[A., T] ; P(t) = IP.(t)l+ IP.(O) + T-1A.I;

p(t;Xo,to)~e-TtIXo-P(0)-T-1A.1 K=T-1A. -(3.3.19)

-A.t --1 .we have [2(t) ~ -e-Atp(t)+ K.
+ e IP(t)l+ T A .(3.3.8) Combining (3.3.11), (3.3.16), and (3.3.19) we have

A A
Setting A = min[A., T], K = T-1.A. and X(t; Xo, to) ~ -e-.At.p(t) + .K -e-Atpt ) + K.

f>(t) = IXo -P(O)- T-1A.I+ IP(t)1 (3.3.20)

we have from (3.3.8): Choosing

X(t;Xo,to)~p(t;Xo,to)~e-Atf>(t)+i. (3.3.9) A=max[.A,Al, P(t)=.P(t)+p(t); K=.K+K

Using now (3.3.9) and the original system we have (3.3.21)
. [ .A A ] we have

X+TX~-f e-Atp(t)+K +e-A.tp.(t)+A.
X(t;Xo,to)~-e-Atp(t)+K. (3.3.22)

A.=K.+K. (3.3.10)

Relations (3.3.9) and (3.3.22) prove the lemma. Q.E.D.
Then by the comparison principle the solutions of (3.3.1) Remark R3.2: Observe that if K. = K. = K = 0 and the

satisfy threshold () in f( x) is positive then K and i become

X(t; Xo, to) ~ ,,(t, Xo, to) (3.3.11) zero and the solutions of the system (3.3.1) go to zero as
t -+ 00.

where ,,(t; Xo, to) is the solution of Lemma 3.4: If the system

p + T" = -f [ e-Atf>(t) + i] + e-A.tp.(t) + A. (3.3.12) X+ TX= W.f(X) + K (3.4.1)



DIMOPOULOS: S1UDY OF NEURAL NElWORKS 691

belongs to the class ~ so does the system But by Lemma 3.2:

X+TX=W. j( X ) - g( X ) +K (3.4.2 ) 1t
-e-Tt eTsh [ e-A.tp.(t) + K.] ds ;:J: -e-.At.p(t) + .K

with j( X), g( X) E N; W the connectivity matrix, T a o

positive diagonal matrix, and W.j(X) E (.J. (3.4.12)
Proof For the system (3.4.2) we have

where .A, .P(t) and .K are calculated from T, A., P.(t),
X + TX ~ W.j(X)+ K (3.4.3) and K following the procedure of Lemma 3.2.

Therefore, combining (3.4.11) and (3.4.12) we haveSince W.j(X) E (.J then -TX+ W.j(X)+ K E (.J. There-
fore, by the comparison principle, the solutions of (3.4.2) p;:J:e-Tt(Xo-T-lK}+T-lK-e-.At
will satisfy the condition

or

X(t; Xo,"'to) ~ p(t; Xo, to) (3.4.4) X( . X ) --A.t p . ( ) K . (3 4 13)t, o,to ;:J:p;:J: e t + ..

where p(t; Xo, to) is the solution of with

p+Tp=W.j(p)+K. (3.4.5) A.=max[.A,T], K.=T-lK+.K

But from the statement of the lemma, system (3.4.5) and

belongs to class ~, hence p.(t) = (T-lK- Xo}+.P(t).

X(t; Xo, to) ~ p(t; Xo, to) ~ e-A.tp.(t) + K.. (3.4.6) Relations (3.4.6) and (3.4.13) prove the lemma. Q.E.D.

Lemma 3.5: The system
On the other hand, we have for the system (3.4.2) .

X+TX=Wp.j(X)+K (3.5.1)
X+ TX;:J: W j(x)- g(X)+ K = -h(X)+ K (3.4.7)

-belongs to class ~, when j(X) E N* and Wp is a connec-
where W- is the connectivity matrix W with all positive tivity matrix with all the elements above the diagonal
entries nullified. It is obvious that h(X) E N. Using (3.4.6) non-negative and the rest zero.
and the fact that since h(X) E N, h(X) is monotonically Proof System (3.5.1) can be broken down in the fol-

lowing form:

xl+Txl=Wl2!2(x2)+Wl3!3(x3)+ ...+Wln!n(Xn)+ Kl (3.5.2;1)

x2+Tx2= +W23!3(X3)+ ...+W2n!n(Xn)+ K2 (3.5.3;2)

