
An Overview of Distributed Application Support on the
Homogeneous Multiprocessor

by

Kin Fun Li
Nikitas I. Dimopoulos

Department of Electrical and Computer Engineering
University of Victoria
Victoria, B.C., Canada

ABSTRACT

The Homogeneous Multiprocessor is a tightly-coupled MIMD machine
featuring both networking and shared memory. Operating system facilities for are adjacent to the switch. Once an "extended bus" is created, it exists for the
the Homogeneous Multiprocessor are based on an operating system nucleus-the duration of the request, normally one memory cycle, and it deteriorates to its
HM-Nucleus-which is a hierarchical design that permits modularity, and component local buses once the request ceascs to exist
information and decision hiding. This paper focuses on the features that support The process of creation of an "extended bus" passes through two phases. The
distributed applications such as image processing, tree search, and simulation. flr5t phase, which is processor independent, ensures the safe and live opcration of
These features include a nearest neighbour communication scheme for adjoining the S switches [7]. The second phase is processor dependent [18], and it is during
processors using shared regions and the management of distributed data structures this phase that a switch physically closes. To determine the behaviour of the
by using reliable and consistent updating mechanisms. The goal of this work is interbus switches during the first phase of their operation, a switching algorithm
to provide users with abstractions of the prominent hardware features in running is used [7]. A request (from a processor to a switch) remains asserted during the
distributed applications. request period which ends with an acknowledgement (from the requested memory

module to the requesting processor). In other words, a processor requests the
1.0 INTRODUCTION access of a neighbouring memory module. This request is intercepted by the

appropriate switch and forwarded to the memory module after the switch closes;
In recent years, multiprocessors have become important in solving problems then the memory module acknowledges the transfer of data to the requesting

where a large amount of computation is needed. Several multiprocessors have processor, and this terminates the cycle. The switching algorithm guarantees the
been proposed or built; some of the best known machines being the C.mmp safe (i.e., no two adjacent switches will close at the same time) and live (i.e., a
[34], PASM [28], Caltech's Cosmic Cube [27]. switch is requested to close, will eventually do so) operation of the network of

A major architectural issue involved in the design of such machines is the the interbus switches. Details of this algorithm can be found in [7].

availability of information pathways that enable the exchange of information
between processors. Most of the existing MIMD designs have opted for a 2.3 The H.Network

complete graph solution incorporating crossbars, multistage interconnection
networks or point to point connections. The second component of the structure is the H-Network [5,6]. This is a

There are significant examples of computations though, (e.g., relaxation high spced (-14 Mbyteslsec.) Local Area Network with a structure resembling
processing [10], neural network simulation [8], digital signal processing) where that of the ETHERNET [21], yet it utilizes separate pathways for data
the computation may be formulated in such a way so that each computational transmission and network acquisition. The H-Network has been designed for
subtask needs to cooperate with a limited number of neighbouring subtasks in network spans of the order of 10 meters. This makes the signal propagation
order to complete its computation. Such computations map into and benefit delay extremely short, which coupled with the parallelism employed has as an
from architectures that limit the scope of interprocessor communication but effect the increased performance of the network. The H-Network operates under a
make these limited communication pathways fast Carrier Sense Multiple Access Protocol which eliminates the existence of

In this work we shall present one such multiprocessor system, namely the collisions by incorporating prescheduling and parallelism. In other words. the
Homogeneous Multiprocessor (HMP) [7,9]. This system provides nearest ready stations contend for the network during the transmission of a packet. Thus
neighbour communication through shared memory, as well as global at the end of the current transmission period, we expect (with high probability),
communications through a high speed local area network. A layered operating that the next master of the network has been chosen. Thus, collisions are
system, currently under implementation for the HMP , will be indtroduced. eliminated, and the utilization of the network increases correspondingly.
Support for distributed applications including the shared regions, which is a The two activities, that is, channel contention and packet transmission must
nearest neighbour communication scheme, and the alogorithms for the occur without interference from each other, and they are therefore provided with
management of distributed data structure will be presented and discussed. two separate channels. The Contention Channel, is used by the stations to decide

on the next master of the network, while the Transmission Channel is used for
2.0 STRUCTURE the actual packet transmissions. Normally, the Contention Channel is of a much
2.1 Overview or the Architecture lower capacity as compared to the Transmission Channel. In our implementation

[5,6], the Transmission Channel is a 16-line parallel bus, while the Contention
As shown in Figure 1, the HMP is a tightly-coupled MIMD architecture, Channel utilizes a single line. A new Collision Free (CSMA/CF) Protocol has

composed of k (~3) processing elements, k memory modules, k+ I interbus also been proposed. Details of the CSMNCF Protocol and its analysis such as
switches Si isolating the processing elements from each other, and the H- the average utilization factor of the network can be found in [4,33].

