An Overview of Distributed Application Support on the
Homogeneous Multiprocessor

Kin Fun Li
Nikitas J. Dimopoulos

Department of Electrical and Computer Engineering
University of Victoria
Victoria, B.C., Canada

ABSTRACT

The Homogeneous Multiprocessor is a tightly-coupled MIMD machine
featuring both networking and shared memory. Operating system facilities for
the Homogeneous Multiprocessor are based on an operating system nucleus—the
HM-Nucleus—which is a hierarchical design that permits modularity, and
information and decision hiding. This paper focuses on the features that support
distributed applications such as image processing, tree search, and simulation,
These features include a nearest neighbour communication scheme for adjoining
processors using shared regions and the management of distributed data structures
by using reliable and consistent updating mechanisms. The goal of this work is
to provide users with abstractions of the prominent hardware features in running
distributed applications.

1.0 INTRODUCTION

In recent years, multiprocessors have become important in solving problems
where a large amount of computation is needed. Several multiprocessors have
been proposed or built; some of the best known machines being the C.mmp
[34], PASM [28], Caltech's Cosmic Cube [27].

A major architectural issue involved in the design of such machines is the
availability of information pathways that enable the exchange of information
between processors. Most of the existing MIMD designs have opted for a
complete graph solution incorporating crossbars, multistage interconnection
networks or point to point connections.

There are significant examples of computations though, (e.g., relaxation
processing [10], neural network simulation [8], digital signal processing) where
the computation may be formulated in such a way so that each computational
subtask needs to cooperate with a limited number of neighbouring subtasks in
order to complete its computation, Such computations map into and benefit
from architectures that limit the scope of interprocessor communication but
make these limited communication pathways fast.

In this work we shall present one such multiprocessor system, namely the
Homogeneous Multiprocessor (HMP) [7,9]. This system provides nearest
neighbour communication through shared memory, as well as global
communications through a high speed local area network. A layered operating
system, currently under implementation for the HMP, will be indtroduced.
Support for distributed applications including the shared regions, which is a
nearest neighbour communication scheme, and the alogorithms for the
management of distributed data structure will be presented and discussed.

2.0 STRUCTURE
2.1 Overview of the Architecture

As shown in Figure 1, the HMP is a tightly-coupled MIMD architecture,
composed of k (k23) processing elements, k memory modules, k+1 interbus
switches §; isolating the processing elements from each other, and the H-
Network which is a fast local area network used for point-to-point and broadcast
mode communications. The architecture is considered to be composed of two
parts: namely the Homogeneous Multiprocessor Proper incorporating the
processors, memories and interbus switches, and the H-Network.

Each processing element P; owns its local memory module M; which it
accesses via its local bus bj; it also has the exclusive use of the respective
network station HS;, The local buses are separated by the intervening switches
§;. These switches provide each processor P; with the ability to access the
memory modules of either one of its two immediate neighbours by requesting
the appropriate switch to close. Also, for I/O or data transfers to/from distant
processors, each processor may utilize the H-Network.

2.2 The Network of the Interbus Switches

As it was outlined in the previous section, each processing element Py,
operates independently of its neighbours, but it is also provided with the
capability of communicating with either one of its two immediate neighbours
Pj.1 and Pj41 via their respective memory modules. This is facilitated through
the creation of "extended buses”. An "extended bus" is the dynamic fusion of two
neighbouring local buses b; and bj41 effected through the closing of the
intervening switch S; after a request from either one of the two processors which

are adjacent to the switch. Once an "extended bus” is created, it exists for the
duration of the request, normally one memory cycle, and it deteriorates to its
component local buses once the request ceascs 1o exist.