Xn-l + Txn-l = Wn-l.n!n(Xn) + Kn-l (3.5.2; n-1)

x + Tx = K
n .(3.5.2; n) n n

.Starting with (3.5.2; n) we have
non-decreasmg we have

X.
TX (X) K [ -At

( ) ] Xn=(xno-T-IKn}e-TI+T-lKn. (3.5.3;n)+ ;:J: -h + ;:J: -h e .p. t + K. + K

(3.4.8) From (3.5.3; n) and (3.5.2; n-1) we have

Observe now that system (3.4.8) is decoupled and Lips- Xn-l + Txn-l = Wn-l.nj [ ( Xno- T-lKn)e-TI + T-lKn]

chitzian. Therefore, by the comparison principle the solu- + Kn-l. (3.5.3; n-1)
tions of (3.4.8) satisfy the next inequality.

But by Lemma 3.1, j[(Xno- T-lKn)e-TI + T-lKn] is
X(t; Xo, to) ;:J: p(t; Xo, to) (3.4.9) bounded by functions of the form e-TIP(t)+ K and hence

..by Lemma 3.3 system (3.5.3; n-1) belongs by itself towhere p( t; Xo, to) lS the solution of
1c ass ~.

p+Tp=-h[e-A.,p.(t)+K.]+K. (3.4.10) Making now repeated use of Lemmas 3.1 and 3.2 and
proceeding as above we can conclude that all systems

From (3.4.10) we have (3.5.2; n-2)-(3.5.2; 1) belong to class ~ or equivalently the

p = e- Tt( Xo -T-lK } + T-lK original system (3.5.1) belongs to class ~.
Theorem 3.1: The system

-e-T/~teTSh[e-A.,P.(t)+K.]ds (3.4.11) X+TX=Wj(X)+K (T3.1.1)
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Fig. I. Neural network topologically similar to the cerebellum. NI. :

Class of Purkinje cells (inhibitory); N 2: Class of Basket cells (inhibl-
tory); N3: Class of Golgi cells (inhibitory); N4: Class of granule cells
(excitatory); el: Input from climbing fibers; e2: Input from mossy
fibers.
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Fig. 2. The input to the simulated neural network.

with f(x) E K* and where the connectivity matrix W has
all its positive entries located above the main diagonal
belongs to class ~.

Proof The system (T3.1.1) can be written as

X+ TX= W + f(X) + W- f(X) + K (T3.1.2)

where W + + W- = Wand W + contain all the positive

elements of W while W- all the negative ones. Zeros are
filling up the other positions. Obviously, W + f(x) E (,)
since W + ~ 0. Then by Lemma 3.5 the system

X + TX= W + f(X)+ K (T3.1.3)

belongs to class ~ and by Lemma 3.4 so does the system

X+TX=W+f(X)+W-f(X)+K. (T3.1.4)

Q.E.D.
Theorem 3.2: Neural networks having the topology of

the cerebellum belong to class ~.
Proof Neural networks with the cerebellum topology

can be described as

X+TX=Wf(X)+K (T3.2.1)

where W has the form given in (2.6).
As we can see, the positive entries in this matrix are

located above the main diagonal. Hence by Theorem 1
system (T3.2.1) belongs to class ~.

IV. DISCUSSION

The system studied in the previous paragraph represents
neural nets where the nonlinearities of the individual neu-
rons in the net are described by the neuromime functions
of the class K. Functions that belong to the class K are
positive definite functions that exhibit a cutoff. The class
K is a general class that accommodates many of the
recently developed neuron models with a prime example
the ones studied by Morishita [18], [23] and Heiden [10].

In that model the nonlinearity has the following form:

!m(X) =X.<1>[X]

where

thresholds. This was done in order to accornrnodate the
modeling of neural networks containing classes of self-
excitatory neurons. Such neurons may, for example, be

found in the Hippocampus [4].
If on the other hand, the neuromime functions include

only those with positive thresholds, then the constants K
and A found in Lemmas 3.1-3.5 and Theorems 3.1 and
3.2, can be set to zero, resulting in the asymptotic behavior
of such neural networks. An analysis of neural networks
resulting from neuromime functions with positive thresh-
olds, can be found in [7]. Certainly, as stated in Theorem
3.2, networks with the topology of the cerebellum fall to
the same category and, therefore, exhibit asymptotic be-

havior.
We have also constructed a simulator, that provides us

with a useful tool of studying the effect of the structure on
the behavior of neural networks. In Figs. 2-6, we present
the results obtained with the above mentioned simulator,
for neural networks that are topologically similar to the
cerebellum. This type of networks consist of four classes of
neurons, with interconnections depicted in Fig. 1. The
results presented here were obtained from a neural net-
work comprising 200 neurons with randomly selected in-
terconnection weights and thresholds. Thus Figs. 3-6 show