Network which is a fast local area network used for point-to-point and broadcast
mode communications. The architecture is considered to be composed of two 3.0 OPERA TING SYSTEM DESIGN FOR T H E
parts: namely the Homogeneous Multiprocessor Proper incorporating the HOMOGENEOUS MUL TIPORCESSOR

processors, memories and interbus switches, and the H-Network.
Each processing element P i owns its local memory module M i which it S~stem software implementation for the HMP is based on the concept of an

accesses via its local bus hJ'; it also has the exclusive use of the respective oper~un.g system nucleus :- the HM-Nucleus [19], .whic~ system and u~er
network station HSi The local buses are separated by the intervening switches appllcauon software are buIlt upon. The HM-Nucleus Itself IS a layered design
Si. These switches .provide each processor p. with the ability to access the and follows the approa.ch suggested b~ Bro:-vn, Denning and Tichy [~]. In a

...I. ..layered structure, operauons are defined In a hierarchy such that an opcrauon at a
memory m~ules ~f either one of Its two ImmedIate nelghbours by requ~sung higher layer is carried out by operations specified in lower layers only. Detailed
the appropnate switch to close. ~so, for 1/0 or data transfers to/from distant operations in the sublevels, therefore, are hidden from the current level and
processors, each processor may utilize the H-Network. transparent to the invoker. Modifications or additions of new modules can be

.done efficiently in such a layered structure and are pertinent to the affected levels
2.2 The Network or the Interbus Switches only. Such a hierarchical structure provides the template between hardware and

A . tI . d . th ... I software mapping.
s It. was ou Ine In .e pre;VIOUS secuon,.ea.ch processln.g e em~nt Pj, The HM-Nucleus follows this hierarchical structure approach and it consists

opera~e.s Independentl.y ~f Its .nelg~bours, but .It IS al~o pro~lded ':"'Ith the of eleven layers. Functions accessible in each layer are highly modular and their
capabIlity of co~mu~lcaung ~Ith either one of Its two .'~medi.a~ nelghbours implementation are transparent to invokers. Based on the functions available in
Pj-1 and.Pj+1 :la their respcc~ve m"emory modul~~. This IS fac~llta~ through the ~-Nucleu.s, we are implementing the features discussed in this paper.
th~ creauo~ of extended buses. An extended bus IS the dynamic fu~lon of two These Include Interprocessor communication through the network and the
nelghbounng local buses hj and hj+ 1 effected through the closIng of the extended buses, and distributed virtual memory management But flr5t, we shall
intervening switch Sj after a request from either one of the two processors which discuss the implementation and the structure of the HM-Nucleus.



3.1 The HM.Nucleus OvervIew. ..
Server nodes wIll have a complete rIle system manager and wIll store portions of

Accent [24] and V Kernel [3] are examples of contemporary distributed the rIle system data 0? their I~ disks. The initial implementation will support

operating system designs based on the concept of a kernel. Our operating system only access to the deVIce (~lal) rIles.

is also based on the kernel structure; however, we reserve the term kernel for the Th~ Table layer COn.SlSts of .c.a~ogues where the correspondences bet~een

lowest layer in our model and use the term nucleus (i.e., the HM-Nucleus) to ~ymbollc na!"es and th~1r capablllu~ .a:e entered. Th~se catalogues are resIdent

denote the abstraction refened to as kernel in the aforementioned systems. ~n the I?ac.hlnes ~ which the capablllues belong. This level can be developed