The process of creation of an "extended bus” passes through two phases. The
first phase, which is processor independent, ensures the safe and live operation of
the S switches [7). The second phase is processor dependent [18], and it is during
this phase that a switch physically closes. To determine the behaviour of the
interbus switches during the first phase of their operation, a switching algorithm
is used [7]. A request (from a processor to a switch) remains asserted during the
request period which ends with an acknowledgement (from the requested memory
module to the requesting processor). In other words, a processor requests the
access of a neighbouring memory module. This request is intercepted by the
appropriate switch and forwarded to the memory module after the switch closes;
then the memory module acknowledges the transfer of data to the requesting
processor, and this terminates the cycle. The switching algorithm guarantees the
safe (i.e., no two adjacent switches will close at the same time) and live (i.e., a
switch is requested to close, will eventually do so) operation of the network of
the interbus switches. Details of this algorithm can be found in {7].

2.3 The H-Network

The second component of the structure is the H-Network [5,6]. This is a
high speed (~14 Mbytes/sec.) Local Area Network with a structure resembling
that of the ETHERNET {21], yet it utilizes separate pathways for data
transmission and network acquisition. The H-Network has been designed for
network spans of the order of 10 meters. This makes the signal propagation
delay extremely short, which coupled with the parallelism employed has as an
effect the increased performance of the network. The H-Network operates under a
Carrier Sense Multiple Access Protocol which eliminates the existence of
collisions by incorporating prescheduling and parallelism. In other words, the
ready stations contend for the network during the transmission of a packet. Thus
at the end of the current transmission period, we expect (with high probability),
that the next master of the network has been chosen. Thus, collisions are
eliminated, and the utilization of the network increases correspondingly.

The two activities, that is, channel contention and packet transmission must
occur without interference from each other, and they are therefore provided with
two separate channels. The Contention Channel, is used by the stations to decide
on the next master of the network, while the Transmission Channel is used for
the actual packet transmissions. Normally, the Contention Channel is of a much
lower capacity as compared to the Transmission Channel. In our implementation
[5,6], the Transmission Channel is a 16-line parallel bus, while the Contention
Channel utilizes a single line. A new Collision Free (CSMA/CF) Protocol has
also been proposed. Details of the CSMA/CF Protoco! and its analysis such as
the average utilization factor of the network can be found in [4,33).

3.0 OPERATING SYSTEM DESIGN FOR
HOMOGENEOUS MULTIPORCESSOR

THE

System software implementation for the HMP is based on the concept of an
operating system nucleus — the HM-Nucleus [19], which system and user
application software are built upon. The HM-Nucleus itself is a layered design
and follows the approach suggested by Brown, Denning and Tichy [2]. In a
layered structure, operations are defined in a hicrarchy such that an operation ata
higher layer is carricd out by operations specified in lower layers only. Detailed
operations in the sublevels, therefore, are hidden from the current level and
transparent to the invoker. Modifications or additions of new modules can be
done efficiently in such a layered structure and are pertinent to the affected levels
only. Such a hierarchical structure provides the template between hardware and
software mapping.

The HM-Nucleus follows this hierarchical structure approach and it consists
of eleven layers. Functions accessible in each layer are highly modular and their
implementation are transparent 1o invokers. Based on the functions available in
the HM-Nucleus, we are implementing the features discussed in this paper.
These include interprocessor communication through the network and the
extended buses, and distributed virtual memory management. But first, we shall
discuss the implementation and the structure of the HM-Nucleus.

3.1 The HM-Nucleus Overview

Accent [24] and V Kemnel [3] are examples of contemporary distributed
operating system designs based on the concept of a kernel. Our operating system
is also based on the kernel structure; however, we reserve the term kernel for the
lowest layer in our model and use the term nucleus (i.e., the HM-Nucleus) to
denote the abstraction referred to as kernel in the aforementioned systems.

The HM-Nucleus provides primitives for interprocessor communication,
capability checking, memory management, process management and I/O
handling. An identical copy of the nucleus resides in each individual processor
and it provides "secure” abstractions of the underlying hardware. These
abstractions, in the form of communication primitives and process management,
are needed by the operating system and user applications.

