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expressions that can be computed analytically (and hence are candidates for
ABSTRACT VLSI implementation) and which provide a maximum number of alternate

paths from a source to a destination. The existence of alternate paths
In this work, we present the Hypercycles, a class of multidimensional guarantees that a.message.will not be blocked waiting for its single route

graphs, which are generalizations of the n-cube. These graphs are obtained by to be free;d, but It would In turn search for the availability of alternate
allowing each dimension to incorporate more than two elemcnts and a cyclic paths. This strategy also provides for fault protection, since a faulty path
interconnection strategy. Hypercycles, offer simple routing, and the ability, ~an be marked permanently busy, and thus messages can be routed around
given a rIXed degree, to chose among a number of alternative size graphs. These It. (Such an approa~h of adaptive routing is applied in the hypercube
graphs can be used in the design of interconnection networks for distributed through the Hyperswltch [6])
systems tailored specifically to the topology of a particular application. The Hypercycles, being regular graphs, retain the advantages of easy

routing and regularity. Yet, since we are dealing with a class, rather than isolated
1.0 Introduction graphs, we have the flexibility of adopting any particular graph (from the class)
Mcssage passing eoncurrcnt computers such as the Hypcrcube[11, 16], that closely matches the req~ire~ents of a ~iven ~pplication. Since the graphs

Cosmic Cube[15], MAX[12, 13], consist of several processing nodes that belong to the same class, rou~ng IS accomplIshed vIa the same meth~ a!ld thus
interact via messages exchanged over communication channels linking these ~e same hardwar.e can conceivably be used to configure structures With dIfferent

nodes into one functional entity. SIzeS and ~pologles. ...
There are many ways of interconnecting the computational nodes, the. Th~s work des~nbes such a ~Ia~s of generalized Interconnection networks,

Hypercube, Cosmic Cube, and the Connection Machine[ 17] having adopted a wIth rouung str~tegles that a~ sImIlar to ~at of the n-cube [4] .Yet, .these
regular interconnection pattern corresponding to a binary n-dimensional cube, net",:°rks offer n~her topologl~s, and contaIn both ~e n-cube and the nng as
while MAX adopts a less structured, yet unspecified topology .speClal.caSCS. ~Ile the n.-cube IS. based on representa~on of nodes in base 2, we

Several recent studies attempt extensions and generalizations of the basic ?enerallZe by u~lng the mIXed radIx system representauon. Such a representation,
tenets of the n-cube. Broder et. al. [4] have proposed product graphs[ 14] of small Includes t~e bInary ~and hence the n-cube ) as well as the arbitrary base b
"basic" graphs. Their prime concern is to synthesize fault tolcrant networks with represen~uon as SPecI.al.C~. ...
a given degree of coverage. In these multidimensional graphs, they define a. This work IS.dlvlded IntO three parts. .Secuon 2.0 I~lroduces the MIxed
single route from a source to a destination, as the product of routes in each of the Ra~lx Sys~em, S~uon 3.0 presents some basic graph termInology and notation,
constituent dimensions. Routing is exhausted in each dimension before another whIle Secuon 4.0 Introduces the Hypercycles and discusses their properties.

dimension is considered. Bhunyan and Agrawal [3] have introduced the. .
generalizcd hypcrcubes (GHC) which arc also graph products of fully connected 2.0 ~Ixed ~adlx Num~er Sys.tem
"basic" graphs. The mixed radix system [2] is used to express the propcrties of. ~e mixed ~dlx. representaUon [2], IS a positional number representation,
these graphs and their routing. Willie [18] gives a good overview and and It IS a gen~r~llzauon of I?e the stand3!d b-base representation, in that it
comparison of several interconnection networks including the spanning bus and allows each pOsI.uon to follow.lts own base Independently of the other.
dual bus hypercubes. These are essentially binary n-cubes with broadcast busses Thus, gIven a decimal number M factored into, factors

connecting the processors in each dimension. m1 ,m2 ,m3 ...,In, as M = m1 x m2 x m3.x ...x m, then any number