The HM-Nucleus provides primitives for interprocessor communication, Into a distnbuted directory:ayer when nccessary. ,

capability checking, memory management, process management and 1/0 The outermost layer IS t?e Vser Interface layer. I~IUally,. thlS wIll Contain

handling. An identical copy of the nucleus resides in each individual processor the act.ual code of the appllcauon. ~ubsequent versions will ~e capable of

and it provides "secure" abstractions of the underlying hardware. These m~g.lng user I?r<;'CCSSes an~ respondIng I? a general system ~all ~nterface, thus

abstractions, in the form of communication primitives and process management, providing the ~In.lmum user Interface requlrem~ts. to run .appllcauon programs.

are needed by the operating system and user applications. We are buIldIng HM-Nuleus and.user app.licauons usmg ~TX [32] as part

The HM-Nucleus consists of eleven layers. From bottom up, the layers are: of the k~rn~1 laye~ .In the followIng secuons, we shall. dlsCUSS process

Kernel, Physical Memory Management, Device Management, Capabilities, COmmU?lcauons,. vIrtual memory management, and multlple-copy update

Universal Datagram Services, Remote Procedure Call, Communications, Virtual mechanisms provided by our system.

Memory Management, File Management, Table and User Interface. ...
A HMP node includes the Main Processing Unit (MPU) and its associated 4.0 Communication UsIng Extended nus

memory module, the Memory Management Unit (MMU), the interbus switches,
and the H-Netwolk interface. The Kernel is the hardware/software interface layer, There.are two ways for a process to communicate WI.Lh processes residIng on

that provides mechanisms to drive the hardware within a single node, and it nel~hbounng processors through the exten~ed ~us, by USIn~ channe!s and ~hared

incorporates no policy-making modules. These Kernel primitives serve as regl?ns. Channels, .a l°:.v level communlcauon .abstracU?n available In the

extensions of the bare hardware and are used by higher layers. These extensions Device layer, are pnm~ly used for sys~m funcuons and In th.e tr.ansfer small

include process switching, primitive I/O, interrupt handling, and MMU messages. Mo~ extensl.ve and !requent Interprocess co~munlcation bet.ween

manipulation. The Kernel also has provisions to enable and disable external processes fUnning on n~lghbounng proceSS?rs can be achieved more.efficl.ently

interrupts coming into the local node. Since the Kernel is the lowest structure throu~h ~e shared reglo.n schemes, as a vIrtual shared memory, which wIll be

residing in individual processors and does not interact directly with the rest of the descnbed In the next secUon. ..

system (interprocessor communication is handled by higher layer software), it Cha~nels are predefined well-kn°.wn a.ddresses establlsh~ durIng system

thus acts as a single machine abstraction and hence single-node mutual exclusion start-up time that are uS;ed for handshakin.g dialogue between adJacent proc~rs.

can be enforced (e.g., monitor abstraction). They have r1X~ locauons a~d are available throughout the system up-time.

The Physical Memory Management layer is responsible for the allocation Channels are. asslg~ed to fUnnIng p~OCt;SSCS upon request through the peer-to-peer

and deallocation of memory space for processes and communication packets. protocol available In the Communlcauons layer (analogous to the OSI transport

With the cooperation of the MMU, it provides virtual-to-physical memory layer). mapping and 10w-Ievel access rights checking. Our present implementation Communication usIng ch~nnels can. be.achleved by requesting a SWllCh to

provides a 1 Mbyte local memory module per processor, plus two extra 1 Mbyte close. ~e MMU, to¥ether With the swItchIng controller, perform the address

of non-Iocal memory modules belonging to the right and left immediate translauo,n ~d mal?plng t.o non-l~al memory, and create an extend~ bu~ for

neighbours. Non-Iocal memory is allocated in the form of shared regions. ~ommun.lcatlon with .nelghbourlng processo:s. .Packets, the b~slc Unit of

Allocation of available memory is performed by a Buddy algorithm that finds Information used for Interpr~essor co!"munlcau?n, are stored. In the 1.ocaJ

enough holes in the memory to satisfy a request. me!l1°T>: space. When a packet IS.created,lts address IS transformed mto a pc:>1~ter

The Device Management layer provides device drivers for the peripherals which IS subsequently stored In the predefined channel for the receivIng

attached to a node. Usually the only devices will be the H-Network controller and processor. the interbus swilChes implemented as virtual channels for neighbouring- The.s~ndmg processor then ~erts an In~rrupt to the receivIng proce~or.