The HM-Nucleus consists of eleven layers. From bottom up, the layers are:
Kemel, Physical Memory Management, Device Management, Capabilities,
Universal Datagram Services, Remote Procedure Call, Communications, Virtual
Memory Management, File Management, Table and User Interface.

A HMP node includes the Main Processing Unit (MPU) and its associated
memory module, the Memory Management Unit (MMU), the interbus switches,
and the H-Network interface. The Kemel is the hardware/software interface layer
that provides mechanisms to drive the hardware within a single node, and it
incorporates no policy-making modules. These Kernel primitives serve as
extensions of the bare hardware and are used by higher layers. These extensions
include process switching, primitive I/O, interrupt handling, and MMU
manipulation. The Kemel also has provisions to enable and disable external
interrupts coming into the local node. Since the Kemnel is the lowest structure
residing in individual processors and does not interact directly with the rest of the
system (interprocessor communication is handled by higher layer software), it
thus acts as a single machine abstraction and hence single-node mutual exclusion
can be enforced (e.g., monitor abstraction).

The Physical Memory Management layer is responsible for the allocation
and deallocation of memory space for processes and communication packets.
With the cooperation of the MMU, it provides virtual-to-physical memory
mapping and low-level access rights checking. Our present implementation
provides a 1 Mbyte local memory module per processor, plus two extra 1 Mbyte
of non-local memory modules belonging to the right and left immediate
neighbours. Non-local memory is allocated in the form of shared regions.
Allocation of available memory is performed by a Buddy algorithm that finds
enough holes in the memory to satisfy a request.

The Device Management layer provides device drivers for the peripherals
attached to a node. Usually the only devices will be the H-Network controller and
the interbus switches implemented as virtual channels for neighbouring-
processor communications, but specialized nodes may include disk controllers.

The bottom fourth layer, or Capabilities, provides mechanisms for the
creation and management of capabilities. A capability, in the context of the HM-
Nucleus, is a unique name consisting of a type, a processor number, and an
identification that points to the information concerning that object.

The Universal Datagram Service (UDS) layer implements various
interprocessor communication protocols, thus providing a uniform access
interface to the H-Network, serial channels, and the neighbouring memory
modules. Services provided in this layer format messages of arbitrary length into
packets or reconstruct received packets into meaningful messages according to
the specific protocol used. The placement of the UDS layer that low in the
hierarchy is necessitated by the capability of our architecture to function as a
multiprocessor in addition to being a distributed system,

On top of UDS layer is the Remote Procedure Call (RPC) layer. This layer
serves as an interface between the abstractions of single machine and
multimachine. Any internucleus communication initiated by a local machine is
routed to the appropriate recipient, through the UDS by the RPC Manager.

The next layer in the HM-Nucleus is the Communications layer, This
provides communication links between user processes (processes outside the
HM-Nucleus). Pipelines are supported by the H-Network, while primitve
message packets are transferred to neighbouring processors using channels
through the extended bus (which will be described in Section 4.0). Two types of
pipe communication mechanisms are designed into the system. The first is the
individual pipe communication on a one-to-one basis. The second is a broadcast
facility with a process sending messages to a selected group of receiving
processes. Both types of pipe communication mechanisms are supported directly
by the H-Network, which being a local area network, supports both point-to-
point and broadcast communications. This layer is based on the UDS layer
discussed above, and uses the facilities of the H-Network and the extended bus for
process-to-process, multicast, and broadcast-mode communications.

The Virtual Memory Management (VMM) layer is responsible for assigning
and managing virtual space for processes in collaboration with the Physical
Memory Management layer. There are three kinds of such space: program, data,
and stack space for user programs; shared regions; and global memory. At a later
stage of our development, swapping of user spaces will be implemented in this
layer.

The File Management layer will implement a hierarchical file system,
modeled after the Unix file structure (26). Branches of the tree will be situated at
nodes possessing a local disk, while nodes without disks will implement the
semantics of the Unix file system interface and refer all requests to a server node.