The advantages of having a regularly structured interconnection are many- O X < M 1 be ted th " II . Ifold d th h bee .
d .. th . be.. d .~ --can reprcsen as e 10 owIng r-tup e

, an ey ave n proven Ume an agaIn In elr Ing Incorporate Inmany recent dcsigns [6,11,12,13,15,16,17]. In thcse structures, easy deadlock- (X )ml m2 ...mr = X1X2...X, Iml m2 ...mr

free routing [7] can bc accomplished by locally computing each successive where O 5 xi 5 (mi -1) ; i = 1,2 , and the xis are chosen in such a way

intermediate nodc -for a path that originates at a source node and terminates at a ,
destination node- as a function of the current position and the dcsired destination. so as X = ~ x. w .where w .= M
Many regular problems (such as the ones found in image processing, physics .~ .I I m 1m 2 ...m .
etc.) have been mapped on such regular structures, and run on the corresponding I -.I

mac~in~s exhibiting significant speedups. In contrast, ~mbedded real-time We use the notaUon (X )ml m2 ...mr X 1X2...X, Iml m2 ...mr to

app~l~auon~, such as the ones addressed by the. MAX proJ~ct [12, 13], tend to indicate the radices involved. Since for most cases we shall be dealing with a
exhibit vanable structures that do not necessarily map opumally to an n-cube. single set of radices, m 1.m2,...'m, ' we shall omit, when obvious, the radix

In addition, ~ince the sizc of a bi~ary n-cube is gi~en as 2n (n being the degree ?f indication from the notation x x ...x I.
the graph), It means that a particular configurauon cannot be expanded but In 1 2 , ml m2 ...mr I
predcfined quantum steps. For example, if a given embcdded application requires As an example, if we chose M = 10 = 2 x 5, then any number between 0

a system comprised of 9 nodes, the next larger n.cube with 16 nodes must be and 9 can be represented with two digits, the rlrst one ranging from 0 to I, and

~hosen. This constitutes a sign!fi~ant inc~e in resource allocation, especially the second one from 0 to 4. Thus (6)2,5 = 1112,5, since m 1 = 2, m2 = 5,

In the light of the power-masslimIted envlronmentofaspacccraft. w1 = Mlm1 = 10/2 = 5 and w2 = MI (m1m2 ) = I ThereforeHypercycles[9] can be considered as products of "basic" graphs that allow, I ' .,

as compared to the Generalized Hypercubes (GHC) [3], a richer set of component (6)2,5 = 11 2,5 = Ixw 1 + Ixw2 = Ix5 + 1 xI = 6110.

"basic" graphs ranging in complexity from the simple rings to the fully Similarly, we can see that the mixed radix system representation, is a
connected ones used in the GHC. Also, contrary to Broder et. al.[4], we define generalization of the standard base-b system. Indeed, if we select

th~ component graphs and provide analytical expressions for routing, our aim m 1 = m2 = ...= m, = b, then M =b' , the corresponding weights wi become
beIng twofold: Mlb b'-i h f h .f X .
(a) To provide computer interconnection networks that match the node w i = i = .t ere ore, t e representauon 0 a number In

requirements of a given embedded system. Since our primary target is' , .
spacecraft applications which arc weight and power limited, (the nodes in base b xb x ...xb becomes (X )bb ...b = L x i w i = L x i b '-I

a spacecraft computer network are the primary weight contributor rather i =1 i =1

than the communication media) the exact matching of the node which is exactly the representation in base-b.
requirementS is of paramount importance. Based on the above, we proceed now with the presentation of the

(b) To increase throughput of a given network by providing routing Hypercycles.