processor communications, but specialized nodes may include disk controllers. The receivIng p~essor, upon the Interrupt, w!ll.read the.packet addr.~s po~nter

The bottom fourth layer, or Capabilities, provides mechanisms for the fro!" the senders memory ~pace.and pass th1.5 Informauo.n to a walung Ilgh~-

creation and management of capabilities. A capability, in the context of the HM- :.velght process/handler, which wIll use the poInter to obtain the packet when It

Nucleus, is a unique name consisting of a type, a processor number, and an IS scheduled to run. ...

identification that points to the information concerning that object. The process of p~cket dellv~ry thus Invo!ves .two phases. D~n.g the rlfSt

The Universal Datagram Service (UDS) layer implements various phase, the pac.ket poInter and Its handsh.aking IS. the resp<;>nslblllty of the

interprocessor communication protocols, thus providing a uniform access ~nte~pt handlIng modules. The ha.ndshaklng and Interpretau.on of the p~cket

interface to the H-Network, serial channels, and the neighbouring memory Itsclf IS handled by both the consumIng process and the producIng process In the

modules. Services provided in this layer format messages of arbitrary length into second p~. ..., ...

packets or reconstruct received packets into meaningful messages according to ?ccaslonally It IS desirable for a.processor Pi to sIgnal a waIUng processor

the specific protocol used. The placement of the UDS layer that low in the that I~ two processors further away (I.e., Pi-2 or Pi+2). There are two ways of

hierarchy is necessitated by the capability of our architecture to function as a reachIng such a processor: through the H-Network or through the intervening

multiprocessor in addition to being a distributed system. processor Pi-1 or Pi+l. Given the close proximity of the processors, the route

On top of UDS layer is the Remote Procedure Call (RPC) layer. This layer through the network is believed to be more expensive due to network

serves as an interface between the abstractions of single machine and communication overhead. Therefore, we have chosen to implement the second

multimachine. Any internucleus communication initiated by a local machine is mechanism, and use it for signaling purposes such as the one found in the

routed to the appropriate recipient, through the UDS by the RPC Manager. mutual exclusion algorithm for gaining entrance to a shared region [19].

The next layer in the HM-Nucleus is the Communications layer. This This mechanism uses a "mutant packet" that forces processor Pi-1 or Pi+1

provides communication links between user processes (processes outside the to signal its neighbour Pi-2 or Pi+2. As we have described earlier, any processor

HM-Nucleus). Pipelines are supported by the H-Network, while primitve with a packet ready to be consumed by a neighbour indicates this state by

message packets are transferred to neighbouring processors using channels interrupting the neighbour and providing the neighbour with a pointer to the

through the extended bus (which will be described in Section 4.0). Two types of packet to be consumed. For the mutant packet mechanism, we use only the

pipe communication meehanisms are designed into the system. The rlfSt is the pointer prefixed with a special code indicating the mutation. The pointer points

individual pipe communication on a one-to-one basis. The second is a broadcast to an address in a neighbour's memory that needs to be altered, instead of

facility with a process sending messages to a selected group of receiving pointing to a packet. The interrupt handler, upon receiving such a mutant packet,

processes. Both types of pipe communication mechanisms are supported directly immediately carries out the operation indicated and does not pass any information

by the H-Network, which being a local area network, supports both point-to- to waiting processes, as it would have normally done.

point and broadcast communications. This layer is based on the UDS layer

discussed above, and uses the facilities of the H-Network and the extended bus for 4.1 Distributed Virtual Memory Management

process-to-process, multicast, and broadcast-mode communications.

The Virtual Memory Management (VMM) layer is responsible for assigning There are three types of virtual space that exist in our system: user

and managing virtual space for processes in collaboration with the Physical programs, shared regions, and global memory. The first type, user programs,

Memory Management layer. There are three kinds of such space: program, data, normally maps into local physical memory, reserving space for Unix-like

and stack space for user programs; shared regions; and global memory. At a later processes partitioned into program (text), stack, and data areas. The other two

stage of our development, swapping of user spaces will be implemented in this kinds of virtual space are managed by cooperating processes in a distributed

layer. fashion. The shared regions implement bounded global memory among units of

The File Management layer will implement a hierarchical file system, three neighbouring processes that use the extended bus to communicate. The

modeled after the Unix file structure [26]. Branches of the tree will be situated at global virtual memory , on the other hand, is provided by replicating data

nodes I?ossessing a.local disk, w.hile nodes without disks will implement the structures distributed on a number processa-s in the system, which communicate

semanucs of the Urux rIle system Interface and refer all requests to a server node. with each other either through the H-Netwolk or the extended bus.