Server nodes will have a complete file system manager and will store portions of
the file system data on their local disks. The initial implementation will support
only access to the device (special) files.

The Table layer consists of catalogues where the correspondences between
symbolic names and their capabilities are entered. These catalogues are resident
in the machines to which the capabilities belong. This level can be developed
into a distributed directory layer when necessary.

The outermost layer is the User Interface layer. Initially, this will contain
the actual code of the application. Subsequent versions will be capable of
managing user processes and responding to a general system call interface, thus
providing the minimum user interface requirements to run application programs,

We are building HM-Nuleus and user applications using VRTX [32] as part
of the kernel layer. In the following sections, we shall discuss process
communications, virtual memory management, and multiple-copy update
mechanisms provided by our system.

4.0 Communication Using Extended Bus

There are two ways for a process to communicate with processes residing on
neighbouring processors through the extended bus, by using channels and shared
regions. Channels, a low level communication abstraction available in the
Device layer, are primarily used for system functions and in the transfer small
messages. More extensive and frequent interprocess communication between
processes running on neighbouring processors can be achieved more efficiently
through the shared region schemes, as a virtual shared memory, which will be
described in the next section.

Channels are predefined well-known addresses established during system
start-up lime that are used for handshaking dialogue between adjacent processors.
They have fixed locations and are available throughout the system up-time.
Channels are assigned to running processes upon request through the peer-to-peer
protocol available in the Communications layer (analogous to the OSI transport
layer).

Communication using channels can be achieved by requesting a switch to
close. The MMU, together with the switching controller, pecform the address
translation and mapping to non-local memory, and create an extended bus for
communication with neighbouring processors. Packets, the basic unit of
information used for interprocessor communication, are stored in the local
memory space. When a packet is created, its address is transformed into a pointer
which is subsequently stored in the predefined channel for the receiving

L.

The sending processor then asserts an interrupt to the receiving processor.
The receiving processor, upon the interrupt, will read the packet address pointer
from the sender's memory space and pass this information to a waiting light-
weight process/handler, which will use the pointer to obtain the packet when it
is scheduled to run.

The process of packet delivery thus involves two phases. During the first
phase, the packet pointer and its handshaking is the responsibility of the
interrupt handling modules. The handshaking and interpretation of the packet
itself is handled by both the consuming process and the producing process in the
second phase.

Occasionally it is desirable for a processor P; to signal a waiting processor
that is two processors further away (i.e., P2 or Pj42). There are two ways of
reaching such a processor: through the H-Network or through the intervening
processor Pj.1 or Pi41. Given the close proximity of the processors, the route
through the network is believed to be more expensive due to network
communication overhead. Therefore, we have chosen to implement the second
mechanism, and use it for signaling purposes such as the one found in the
mutual exclusion algorithm for gaining entrance 10 a shared region [19].

This mechanism uses a "mutant packet” that forces processor Pj_{ or Pi4]
to signal its neighbour P;.2 or Pj42. As we have described earlier, any processor
with a packet ready to be consumed by a neighbour indicates this state by
interrupting the neighbour and providing the neighbour with a pointer to the
packet to be consumed. For the mutant packet mechanism, we use only the
pointer prefixed with a special code indicating the mutation. The pointer points
to an address in a neighbour’s memory that needs to be altered, instead of
pointing to a packet. The interrupt handler, upon receiving such a mutant packet,
immediately carries out the operation indicated and does not pass any information
to waiting processes, as it would have normally done.

4.1 Distributed Virtual Memory Management

There are three types of virtual space that exist in our system: user
programs, shared regions, and global memory. The first type, user programs,
normally maps into local physical memory, reserving space for Unix-like
processes partitioned into program (text), stack, and data areas. The other two
kinds of virtual space are managed by cooperating processes in a distributed
fashion. The shared regions implement bounded global memory among units of
three neighbouring processes that use the extended bus to communicate. The
global virtual memory, on the other hand, is provided by replicating data
structures distributed on a number processors in the system, which communicate
with each other either through the H-Network or the extended bus.