,
3.0 Graph Notation t ~ r Lm ./2J lAn undirectcd graph G is defined as the following tuple; a = (N. E ), and diametcr k , .k = "'""' ~

w h e r e N is the sct of nodcs ( v e r t i c e s ) I =1 PI

N = ( a. ; j =l,2 N ), and E the set of edgcs defined as It is easy to see that the n-cube is a Hypercycle, obtained with
I .. } M = 2 x2 x...x2 = 2 n and p =1,1,1 ,1. Both the diameter and the degree

E = { eiji = ( ai .Pj; )ii = 1,2 di ; I = 1.2 N ofthen-cubeareequaiton.

with ai .p. E N and whcrc dj is thc dcgrcc of nodc aj (i.c. thc numbcr of 4.1 Routing
..I;. .Hypercyclcs, have routing properties that are similar to those of the n-

edges Incldcnt at a particular nodc). The degrcc of a graph, dcnotcd d(a ) , IS cube. From the definition of the Hypercycle, nodes
defined as the maximum of the nodc dcgrccs. A walk in a [5] is a scqucncc of (a )m1 m2 ...mi ...mr = a1 a2 ~...a, and
edges el e2 ...el, such that if ej = (aj. aj+1 ) thcn ej+1 = (aj+1. aj+2 ) and (a.) = a a ~...a

. be f .m1 m2 ...mi ...mr 1 2 ,
ej E E. The length I of such a walk IS defined as the num r o edges occumng
in it The distance, dis(r,~ ), between n~es r .and O is defined as. the shortest r Lm ./2J lwalk between r and O If any, otherwise, dls(r,o) = 00. The diameter of a areat most distance =.L:.::. away. A walk from node a to node a* ofgraph, denoted by k, is defined as the maximum distance between any pair of p i' ,

nodes. A graph is regular, if all nodes have the same degree. I Lm ./2J llength I ax = -!- can be constructed as follows:
m Pi

4.0 Hypercycles.
We define now an r- dimensional Hypercycle, as the following regular a1a2...ar.ar. ala2...f.l...a, .a1a2...~2 a, , a1a2...~...ar .

undirected graph: h th t~p suc a

a~={N~'Em}
{ ~ji+Pi if [(~-~ji)modmi=l~ji'~I]>Pi

wherem=ml.m2.m3 m,amixcdradix,p=P].P2, p,;Pj.S'mjI2the ~. +1= f.ji -Pi if [(~ji-f.)mOdmi= l~ji'~I] > Pi

conncctivity vector, dctcrmining the connectivity in cach dimension which 1; 1= .
11= 1=IP ..If ...'.. .s Pi

ranges from a cyclc (Pj =1 ) to the fully connectcd (Pj = L mj 12 J ), and N m = 1;

(0.1 ,2 ,M-l } .Each node a E N P is representcd in the mixed radix system ~O = ai ~1 = ~
m MQ%

m 1 .m2 .m3 m, as (a )m/ m2 ...mr = a 1 a2...a, .The set of edges. We c~".the length lmax of such a walk, the distance along dimension j .
2 Given an ongm (a )m m ...m = a1 a2...a,

(N~) ~E~ iSdefinedinthefollowingway.Givcna.pEN~andif and a destination (/3)/2 r=pp...pm/ m2 ...mr 1 2 ,
a p are representcd as ( a) = a a. ..a a n d and if qj denotes their distance along dimension j , their total distance, denoted

.m/ m2 ...mr 1 2 , as dis(a,p ) and defined as the sum of the individual distances along all the

(8 ) = p p ...p .Then (a, p ) E E P if and only if thcre cxists 1 dimcnsions. is given as \
m/ m2 ...mr J 2 , m ,

SjSr such that. dis(a.p)=q = Lqi

p.=(a.:t~.)modm. wlth1.sf...sp. i-J111 I 1/ -
and ai = Pi; j ~j For thcsc nodes, therc arc a total of *

Observe that since Pj = (aj :t Pj) modmj , E ~ is symmetric. J = ( q ) = / Q~ I
q1 .q2 ,...,q, q1. q2. ...q,.Example: Suppose that M = 12 = 4x~ = m I xm2. and .I'= 1,1 = .p I.P2 distinct walks of length q that connect them. These paths can be constructed by