4.1.1 Shared Regions (d) A writer, wishing 10 perform an update operation, is ensured the
iatest version of the data structure. If an up-Io-date read is

A shared region, an abstraction of global memory shared by three adjacent necessary, a modify (X,x) can be used.
processors, encapsulates a collection of data and, if desired, an implicit (e) It is assumed that the database is small enough 10 fit within the
mechanism for mutual exclusion. The synchronization is achieved by a spin- available node-memory.
lock, where a central semaphore is maintained but a waiting processor spins (I) Since there is no on-board cache at individual nodes the c~hewithin its local memory waiting for a signal from the processor which is coherence problem is not dealt with. ,

currently using the shared region. Hence, interprocessor interference through the (g) Onlya single user process runs at a node.
switching net.work is minimized. Details of such a mutual exclusion algorithm (h) Since migration of directories is not allowed in our system, the
can be found In [19]. consistency problem due 10 migration is ignored.

A shared region is created through the CrealeRegion call available in the
Virtual. M~mory Management layer. During creation time, the caller specifies if Three methods of achieving the multiple-copy update arc proposed. In all
the regIon IS guarded or unguarded. A guarded region indicates that the data will three methods, we utilize a token 10 achieve synchronization andJeliability. The
be shared on a mutually exclusive basis and therefore synchronization primitives methods arc distinguished from each other, by the communications pathway the
arc also created as a result of the CrealeRegion call. The shared region is created token uses in order 10 reach a particular node.
by the processor local to the node where the region resides. Neighbouring
processor(s) will have 10 issue the GetName call in the Table layer 10 obtain the 4.1.2.2 Mutual Exclusion Mechanisms
region's capability. This capability is then bound 10 the virtual address space of
the sharing processor by the BindRegion call. For all three mechanisms, a token is used to both synchronize and validate

The EnIerRegion call, provides mutually exclusive access to a shared the updates. The aITival of the token to a node gives it permission 10 proceed
guard.ed region ~y executing the spin-lock algorithm discussed earlier and with an update. The token incorporates an update sequence number, and the most
enablIng the pertInent MMU descriptors. If the descriptor corresponding 10 the recently updating station number.
shared re.&io.n is disabled, .any reference made 10 the shared region will result in a The rlfSt method is a token passing mechanism, in which a token is passed
fault, n<;>tlfyl~g th~ MPU In the. form of a trap. ...among a group of neighbouring processors, each working on its own copy of the

ExllReglon IS used 10 exIt from the shared regIon by manIpulatIng the same data structure. Only the processor possessing the token is capable of
appropria~ ~chronization primitives. An unguarded region does not need any updating, and it broadcasts the update 10 all the other processors in the group
synchronIzation, and therefore the EnIerRegion and ExilRegion calls are through the H-Network. The token circulates among these adjacent processors
transparent. Within an unguarded region, the applications programmer himself through the extended buses. This method implements a round robin update
can implement a synchornization system. Such a synchornization system is schedule and is very efficient in a heavily-updating environment.
quite.efficient (in the sense that it does not involve costly operating system In this method, a node wishing 10 perform an update will broadcast its
functIon calls), but on the other hand it may not be safe. intention and wait until it receives the token. The node currently in possession

The concept of shared regions facilitates data and message passing between of the token will place the update request in a node-update-request queue, which
neighbouring processing elements, for applications such as image processing is incorporated into the token itself. The node possessing the token proceeds
r3] and relaxation processing [10], where closely-coupled processors cooperate with the consistency check (described below), broadcasts its update message 10
In a single task. all the participating nodes, deletes its own entry from the node-update-request

..queue, and. finally sends the token to the next requesting node. The token passing
4.1.2 DIstrIbuted Data Structure Management scheme usIng the H-Network has a fast response time and it is dynamic in nature

...as compared 10 the previous method. However, it is expensive due to the
As It was mentioned before, the rIle structure wIll be modeled after Unix's. acknowledgement overhead involved.