4.1.1 Shared Regions

A shared region, an abstraction of global memory shared by three adjacent
processors, encapsulates a collection of data and, if desired, an implicit
mechanism for mutual exclusion. The synchronization is achieved by a spin-
lock, where a central semaphore is maintained but a waiting processor spins
within its local memory waiting for a signal from the processor which is
currently using the shared region. Hence, interprocessor interference through the
switching network is minimized. Details of such a mutual exclusion algorithm
can be found in (19].

A shared region is created through the CreateRegion call available in the
Virtual Memory Management layer. During creation time, the caller specifies if
the region is guarded or unguarded. A guarded region indicates that the data will
be shared on a mutually exclusive basis and therefore synchronization primitives
are also created as a result of the CreateRegion call. The shared region is created
by the processor local to the node where the region resides. Neighbouring
processor(s) will have to issue the GetName call in the Table layer to obtain the
region's capability. This capability is then bound to the virtual address space of
the sharing processor by the BindRegion call.

The EnterRegion call, provides mutually exclusive access to a shared
guarded region by executing the spin-lock algorithm discussed earlier and
enabling the pertinent MMU descriptors. If the descriptor corresponding to the
shared region is disabled, any reference made to the shared region will result in a
fault, notifying the MPU in the form of a trap.

ExitRegion is used to exit from the shared region by manipulating the
appropriate synchronization primitives. An unguarded region does not need any
synchronization, and therefore the EnterRegion and ExitRegion calls are
transparent. Within an unguarded region, the applications programmer himself
can implement a synchornization system. Such a synchomization system is
quite efficient (in the sense that it does not involve costly operating system
function calls), but on the other hand it may not be safe.

The concept of shared regions facilitates data and message passing between
neighbouring processing elements, for applications such as image processing
[23] and relaxation processing [10], where closely-coupled processors cooperate
in a single task.

4.1.2 Distributed Data Structure Management

As it was mentioned before, the file structure will be modeled after Unix's,
This arrangement will enable us to implement an efficient file structure
distributed over the multiprocessor, and also, by adhering to the Unix file system
semantics, to interface with any Unix-based system or network.

We shall be addressing the file system issues in a later work. The current
section discusses the design of some mechanisms which are necessary in order to
manage any distributed data structure. In particular, for the purposes of this
work, we regard any data structure as a database entity. Such an entity is then
allowed to be distributed and/or replicated on several nodes. Reliable and
consistent access and update mechanisms are provided, so that the file system and
applications, located at the top levels of our hierarchy, can benefit.

4.1.2,1 Multiple-Copy Update Problem

Numerous algorithms to solve the multiple-copy update problem exist in
the literature. For instance, the "bakery algorithm" [16] generates unbounded
sequence numbers to provide first-come first-served priority into critical sections;
Ricart and Agrawala's algorithm creates mutual exclusion in a computer network
whose nodes communicate by messages [25].

The methods we propose are based on the observation that in certain classes
of problems, a global database is read often yet infrequently updated. Many
applications do not require up-to-date (in terms of millisecond) information; they
will operate correctly (although possibly somewhat more slowly) with 'stale’
information. For all applications though, consistency must be maintained. A
particular example is those artificial intelligence applications where a global data
structure (blackboard) is required (e.g., HEARSAY I and HEARSAY II [17]).
Since the HMP does not have global shared memory, for the classes of problems
mentioned above, it is possible to represent a shared data structure as a fully-
replicated database, supported by mechanisms ensuring consistent updating.

For these mechanisms, we have made the following assumptions and
constraints, which permit the use of specialized update control algorithms, that
map efficiently onto the architecture of the HMP and take advantage of the
broadcast capability of the H-Network as well as the fast interprocessor
communications channels provided by the extended bus mechanism:

(a) The targeted applications are computationally intensive,
distributed applications, needing a structured global database
(blackboard).