.Theref?r~, for the graph generated by usln~ th.e above mixed radix and sequentially modifying the source address, each time substituting a source digit
connectivity vector, node (1)4,3 = 01 = a la2 ' IS distance one away from node by an intermediate walk digit, as specified in equation (2) above, until the
( 10)4 ,3 = 31 =P I P 2 .Indeed, according to our definition, P I = 3 = destination is reached. As an example, the following walk connects the source
= (0 -1) mod4 = (al-~1 )modml ' and a2= P2= 1. to the destination.

§ source = a l a2 a3 ...a, a l ~1 a3 ...a, al ~1 !fIl ...aThc previously defined Hypercyclcs, are regular graphs of degrcc , , ,
, al~2!f11...a, ,al~2!f12...a, ,...,al~2P3...a, ,...,

d= D(mi'Pi) where P1P2P3...P, =destination

i =1
Figure I., gives an example of two distinct walks of equal length that

- { 2 p i if 2 p i < m i connect a source to a destination, for a Hypercycle.

f(mi'pi) -m.-l if 2 p .= m.
I I I

, The funclion lxJ denoles the largesl inleger smaller than or equal 10 x, while

§ I1=I I I I1=I I I .1= ( r y 1 denotes the smallesl inleger larger than or equal to y.
Observe that.. , ¥' < ml2 and.. ~ ¥' Imply that (a + ..)modm ~ a + t " )modm .Thus, for every O < ~ S p. a a ...(a i ~ )modm ...a defines ThIs number IS calculated as follo,,:s: GIven that there are, dlgllS In a node

./ 2 I I r address, there are the maximum, dIfferences belween a source an a des1lnatlon
Iwo dislinCI nodes in the graph. for a lotal of 2p i nodes. The only exceplion address. Also, for each digil (since il is expressed in base m i) the maximum

oecurs when mi is even. Then, for ~ = m/2. we have (a; + m/2 )modmi distance belween any IWO poinlS is given as dmax = lmi 12 J. Thus, because each

= (ai + ml2 + ml2 -mi/2 )modmi = (ai -mi/2 )modmi .Thai is. Ihe point is connecled 10 poinlS Ihal are distance ~ ; ISE,Sp. away, a1lthe poinlS

same node is dermed. and therefore. the total number of nodes reachable, becomes r 1 I
mi -1. can be reached in a maximum of dmax 1 Pi steps.

~ Denole as I Jl , V I = min { (JL -v )modm , (v -Jl )modm } , the dislance between

two inlegers modulo m .

*For the definition of a multinomial number, see [1] pp 32.



4.2 Properties r
In this section, we shall present a symmetry property for the Hypen:ycle .~ In

.* * * £JI
The()rem If m = m1.m2 mr and m = m1 .m2 mr are two I =1..* * * * .canbecalculatedas d = m m ...m

mIxedradlxbases,P=PJ,P2,...,P andp =PJ P2 ,...,p ,m =1!(m)and 1 2 r
* r ' r * Some typical distances are given in TABLE I. and TABLE 2.

p = 1!( p ) (where 1! is a permutation ), then the graphs (1 p and (1 p * are
m m 5.0 Conclusions and Discussion

isomorphic to each other. In this work, we presented the Hypercycle, a class of multidimensional
frn!1LSince m. is a permutation of m then grap~s, which art; essential~y ge~eraliz~tions of the n-cube. These graphs are

, obtaIned by allowIng each dimension to Incorporate more than two elements and

a cyclic inten:onnection strategy.
r r ~ * Although these graphs are not the densest possible, they are attractive,

L f (m j ) = L f (m It( i) ) = £.J f (m i) = d(a) and because of their simple routing. Similarly to the n-cube, the destination address
i -1 i =1 i =1 is used to sequentially route a message through intermediate nodes as outlined in