The class of neuromime functions N, also contains the
general sigmoid functions used by Hopfield et al. [11], [12],
[13], and resemble the functions studied by Grossberg
et al. [5]. I1 is worthwhile to note that in the calculus of
Section III we only made use of the properties of the class
N and, therefore, the results qualify for any specific func-
tion I E N and depend only on the topology of the
network in question.

The results obtained in this work constitute a generaliza-
lion of the ones presented in [7] in the sense that they
qualify a much broader category of neural networks, those
with connectivity matrices having the form stated in Theo-
rem 3.1, as exhibiting asymptotic behavior. I1 is important
to point out that the class of the neuromime functions has
also been enlarged to include functions with arbitrary
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Fig. 3. Firing frequencies of the Purkinje cells (class K1). Fig. 6. Firing frequencies of the Golgi cells (class N3).

climbing fibers by the Purkinje cells. The complex spike
comprises a sharp increase of activity in the Purkinje cells
followed by a period of silence, and corresponds exactly to
the physiological observations cited by Armstrong [3]. The
silencing of the granule cells due to the enmaron climbing
fibre volley is easily demonstrated in Fig. 4. This silencing
of the granule cells was postulated by Armstrong [3] to be
the cause of the Purkinje cell silencing after a complex

spike.

Fig. 4. Firing frequencies of the granule cells (class N4).
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in Fig. 2. It is apparent from the presented results the
asymptotic behavior of such networks, as well as the
existence of a complex spike as a response to a voley in the



694 IEEE TRANSACnONS ON CIRCmTS AND SYSTEMS, VOL. 36, No.5, MAY 1989

Nikitas J. Dimopoulos (S'78-M'8!) received the
B.Sc. degree in physics from the University of
Athens, Athens, Greece, in !975, and the M.Sc.
and Ph.D. degrees in electrical engineering from
the University of Maryland, College Park, MD.
in !976 and !980, respectively.

From !980 to !988, he was an Assistant and
then Associate Professor at the Electrical and
Computer Engineering Department, Concordia
University in Montreal. During the Summer of
!986 he was on leave with the Centre de

Recherche Informatique de Montreal. From November !986 to Decem-
ber !987, he was on leave at the Jet Propulsion Laboratory, Pasadena,
CA. In !988, he joined the Electrical and Computer Engineering Depart-
ment, University of Victoria, Victoria, BC where he is currently an
Associate Professor. His research include multiprocessors, local area
networks and neural networks.

[17] A. Moopenn, A. P. Thakoor, T. Duong, and S. K. Khanna, "A
neurocomputer based on an analog-digital hybrid architecture,"
Proceedings IEEE First Int. Conf. on Neural Networks, vol. III, pp.
479-486, June 1987.

[18] I. Morishita and A. Yajima, "Analysis and simulation of networks
of mutually inhibiting neurons," Kyberuetik, pp. 154-165, 1972.

[19] Y. S. Abu-Mostafa and D. Psaltis, "Optical neural computers"
Scientific A mer. vol. 256, no.3, p. 88, 1987.

[20] D. Psaltis, K. Wagner, and D. Brady, "Learning in optical neural
computers," in Proc. IEEE First Int. Conf. on Neural Networks,
vol. III, pp. 549-555, Jun. 1987.

[21] D. D. Siljak, Large Scale Dynamic Systems. Amsterdam, The
Netherlands: North Holland, 1978.

[22] A. P. Thakoor, "Content-addressable, High density memories based
on neural network models," Technical Progress Rep. JPL D-4166,
California Inst. Technol., Pasadena CA, Mar. 1987.

[23] T. Tokura and I. Morishita, "Analysis and simulation of double-
layer neural networks with mutually inhibiting interconnections,"
Bioi. Cybern., vol. 25, pp. 83-92, 1977.