(b) Multiple readers can operate concurrently, but only a single
writer is allowed to operate at any given time. A modify
transaction is treated as an indivisible read-and-write operation on
the latest version of the data structure.

() The readers far outnumber the writers.

(@ A writer, wishing to perform an update operation, is ensured the
latest version of the data structure. If an up-to-date read is
necessary, a modify (X,X) can be used.

(e) Itisassumed that the database is small enough to fit within the
available node-memory.

(f) Since there is no on-board cache at individual nodes, the cache
coherence problem is not dealt with.

Only a single user process runs at a node.

(h) Since migration of directories is not allowed in our system, the

consistency problem due to migration is ignored.

Three methods of achieving the multiple-copy update are proposed. In all
three methods, we utilize a token to achieve synchronization and reliability, The
methods are distinguished from each other, by the communications pathway the
token uses in order to reach a particular node.

4.1.2.2 Mutual Exclusion Mechanisms

For all three mechanisms, a token is used to both synchronize and validate
the updates. The arrival of the token {0 a node gives it permission to proceed
with an update. The token incorporates an update sequence number, and the most
recently updating station number.

The first method is a token passing mechanism, in which a token is passed
among a group of neighbouring processors, each working on its own copy of the
same data structure. Only the processor possessing the token is capable of
updating, and it broadcasts the update to all the other processors in the group
through the H-Network. The token circulates among these adjacent processors
through the extended buses. This method implements a round robin update
schedule and is very efficient in a heavily-updating environment.

In this method, a node wishing to perform an update will broadcast its
intention and wait until it receives the token. The node currently in possession
of the token will place the update request in a node-update-request queue, which
is incorporated into the token itself. The node possessing the token proceeds
with the consistency check (described below), broadcasts its update message to
all the participating nodes, deletes its own entry from the node-update-request
queue, and finally sends the token to the next requesting node. The token passing
scheme using the H-Network has a fast response time and it is dynamic in nature
as compared to the previous method. However, it is expensive due to the
acknowledgement overhead involved.

A third alternative is to assign a node as a token controller to manage update
requests, The token controller maintains a queue of requesting nodes. The node at
the head of the queue receives the token and proceeds with the consistency check
and update. Once the update is carried out, the token is returned to the token
controller. This method also has a fast response time. If compared with the
request broadcast method, it has less overhead since update requests are directed
to, and always registered by the token controller. On the other hand, a
malfunction of the token controller will cause failure.

4.1.2.3 Reliable and Consistent Updates

Synchronization of multiple updates on the same data structure can be
resolved by the methods discussed. However, due to the distributed nature of our
system, mechanisms to guarantee reliable updates have to be introduced to
maintain system consistency. Given the proximity of the nodes, we assume a
mostly reliable communication environment. Yet, occasionally messages are
lost, and the mechanisms presented here are designed to handle these cases.,

An update message, originating from the node possessing the token,
encapsulates the following information: a unique sequence number, a node
number, and the update itself. The sequence number is a monotonically
increasing number assigned to an update message. This number can be generated
based on information obtained from the token. The node number is simply the
number of the node that possesses the token at the time of the update.

The token itself must contain the following information: a unique sequence
number, and a node number. The sequence number specifies the latest update
message number. This sequence number is incremented and copied to the present
update message by the node possessing the token. The token is released by the
updating station, only after the update message has been sent by the network.
The node number is the number of the last updating node.

Each individual node participating in the management of the distributed data
structure, remembers the sequence number of the last received update message,
and also any previous sequence numbers that are missing. The missing ones are
the updating messages that have not been received and will be used for the
consistency check.