* section 4.1. Also, since the node addresses are represented in a mixed radix as a

~

I Lm. /2J l ~ I Lm ./2J l ~ I Lm. /2J l sequence of r-digits, each one of these digits is proces~ed independently and in
£.J -!-- = £.J '-ff'lt(i ) ,-" = £.J -.!-- = k parallel with the remaining digits. Thus the hardware inVolved in the routing can
i =1 Pi j =I Plt(i) i =I p* be made fast (because of the parallelism) and simple (since each module need

, .only handle arithmetic modmi ' as compared to arithmetic modm1m2...mr
Thus, ~e number of elements, the degrees and the diameters of the graphs needed when all the address digits are necessary as is the case with such netwolXs

(1 p and (1 p * are identical as the chordal rings [4], or the cube connected cycles [3]).
m m .For these graphs, we have also calculated the average distance between any

Ocr th b t h d f h h .h two nodes. Assuming that the graph is the representation of a multiprocessor,

fi II .me now e map g e ween t e no es o t e two grap s In t e the average distance provides a metric of the communication complexity
o owIng manner: . I ed . h C & I th d. fInVO v In suc a structure. ompare lor examp e e average IStanees o the 7-

N p ~ a a a ~-4 a. a. a. e N p. cube and the ( m = 555, p = 1 I 1) graph. The average distances, as they can
m I 2... r 1 2 ...r m. be determined from TABLE 2, are 3.528 and 3.629 respeetively, both have

similar number of nodes, while their diameters are equal to six and seven
such that a* = a respectively. TABLES I. and 2. give a collection of graphs together with their

J It-l (j ) degrees, diameters, number of nodes and average distances.
The map g is an isomorphism. Indeed, from its construction, it is 1-1 The graphs presented in this study, are generalizations of some well

and it can be easily proven that if dis( a, !3 ) = I then also k.nown ~phs s~ch as the binar~ n-cube, 2- and 3-dimensional ~eshes, and
d Is(g ( a} , g (!3 ) ) = I. Indeed, since d is( a,!3 ) = I, there exists an i nn&:s, wh!ch ,are Included as speelal cases. Examples of some speelal cases are
such that 1 a. -!3 ' I S p. and a. = !3 .; j ., i. and from the construction of depIcted In FIgure I.
th I I I J J The Hypercycle, can be further extended by employing a different

e map g , we have connectivity strategy in each dimension. Thus, in its most general form, eqn. I.
can be modified intoI .. I ... alt(i)-!31!(i) ~Pi =p1!(i)anda1!(j)=!3It(j);j..i !3j=(aj+~j)mOdmj;~je{~~,~~,...,~~ }

d th f ' provided that the subgraph (projected in dimension j) is connected.
an ere ore dls( g (a) , g (/3 ) ) = I. Examples of such extensions include the chordal rings [4], cube connected cycles

[3] etc. The disadvantage of course, is the increased complexity involved in the

.routing calculations for that particular dimension.
4.3 A verage Distance Calculation In conclusion, Hypercycles are generalizations of the basic n-cube and
Given an r-dimensional generalized graph (1P and restricting ourselves they offer simple routing, and the ability, given a fixed degree, to chose among a

m ' number of alternative size graphs. These properties are important for the design

in any single dimension i. we can calculate the number of nodes that are distanee of distributed systems of varying size and connectivity, and tailored specifically
I a way f r o m a s o u r c e n o d e to the topology of a particular application. These graphs can therefore be used in

(a) = a
1a2...a as equal to the number of symbols ~ .that the design of the interconnection networks of such machines as the MAX [7] or

ml m2 ...m, r I the Hypen:ube [68].

satisfy the relation (1- 1 )Pi < I a/,~i I S IPi .This number is given as ACKNOWLEDGEMENT{ 2p, if Ip. < r m ./2 1 The re~h ~escri~d in this paper was carried out by th~ Jet Propulsion
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Figure t. Examples of Hypercycles.