~is. arrangement will. enable us to implement an efficient file structure A third alternative is to assign a node as a token controller 10 manage update
distrlb~ted ov~r the multl.processor,.and also, by adhering to the Unix file system requests. The token controller maintains a queue of requesting nodes. The node at
semantics, to Interface WI.th any Unlx-based system or network. the head of the queue receives the token and proceeds with the consistency check

We shall be addressIng the file system issues in a later work. The current and update. Once the update is carried out, the token is returned to the token
section discu~s t!le design of some mechanisms which are necessary in order to controller. This method also has a fast response time. If compared with the
manage any dlstnbuted data structure. In particular, for the purposes of this request broadcast method, it has less overhead since update requests are directed
work, we regard.anr data structure as a database entity. Such an entity is then to, and always registered by the token controller. On the other hand, a
allowed to be dlstnbuted and/or replicated on several nodes. Reliable and malfunction of the token controller will cause failure.
consistent access and update mechanisms are provided, so that the file system and
applications, located at the top levels of our hierarchy, can benefit. 4.1.2.3 Reliable and Consistent Updates

4.1.2.1 Multiple-Copy Update Problem Synchronization of multiple updates on the same data structure can be
resolved by the methods discussed. However, due to the distributed nature of our

Numerous algorithms to solve the multiple-copy update problem exist in system, mechanisms to guarantee reliable updates have to be introduced to
the literature. For instance, the "bakery algorithm" [16] generates unbounded maintain system consistency. Given the proximity of the nodes, we assume a
5e,Quence numbers 10 provide first-come rlfSt-served priority into critical sections; mostly reliable communication environment. Yet, occasionally messages arc
Rlcart and Agrawala's algorithm creates mutual exclusion in a computer network lost, and the mechanisms presented here are designed to handle these cases.
whose nodes communicate by messages [25]. An update message, originating from the node possessing the token,

The methods we propose are based on the observation that in certain classes encapsulates the following information: a unique sequence number, a node
of problems, a global database is read often yet infrequently updated. Many number, and the update itself. The sequence number is a monotonically
ap.plications do not require up-to-date (in terms of millisecond) information; they incrcasing number assigned to an update message. This number can be generated
:-v111 ope~ate correctly (al~o~gh possibly som~what more slowly) .wiL? 'stale' based on information obtaincd from the token. The node number is simply the
Information. For all applIcations though, consIstency must be maIntaIned. A number of the node that possesses the token at the time of the update.
particular example is those artificial intelligence applications where a global data The token itself must contain the fol1owing information: a unique sequence
s~cture (blackboard) is required (e.g., HEARSAY I and HEARSAY 11 [17]). number, and a node number. The sequence number specifies the latest update
SInce the HMP does not have global shared memory, for the classes of problems message number. This sequence number is incremented and copied 10 the present
mentioned above, it is possible to represent a shared data structure as a fully- update message by the node possessing the token. The token is released by the
replicated database, supported by mechanisms ensuring consistent updating. updating station, only after the update message has been sent by the network.

For these mechanisms, we have made the following assumptions and The node number is the number of the last updating node.
constraints, which permit the use of specialized update control algorithms, that Each individual node participating in the management of the distributed data
map efficiently <;>~to the architecture of the HMP and take advantage of the structure,remembers the sequence number of the last received update message,
broadcast capabIlIty of the H-Network as well as the fast interprocessor and also any previous sequence numbers that are missing. The missing ones are
communications channels provided by the extended bus mechanism: the updating messages that have not been received and will be used for the

consistency check.
(a) The targeted applications are computationally intensive, For all three methods, each time a node receives the token, it compares the

distributed applications, needing a structured global database sequence number encapsulated in the token, with that of the last receivcd update.
(blac~board). If they do not match, then the node empties the network queue and checks again.

(b) Multiple readers can operate concurrently, but only a single The network queue consists of incoming packets from the network and since an
writer is allowed to operate at any given time. A modify update message is broadcast before the token is released, then the update
transaction is treated as an indivisible read-and-write operation on messages should have aITived at the destination node before the token. If the two
the latest version of the data structure. sequence numbers stil1 do not match, then the last updating message is missing,

(c) The readers far outnumber the writers. and the node requests re-broadcasting from the last updating node. It is possible