For all three methods, each time a node receives the token, it compares the
sequence number encapsulated in the token, with that of the last received update.
If they do not match, then the node empties the network queue and checks again.
The network queue consists of incoming packets from the network and since an
update message is broadcast before the token is released, then the update
messages should have arrived at the destination node before the token. If the two
sequence numbers still do not match, then the last updating message is missing,
and the node requests re-broadcasting from the last updating node. It is possible

that more than one message is missing, in this case re-broadcasts are requested
from each updating nodes.

An updating node retains the updating message until it is ensured that all the
participating nodes have performed the consistency check pertaining to this
particular message. The condition upon which a node is guaranteed that the
consistency check has been performed, depends on the mechanism chosen. For
the token passing mechanism, an updating node retains a particular message
until the token reaches the node twice. This condition, since all the nodes are
arranged in a linear array, guarantees that the token has circulated through all the
nodes in the group, and hence each and every one of the participating nodes has
been given the opportunity to perform a consistency check.

For the remaining two methods, a special consistency-control token is
broadcast after a predetermined number of updates, which forces all the nodes to
perform a consistency check. At the end of this process, when all the
participating stations have performed their consistency check, all past update
messages can be deleted, and the cycle may be started afresh.

It is understood that in between the issuing of the consistency-control
tokens, nodes that receive the update token continue to perform consistency
checks of their database. Nodes that receive out-of-sequence updates, will refrain
from performing the update, until the missing update messages are received. The
missing messages are requested from their source either immediately, or after a
consistency check is performed.

5.0 CONCLUSION AND DISCUSSION

In this work, we have presented an overview of the HMP System, a tightly-
coupled MIMD architecture incorporating both nearest neighbour
communications as well as a novel and fast local area network. This System is
currently under implementation at the Electrical and Computer Engineering
Departments, Concordia University and the University of Victoria. As
processing elements, we are using 8-MHz MC68000 processors together with
the MC68451 MMU. Each processing node includes 1IMbyte of DRAM, while
specialized VLSI components have been designed, and are currently under
implementation using Northern Telecom's 5 micron CMOS process, for the
interprocessor switch and H-Network controllers. We are also designing and
implementing a modular distributed operating system for the described
architecture, Distributed application support features that exploit the underlying
hardware (i.e., the network and the shared memory) are provided to users in
application-specific abstractions.

ACKNOWLEDGEMENTS

The work reported in this paper was performed at the Departments of
Electrical and Computer Engineering, Concordia University and University of
Victoria, under grants from the Natural Sciences and Engineering Research
Council Canada, the Fonds pour la Formation de Chercheurs et l'aide a la
Recherche, and the Centre de Research Informatique de Montreal.

REFERENCES

[1) ANSIIEEE Standard 802.3-1985, Local Area Networks (Carrier Sense

Multiple Access with Collision Detection), IEEE Inc., New York, 1985.

[2] Brown, R.L., PJ. Denning, and W.F. Tichy, "Advanced Operating

Systems,” IEEE Computer, vol. 17, no. 10, pp. 173-190, Oct. 1984,

[3] Cheriton, D.R., "The V Kemel : A Software Base for Distributed System,”
IEEE Software, pp. 19442, Apr. 1984.

[41 Dimopoulos, N.J., and C.W. Wong, "Collision-free Protocol for Local

Area Networks," Computer Communications, vol.11, no. 4, pp. 208-214, Aug.

1988.

{5] Dimopoulos, N.J., and C.W, Wong, "Performance Evaluation of the H-
Network through Simulation,” Digital Techniques in Simulation,
Communication and Control, pp. 315-320, S.G. Tzafestas (Ed.), Elsevier
Science Publishers B.V. (North-Holland), 1985.

[6] Dimopoulos, N.J., and D. Kehayas, "The H-Network: A High Speed
Distributed Packet Switching Local Computer Network," Proceedings of
MELECON ‘83 Mediterranean Electrotechnical Conference, pp. A1.02, Athens,
Greece, May 1983.

[71 Dimopoulos, N.J., "On the Structure of the Homogencous
Multiprocessor,” IEEE Transactions on Computers, vol. C-34, no. 2, pp. 141-
150, Feb. 198S.

{8] Dimopoulos, N.J., "Organization and Stability of Neural Network Class
and the Structure of a Multiprocessor System,” Ph.D. Dissertation, University
of Maryland, College Park, MD, 1980.

[9] Dimopoulos, N.J., "The Homogeneous Multiprocessor - Architecture,
Structure and Performance Analysis,” Proceedings of the 1983 International
Conference on Parallel Processing, pp. 520-523, Aug. 1983.

[10) Fekete, G., J.0. Eklundh, and A. Rosenfeld, "Relaxation: Evaluation and
Applications,” IEEE Transactions on Patter Analysis and Machine Intelligence,
vol. PAMI-3, pp. 459-469, 1981.

[16] Lamport, L., "A New Solution of Dijkstra's Concurrent Programming
Problem,” Communications of the ACM, vol. 17, no. 8, pp. 453455, Aug.
1974.

[17] Lesser, V.R., et. al., “Organization of the Hearsay II Speech Understanding
System,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.
23, pp. 11-24, Feb. 1975.

[18) Li, K.F., and N.J. Dimopoulos, "The Performance Analysis of the
Homogeneous Multiprocessor Proper,” Canadian Electrical Engineering Journal,
pp. 3-10, Jan. 1987.

[19] Li, K.F., NJ. Dimopoulos, and J.W. Atwood, "The HM-Nucleus: A
Distributed Operating System Nucleus for the Homogeneous Multiprocessor,”
IEEE Micro, pp. 14-24, Feb. 1987,

[21] Meicalfe, R.M., and D.R. Boggs, "Ethernet: Distributed Packet Switching
for Local Computer Networks,” Communications of the ACM, vol.19, pp. 395-
404, Jul. 1976.

[23) Ramanamurthy, R.V., N.J. Dimopoulos, K.F, Li, R.V. Patel, and AJ,
Al-Khalili, "Parallel Algorithms for Low Level Vision On the Homogeneous
Multiprocessor,” Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, Miami Beach, pp. 421423, Jun, 22-
26, 1986.

[24) Rashid, R.F., and G. Robertson, "Accent: A Communication Oriented
Network Operating System Kernel,” Operating Systems Review, vol. 15, no. §,
pp. 64-754, 1981.

{25] Ricart, G., and A.K. Agrawala, "An Oplimal Algorithm for Mutual
Exclusion in Computer Networks,” Communications of the ACM, vol. 24, no.
1, pp. 9-16, Jan, 1981,

[27] Seitz, C.L., "The Cosmic Cube,” Communications of the ACM, vol. 28,
no. 1, pp. 22-23, Jan. 1985.

[28] Siegel, HJ., et. al., "PASM: A Partitionable SIMD/MIMD System for
Image Processing and Pattern Recognition,” IEEE Transactions on Computers,
vol. C-30, pp. 934-937, Dec. 1981.

[32) VRTX32/68000, Versatile Real-Time Executive for the M68000
Microprocessor User's Guide, Ready Systtems, Palo Alto, CA., 1987.

[33] Wong, C.W., "A Collision Free Protocol for LANs Utilizing Concurrency
for Channel Contention and Transmission," M.Eng. Thesis, Concordia
University, Montreal, Canada, 1985,

[34] Wulf, W.A., R. Levin, and S.P. Harbison, C.mmp - An Experimental
Computer System, McGraw-Hill, New York, 1981.

H-Network

Mi+1 I

A ;5
i+l

Flgure 1. The Homogeneous Multiprocessor Architecture.

P: Processor M: Memory Module s: Bus Switch

FE: Front End BE: Back End SC: Switch Controller
b: Local Bus T: Terminal MS: Mass Storage
HS: H-Network Station R/G: Bus Request/Grant

